
Fast Packet Classification using Condition
Factorization⋆

Alok Tongaonkar, R. Sekar, Sreenaath Vasudevan
Stony Brook University

Abstract. Rule-based packet classification plays a central role in network intru-
sion detection systems such as Snort. To enhance performance, theserules are
typically compiled into amatching automatonthat can quickly identify the sub-
set of rules that are applicable to a given network packet. The principalmetrics in
the design of such an automaton are its size and the time taken to match packets
at runtime. Previous techniques for this problem either suffered from high space
overheads (i.e., automata could be exponential in the number of rules), or match-
ing time that increased quickly with the number of rules. In contrast, we present a
new technique that constructs polynomial size automata. Moreover, we show that
the matching time of our automata is insensitive to the number of rules. Our ex-
perimental results demonstrate substantial improvements in space requirements,
as well the runtime of Snort.

1 Introduction

Given a network packetp and a set ofsignatures(which capture a set of conditions on
the content of network packets), the problem ofpacket classificationis that of identi-
fying the subset of signatures that matchp. It is the central computation performed in
network intrusion detection systems (NIDS) such as Snort [14].

A naive technique for packet classification is that of sequentially matching each
signature against an incoming packet. The performance of such a technique degrades
linearly with the number of signatures. Since the number of signatures used in NIDS
applications is typically large (e.g., Snort rule sets consist of several thousand rules),
this naive technique will not scale to even moderate speed networks.

A natural way to speed up classification is to build a search-tree-like data structure
that can be used to narrow down the set of signatures that are applicable to a packet,
and then match the packet sequentially against each of the signatures in this subset. A
common technique is to base the search tree on a small set of packet attributes that are
present in almost all rules, e.g., Snort (versions 2.x) usesa search tree that first branches
on the protocol (e.g., IP or ICMP), and then on source and destination ports (for TCP-
and UDP-related rules).

By limiting to a small number of predefined attributes, we cansimplify the search-
tree construction algorithm, and also ensure that the tree is small in size. But the draw-
back is that the number of signatures that remain applicableat a leaf node can be sub-
stantial. As a result, the sequential matching phase can still take significant time. To
further reduce this time, it would be desirable to build search trees that can make use
of all (or most) of the attributes that occur in signatures, instead of limiting to a small
number of predefined attributes. However, building such search trees becomes complex
because some of the attributes may not be present in all signatures. Consider a search
tree node that examines such an attribute. If node has two children, signatures that do

⋆ This work was funded in part by NSF grants CNS-0627687 and CNS-0831298, and AFOSR
grant FA9550-09-1-0539.

not examine this attribute would need to be duplicated across these children. Repeated
duplication leads to search trees whose size, in the worst-case, isexponential in the
number of signatures[16].

In contrast with previous techniques, we develop a new, systematic approach that
ensures a polynomial bound on the size of the search tree. In addition to space-reductions,
our approach improves classification speed using a novel technique calledcondition fac-
torization that breaks down tests involving packet fields in such a manner as to expose
commonalities across different types of tests such as equality tests, inequality tests,
tests involving bit-masking operations, etc. Our experimental results indicate an over-
all performance gain of 30% for Snort. Moreover, as comparedto previous techniques
for constructing packet classification search trees such asSnort-NG [9], our techniques
lead to search trees that are tens to hundreds of times smaller. Below, we present an
overview of our approach and summarize its key contributions.

1.1 Overview of Approach and Contributions

– In Section2, we formalize the problem of packet classification as applicable to
intrusion detection systems.

– In Section3, we develop the concept ofcondition factorizationthat provides the
foundation for the optimizations developed in this paper. Condition factorization is
based on the notion of aresidualof a condition with respect to another. Intuitively,
if we think of logical conjunction as analogous to the product operation on integers,
then residuals are analogous to the division operation. Just as division provides the
basis for finding common factors among integers, residuals provide the basis for
“factorizing” complex conditions originating from different rules so as to “share”
the testing of their common parts.

– In Section4 we present our automaton1 construction algorithm. Condition factor-
ization is the core operation behind this algorithm, and it contributes directly to two
key optimizations:
• It can reason about the relationships between the typical operations that arise

in rules (e.g., equalities, inequalities, disequalities,and bit-masking operations)
and leverage them to avoidsemantically redundant testseven if they aren’t syn-
tactically identical. It is more general than the techniques developed in BPF+[3]
for eliminating semantic redundancies — our technique proactively creates
opportunities for sharing computation, whereas BPF+ is limited to checking
whether previously performed tests obviate the need for a new test.

• By working with residuals of rules, our automaton construction algorithm can
recognize equivalence between automata states even beforeconstructing the
descendant states. Suchdirect constructionis important, since a tree automaton
is usually much larger (in theory, exponentially larger) than a DAG automaton.
As a result, techniques that minimize tree automaton into a DAG automaton
are bound to significantly increase space and time needed forautomata con-
struction.

– In Section5, we present several additional techniques for building space- and time-
efficient automata:

1 Henceforth, we use the term “automaton” instead of the term “search-tree.”

• In Section5.1, we develop the notion of adiscriminating test.If such tests are
selected at every state of the automaton, its size would be polynomial in the
size of input rules. Unfortunately, discriminating tests may not always exist,
which can lead to an explosion in automaton size. We therefore present a new
technique in Section5.2 that guarantees polynomial space bounds (where the
degree of the polynomial can be user-specified) by trading off some determin-
ism. We point out that this theoretical possibility of nondeterminism wasn’t ob-
served in our experiments. Thus, our technique was able to guarantee quadratic
worst-case space requirement, without incurring, in practice, the performance
penalties associated with nondeterminism.

• In Section5.3, we develop the notion ofbenign nondeterminism, which enables
the introduction of nondeterministic branches in the automaton without any
increase in matching times.Our experiments indicate dramatic reductions in
automata size as a result of this technique.

– In Section6, we describe our implementation, followed by an experimental evalua-
tion in Section7. Our technique achieves over a10-fold reductionin space require-
ments as compared to previous packet classification techniques for NIDS, while
improving matching times. Moreover, the experimentally observed matching time
remains virtually constant, regardless of the number of rules. In contrast, previous
techniques experience a significant slowdown as the number of rules are increased.
Our experiments also show that each of the techniques presented in previous sec-
tions contributes to significant reduction in space requirements.

– Related work is described in Section8, followed by concluding remarks in Sec-
tion 9.

We point out that string-matching and regular-expression matching techniques are or-
thogonal to the techniques developed in this paper. In particular, a common strategy
used in NIDS is to build a search-tree based on packet fields. At each leaf of this search-
tree, a string-matching (or finite-state) automaton corresponding to the signaturesS as-
sociated with this leaf is built. In the case of Snort, an Aho-Corasick automaton [1]
is used, which identifies a subset ofS’ of S whose longest string matches the current
network packet. Our techniques reduce the size ofS by building a search-tree based
on most packet fields, and hence the size ofS’ is also correspondingly reduced, which
translates into faster times for the final (sequential) matching phase.

2 Preliminaries

In the rest of this paper, we use the termfilter to refer to signatures. We associate a label
to identify a filter.

Definition 1 (Tests, Filters and Priorities) A testinvolves a variablex and one or two
constants (denoted byc) and has one of the following forms.

– Equality tests of the formx = c
– Equality tests with bitmasks of the formx&c1 = c
– Disequality tests of the formx 6= c
– Disequality tests with bitmasks of the formx&c1 6= c

– Inequality tests of the formx ≤ c or x ≥ c

A filter F is a conjunction of tests.

An example of a filter, as defined above, is

(dport = 22) ∧ (sport ≤ 1024) ∧ (flags&0xb = 0x3)

We exclude more complex conditions that don’t satisfy the definition of a filter, e.g.,

(sport + dport < 1024) ∧ (sport < ttl),

since they do not seem to arise in practice.
A filter F can be “applied” to a network packetp, denotedF (p), by substituting

variables, which denote the names of packet fields, with the corresponding values from
p. We define the notion of matching based on whether the filter evaluates totrue after
this substitution.

Definition 2 (Matching) For a setF of filters, we say thatF ∈ F matches a packetp
if F (p) is true. Thematch setof p, denotedMF (p) consists of all filters that matchp.

To illustrate matching, consider the following filter setF :

– F1 : (icmp type = ECHO)
– F2 : (icmp type = ECHO REPLY) ∧ (ttl = 1)
– F3 : (ttl = 1)

Also consider anicmp echopacketp1 and anicmp echo replypacketp2, both having a
ttl of 1. For these filters and packets,F1 matchesp1, F2 matchesp2, andF3 matches
both. As a result,MF (p1) = {F1, F3} andMF (p2) = {F2, F3}

Examples ofpacket-matching automata(also known as matching or classification
automata) for the above filter set are shown in Figures1 and 2. Figure 1 shows a
deterministic automaton, in which all of the transitions from any automaton state are
mutually exclusive. Anon-deterministic automatonis shown in Figure2, where the
transitions may not be mutually exclusive. We make the following observations about
the structure of matching automata:

– All but one of the transitions from each state are labeled with a test as defined
above; the remaining (optional) transition, called an “other” transition, is labeled
with a more complex conditionC as follows:
• In a non-deterministic automaton,C is the conjunction of negations ofa subset

of the tests on the rest of the transitions, e.g., the third transition from the start
state in Figure2.

• In a deterministic automaton,C is the conjunction of negations ofall the tests
on the rest of the transitions, e.g., the third transition from the start state in
Figure1. In this case, the “other” transition is mutually exclusivewith the rest
of the transitions, and hence is also called an “else” transition.

– The transitions from each automaton state aresimultaneously distinguishable,i.e.,
• apart from the “other”-transition, the tests on the rest of the transitions are

mutually exclusive

5 6

7 8

9

4

10

4

3

2

1

icmp type = ECHO

ttl 6= 1

{F2, F3} φ

ttl = 1 ttl 6= 1

{F3}{F1, F3} {F1}

{F1, F3}

ttl = 1

φ

{F3}

icmp type 6= ECHO REPLY ∧
icmp type 6= ECHO

{F1, F2, F3}

ttl 6= 1ttl = 1

icmp type = ECHO REPLY

{F2, F3}

Fig. 1.A deterministic matching automaton.

1

4

3

2

5 6

7 8

icmp type = ECHO

{F2, F3} φ

{F2, F3}

{F3}

ttl = 1

φ

{F3}

icmp type 6= ECHO REPLY

{F1, F2, F3}

ttl 6= 1ttl = 1

{F1}
icmp type = ECHO REPLY

ttl 6= 1

Fig. 2.A non-deterministic matching automaton.

• it is possible to determine, using a single operation withO(1) expected time
complexity, which of the transitions out of a state is applicable to a given
packet.

– Each final stateS correctly identifies the match set corresponding to any packet
satisfying all the tests along a path from the start state toS.

Note that non-determinism has a runtime cost, as it needs to be simulated using back-
tracking. For instance, consider a packet that satisfies theicmp type = ECHO condi-
tion on the first transition from the start state of Figure2. This packet is also compatible
with the conditionicmp type 6= ECHO REPLY on the third transition from the start
state. Thus, after exploring down the first transition, it isnecessary to explore down the
third transition as well. This need for backtracking is depicted in Figure2 using a dotted
transition.

3 Condition Factorization

In this section, we introduce the novel concept of conditionfactorization. It refers to
the process of decomposing filters into combination of more primitive tests — a pro-
cess that is intuitively similar to factorization of integers. This decomposition exposes

those primitive tests that are common across different tests, and thus enables shared
computation of these common primitive tests.

The basis for condition factorization is the residue operation defined below. It is
analogous to integer division. Suppose that we want to determine if there is a match for
a filter C1. Also assume that we have so far tested a conditionC2. A residue captures
the additional tests that need to be performed at this point to verify C1.

Definition 3 (Residue) For conditionsC1 andC2, theresidueC1/C2 is another con-
dition C3 such that:

(1) C2 ∧ C3 ⇒ C1, and
(2) C1 ∧ C2 ⇒ C3.

For a filter set,F/C = {F/C|F ∈ F ∧ F/C 6= false}.

Ideally, C3 would be the weakest condition such that (1) holds. In practice, however,
we may not want the minimal condition since it may be expensive to compute, or be
inefficient to use, e.g., may contain many disjunctions. Forthis reason, we do not require
C3 be the weakest such condition. ButC3 shouldn’t be too strong, or else we may miss
matches forC1. This motivates the condition (2) above.

The rules in Figure3 specify how to compute residues on tests. In the figure, the
notationx denotes bit-wise complement ofx, while & denotes bit-wise “and” opera-
tion. In addition, inequalities are expressed using interval constraints, e.g.,x ≤ 7 is
represented asx ∈ [−∞, 7], if x is an integer-valued variable. Note that a single in-
terval constraint can represent a pair of inequalities involving a single variable, e.g.,
(x ≤ 7) ∧ (x > 3) can be represented asx ∈ [4, 7].

For any pair of testsT1 andT2, the first row in the table that matches the structure
of T1 andT2 yields the value ofT1/T2. We illustrate residue computation using several
examples:

– (x 6= a)/(x = a) is false, as given by the second row in the table (which defines
T/¬T).

– (x = 5)/(x&0x3 6= 1) is false, as given by the 5th row.
– for (x = 5)/(x&0x3 6= 0), 5th row is no longer applicable since the condition

c&c1 = c2 does not hold. (Here,c = 5, c1 = 0x3, and c2 = 0.) Hence the
applicable row is the last row, which yields(x = 5)/(x&0x3 6= 0) = (x = 5).
The result is understandable: although the two conditions are compatible with each
other, the testx&0x3 6= 0 does not contribute to provingx = 5.

– (x ∈ [1, 10])/(x 6= 5) is also given by the last row to be(x ∈ [1, 10]).

Note that theminimalresidue in the last example would be(x ∈ [1, 4]) ∨ (x ∈ [6, 10]).
In this sense, Figure3 makes approximations in computing residues. Intuitively,we
make this approximation since there does not seem to be any way to evaluate(x ∈
[1, 4]) ∨ (x ∈ [6, 10]) more efficiently than(x ∈ [1, 10]).

In general, approximations such as those used above have thepotential to lead our
matching algorithm to perform multiple tests that have somesemantic overlap. How-
ever, the first line in Figure3 ensures that two syntactically identical tests would never
be performed.

T1 T2 T1/T2 Conditions

T T true
T ¬T false

T x = c T [x← c]

x = c x & c1 = c2 x & c1 = c & c1 c & c1 = c2

false c & c1 6= c2

x = c x & c1 6= c2 false c & c1 = c2

x = c x ∈ [c1, c2] false c 6∈ [c1, c2]

x 6= c x & c1 = c2 x & c1 6= c & c1 c & c1 = c2

true c & c1 6= c2

x 6= c x & c1 6= c2 true c & c1 = c2

x 6= c x ∈ [c1, c2] true (c < c1)
∨ (c > c2)

x ∈ [c1, c2] x ∈ [c3, c4] true c1 ≤ c3

≤ c4 ≤ c2

x ∈ [−∞, c2] c1 ≤ c3

≤ c2 ≤ c4

x ∈ [c1,∞] c3 ≤ c1

≤ c4 ≤ c2

x ∈ [c1, c2] c3 ≤ c1

≤ c2 ≤ c4

false (c2 < c3)
∨(c4 < c1)

x ∈ [c1, c2] x & c3 = c4 false c4 > c2

x & c1 = c2 x & c3 = c4 x & (c1 & c3) c2 & c3

= (c2 & c3) = c1 & c4

false otherwise
x & c1 = c2 x ∈ [c3, c4] false c2 > c4

x & c1 6= c2 x & c3 = c4 x & (c1 & c3) c2 & c3

6= (c2 & c3) = c1 & c4

true otherwise
x & c1 6= c2 x ∈ [c3, c4] true c2 > c4

T T ′ T

Fig. 3.Computation of Residue on Tests.

To illustrate residues on filter sets, consider

F = {F1 : (x = 5), F2 : (x = 7), F3 : (x < 10)}.

Then

– F/(x = 5) = {F1 : true, F3 : true}
– F/(x < 7) = {F1 : (x = 5), F3 : true}

Finally, we specify how to compute residues on more complex conditions that are
formed using conjunction and disjunction operations on tests:

– (C1 ⊕ C2)/C3 = (C1/C3) ⊕ (C2/C3), for ⊕ ∈ {∧,∨}

– C1/(C2 ∧ C3) = (C1/C2)/C3

We have ignored the case where the second operand to the residue operator contains
a disjunction, since this case does not arise in our automataconstruction algorithm.
Using this definition, we can see that:

– ((x > 2) ∨ (y > 7))/(x = 5) is true, and
– ((x > 2) ∧ (y > 7))/(x = 5) is (y > 7).

4 Matching Automata Construction

Our algorithmBuild for constructing a matching automata is shown in Figure4. Build
is a recursive procedure that takes an automaton states as its first parameter, and builds
the subautomaton that is rooted ats. It takes two other parameters: (i) thematch setMs

that consists of all filters for which a match can be announcedats, and (ii) thecandidate
setCs that consists of filters that haven’t completed a match, but future matches can’t be
ruled out either, i.e., matches for these filters will be reported at some of the descendants
of s. To illustrate the concepts of match and candidate sets, we have annotated the final
states in Figures1 and2 with match sets, and non-final states with the union of match
and candidate sets.

We maintain only the residuals of the original filters inCs andMs, after factoring
out the tests performed on the path from the root of the automaton to the states. For
example, in Figure1, at state2, we have completed a match forF1, and hence its match
set is{F1 : true}. Note that the condition component ofF1 has becometrue since
we computed the residue of the original condition (i.e.,(icmp type = ECHO)) with
respect to the condition(icmp type = ECHO) on the path from the automaton root
to state2. In addition, note that we can rule out a match forF2 at this state, but a match
for F3 is still possible. Thus, the candidate set for this state is{F3 : (ttl = 1)}.2

A final state is characterized by the fact that there are no more filters left inCs. This
condition is tested at line 2, ands is marked final, and is annotated to indicateMs as
its match set. If the condition at line 2 isn’t satisfied, thenthe construction of automaton
is continued in lines 5–16. First, a procedureselect (to be defined later) is used at line
5 to identify a set of testsT1, ..., Tk that would be performed on the transitions from
s. This procedure also indicates whetherTi is going to be a deterministic transition or
not: in the former casedi is set totrue, while in the latter case,di = false. Based
on whichTi are deterministic, the conditionTo associated with the “other”-transition is
computed on line 6:¬Ti is included inTo iff Ti is to be a deterministic transition.

The actual transitions are created in the loop at line 7–16. At line 8, we compute
the subsetCi of filters inCs that are compatible withTi. However, if this is going to be
a nondeterministic transition, then a match would be tried down the transition labeled
Ti and then subsequently down the “other”-transition. For this reason, we can eliminate
from Ci any filter that will be considered on the “other”-transition. This elimination is
performed on line 9. At line 10,Msi

andCsi
for the new statesi are computed.

2Ms andCs can be formally defined as follows. LetPs denote the conjunction of tests on the
path from the start state of the automaton to the states. ThenMs = {F ∈ F/Ps|(F =
true)}. Similarly,Cs = {F ∈ F/Ps|(F 6= true)}

1. procedureBuild(s,Ms, Cs)
2. if Cs is empty /* No more filters to match */
3. then match[s] =Ms /* Annotate final state with match set */
4. else
5. (D, T) = select(Cs) /* Ti ∈ T is tested onith transition */

/* di ∈ D indicates if this transition is deterministic */
6. To = {

∧
di∈D|di=true

¬Ti}

/* Compute test corresponding to the “other”-transition */
7. for eachTi ∈ (T ∪ {To}) do
8. Ci = Cs/Ti

9. if ((Ti 6= To) ∧ ¬di) then Ci = Ci − C/To endif
/* For a non-deterministic transition, do not duplicate */
/* filters from the “other” branch */

10. computeMsi
andCsi

from Ci andMs

11. if a statesi corresponding to(Csi
,Msi

) isn’t present
12. create a new statesi

13. Build(si,Msi
, Csi

)
14. endif
15. create a transition froms to si onTi

16. end
17. endif

Fig. 4.Algorithm for Constructing Matching Automaton

Since the behavior ofBuild is determined entirely by the parametersCs andMs,
two invocations ofBuild with the same values of these parameters will yield identical
subautomata. Hence a check is made at line 11 to examine if an automaton state already
exists corresponding toCsi

andMsi
, and if not, a new state is created at line 12, and

Build recursively invoked on this state. Finally, a transition tothis state is created at
line 15.

5 Improving Automata Size

The algorithm presented in the last section incorporated two main optimizations to re-
duce automaton size and matching time, both derived from ourdefinition of condition
factorization: detecting and sharing equivalent states, and avoiding repetition of (seman-
tically) redundant tests. In this section, we present techniques for realizing theselect
function that yields significant additional reduction in automata size.

Although our experimental evaluation considers the numberof automaton states as a
measure of its size, for simplifying mathematical analysis, our discussion in this section
will use the automaton breadth as the size metric. Since the automaton is acyclic, and
since tests are never repeated, it can be shown that the totalnumber of automaton states
can, in the worst case, be at mostS times its breadth, whereS is the number of distinct
tests across all the filters3.

3 In practice, the factor is closer to average size of filters, which can be significantly smaller than
S.

5.1 Discriminating Tests

Definition of select amounts to determining the test that should be performed at apar-
ticular state of the automaton. Since the test identifies thepacket field to be examined,
select can be viewed as defining an order of examination of packet fields. Not all or-
ders of examination may be acceptable, since some packet fields (e.g., the protocol
field) may need to be examined before others (e.g., the port field). We use a type sys-
tem similar to packet types [4] that captures such ordering constraints among tests. Our
implementation ofselect ensures that these constraints are respected.

The simplest approach for definingselect is to test the fields in the order of their
occurrence in a network packet, as done in some of the previous works [2,5]. We call
such a traversal order asleft-to-right traversaland refer to an automaton using this
traversal order asL-R automaton. A better strategy, calledadaptive traversal,was first
proposed in the context of term-matching [16], and was then generalized to deal with
binary data in [7]. In the terminology of this paper, an adaptive traversal would select a
set of testsT at an automaton states as follows. It identifies a packet fieldx that occurs
in every filter inCs. (If no such field can be found, it falls back to another choice, e.g.,
choosing the left-most field that hasn’t yet been examined.)Now,T consists of all tests
onx that occur in any of the filters inCs.

Since adaptive traversal was developed in a context where the tests were all re-
stricted to be simple equalities with constants, it is easy to see that the setT described
above consists of tests that can be simultaneously distinguished4, and hence can form
the transitions froms. Moreover, it has been shown [16] that, as compared to other
choices, this choice of transitions will simultaneously reduce the automaton size as
well as matching time. Unfortunately, none of these hold in the more general setting
of packet matching, where disequalities and inequalities also need to be handled. For
instance, consider a candidate set that consists of two filters (x 6= 25) and(x < 1024).
These tests are not simultaneously distinguishable. Moreover, neither of these tests con-
tributes towards verifying a match with the other. More generally, it can be shown that,
in the presence of disequality and inequality tests, the choices that decrease automaton
size do not necessarily decrease matching time (and vice-versa). We therefore focus
first on a criterion for reducing automaton size.

Definition 4 (Discriminating Set) A setT of conditions is said to be adiscriminating
set for a filter setF iff for everyF ∈ F there exists at most oneT ∈ T such thatF
belongs to the candidate set ofF/T .

The setT = {x = 5, x = 6, (x 6= 5) ∧ (x 6= 6)} is discriminating for the filter set
C = {x = 5, x = 6, x > 7}, but not for{x = 6, x > 4}. This means if we create
3 outgoing transitions corresponding to the three tests inT from an automata states
with the candidate setC, none of the filters inC will be duplicated among the children
of s. As a result, in an automaton that uses only discriminating tests, the candidate sets
(as well as the match sets) associated with the leaves will bedisjoint. Since there are at
mostn disjoint subsets of a set of sizen, it immediately follows that any automataon
that is based entirely on discriminating tests will have at mostO(n) breadth.

4 Recall that simultaneous distinguishability refers to the ability to identify the matching transi-
tion in O(1) expected time.

5.2 Ensuring Polynomial-Size Automata

Since discriminating tests may not always exist, it may be necessary to choose non-
discriminating tests. This choice introduces overlaps among the candidate sets of sibling
states in the automaton. These overlaps, in turn, mean that at any level in the automaton,
there may be as many as2n distinct candidate sets. Thus, the breadth of the automa-
ton can become exponential in the number of filters. Exponential lower boundshave
previously been established even in the simple case where all tests are restricted to be
equalities [16]. Although some of the previously developed techniques canavoid such
explosion, this has been accomplished at the cost of introducing significant backtrack-
ing at runtime [11,5,2,3], especially for the kinds of filters that occur in the context of
intrusion detection. Other techniques avoid exponential size by introducingO(n) op-
erations for each transition at runtime, as they require runtime maintenance of match
sets [13,7]. With large filter sets that are often found in enterprise NIDS, O(n) time
complexity for transitions becomes unacceptable.

We present a new technique that can provide a polynomial sizebound, while lim-
iting nondeterminism in practice. Indeed, any desired polynomial boundP (n) can be
achieved by our technique. However, by using a larger bound,e.g.,n2 instead ofn log n,
one can obtain deterministic automata in almost all cases.

Our technique is based on the observation that the breadth ofsubautomaton rooted
at s can be captured, in terms of the sizes of candidates sets associated withs and its
children, using the recurrence

B(|Cs|) =
k∑

i=1

B(|Csi
|),

whereB(1) = 1. Let P (n) be the desired polynomial onn that bounds the automaton
size. Based on the above recurrence, we can show, by induction on the height ofs that
the bound will be satisfied as long as the following conditionholds at every states of
the automaton.

P (|Cs|) ≥
k∑

i=1

P (|Csi
|) (1)

By selecting tests that satisfy this constraint, our implementation ofselect ensures that
the automaton size will beO(P (n)). If no such test can be found, our technique picks a
test that comes the closest to satisfying this constraint, and then makes some of the out-
going transitions nondeterministic so as to ensure that sizes of candidate sets associated
with the descendant automaton states satisfy the above constraint. Recall from line9 of
Build that making a testTi nondeterministic enables us to avoid overlaps betweenCi

andCo. So, our algorithm makes one or more transitions out of an automaton state non-
deterministic until Inequality1 is satisfied. In our implementation, we have setP (n) to
ben2, which guarantees a quadratic worst-case automaton size.

To understand the importance of the above technique, note that a purely determin-
istic technique ensures good performance at runtime, but risks catastrophic failure on
large rulesets that cause an exponential blow up — memory will be exhausted in that
case and hence the ruleset can’t be supported. In contrast, our approach converts this
catastrophic risk into the less serious risk of performancedegradation. Unlike previous

techniques for space reduction that led to increases in runtime in practice, performance
degradation remains a theoretical possibility with our technique, rather than something
observed in our experiments. (This is because of the fact that with the rulesets we have
studied in our experiments, the quadratic bound was never exceeded, and hence nonde-
terminism was not introduced.)

5.3 Benign Nondeterminism

For our final space-reduction technique, we define the concept of benign non-determinism,
which enables us to benefit from the space-savings enabled bynon-determinismwith-
out incurring any performance penalties.It is based on the following notion ofinde-
pendenceamong filter sets.

Definition 5 (Independent Filters) Two filtersF1 andF2 are said to beindependent
of each other ifF2/T = F2,∀T ∈ F1, andF1/T = F1,∀T ∈ F2.
F1 andF2 are said to be independent if∀F1 ∈ F1,∀F2 ∈ F2, F1 andF2 are indepen-
dent.

Suppose that there is a filter setF that can be partitioned into two independent subsets
F1 andF2. We can then build separate automata forF1 andF2. Packets can now be
matched using the first automaton and then the second one. From the above definition,
it is clear that the tests appearing in the two automata are completely disjoint, and hence
no decrease in runtime can be achieved by constructing a single automaton forF .

Our experiments show that the above technique leads to dramatic reductions in
space usage. The intuition for this is as follows. IfF1 andF2 are independent, then
a packet may matchF1, F2, both, or neither. A deterministic automaton must have a
distinct leaf corresponding to each of these possibilities. Extending this reasoning to
independent filter sets, if an automaton for the setF1 hask1 states, and the automaton
for F2 hask2 states, then a deterministic automaton forF1 ∪ F2 will have k1 ∗ k2

states. In contrast, using benign non-determinism, the size is limited tok1 +k2. If there
arem independent filter sets, then the use of benign nondeterminism can reduce the
automaton size from a product ofm numbers to their sum.

The second reason for significant reductions in practice, isas follows. After exam-
ining some of the fields that are common across many rules, as we get closer to the
automaton leaf, independent sets arise frequently. For instance, we may be left with one
set that examines only the destination port, another set that examines only the source
port, yet another set that examines only the destination network, and so on. Thus, inde-
pendent rule sets tend to arise frequently, and lead to massive increases in space usage
if they are not recognized and exploited using our benign non-determinism technique.

There is a simple algorithm for checking ifF contains two independent subsets.
First, partitionF into singleton subsets corresponding to each rule. Now, these subsets
are taken two at a time, and merged if they arenot independent. This process is repeated
until no more merges are possible. If there are multiple subsets left at this point, then
these subsets are independent.

To deal with benign non-determinism, the interface betweenselect and Build
needs to be extended so that the former can return a set of independent filter sets
{F1, . . . ,Fk}, instead of a test set. At this point,Build will create ak-way non-
deterministic branch. On theith branch, it will invokeBuild(si,Fi,Fi ∩Ms).

6 Implementation: Putting It All Together

Our implementation first compiles the given filter set into anautomaton using theBuild
algorithm. Residues were computed as specified in Table3. Ourselect implementation
proceeds as follows:

– select first attempts to find a discriminating test set (Section5.1).
– if no discriminating test sets exist, it examines opportunities for benign non-determinism

(Section5.3).
– if neither of the above steps succeed, it returns a set of tests that achieves the poly-

nomial size target specified, as described in Section5.2.

In order to speed upselect, our implementation starts by examining fields that occur
in all filters in a candidate set, giving preference to those fields that contain primarily
equality tests. Such fields have a high likelihood of yielding discriminating tests at
which pointselect returns this set. As mentioned earlier, any constraints regarding the
order of examination of fields are enforced byselect.

Once the automaton is constructed, our compiler generates C-code corresponding
to the automaton, which is then compiled into native code using a C-compiler. The
code generation is straight-forward and not described in detail here, except to note that
the code explicitly uses an if-then-else, a binary search, or a hash-based branching to
implement transitions.

A runtime system is responsible for reading network packetsand calling the gen-
erated code to perform matching. For experiments on networkintrusion detection, our
runtime system was essentially Snort, with modifications that were needed to integrate
with our automata code.

7 Evaluation

The goal of our experimental evaluation is demonstrate performance improvements that
can be gained in typical network intrusion detection systems as a result of using the
packet classification techniques presented in the previoussections. To this end, we un-
dertook two main experiments, both performed on a Linux system with 1.70Ghz Pen-
tium 4 processor and 520MB memory, running CentOS-4.2 (Linux kernel 2.6.9).

 0

 2000

 4000

 6000

 8000

 10000

 1500 1300 1100 900 700 500 300 100 1

D
et

ec
tio

n
tim

e
in

 n
an

o
se

co
nd

s
pe

r
pa

ck
et

Number of Rules

Condition Factorization
Snort-2.6

Fig. 5. Total Matching Time

 0

 5000

 10000

 15000

 20000

 0 50 100 150 200 250 300

N
o.

 o
f s

ta
te

s

Number of Filtering Rules

Condition Factorization
Snort-NG

Fig. 6. Automaton Size for Snort Rules

7.1 End-to-End Performance Improvement of NIDS

In the first experiment, we replaced the simple packet classification used in Snort 2.6,
the popular open-source NIDS, with our technique. Snort divides signatures into groups
based on protocol, source port and destination port. For each such group, it extracts the
longest string contained within the content-matching partof the signature, and builds an
Aho-Corasick automaton for these signatures. At runtime, asimple packet classification
technique is used to identify the rule group against which a packet needs to be matched.
Then the content of the packet is matched using the Aho-Corasick automaton associ-
ated with this group. Since this automaton only considers the longest string from each
signature, some of the signatures returned by this automaton may not really match the
packet. (However, the automaton will always return a superset, not a subset of matching
signatures.) Moreover, the signatures may contain complexconditions, e.g., a constraint
on the distance between two strings within a signature. To handle these aspects, Snort
performs a one-on-one match between a packet and each of the signatures returned by
the automaton.

In our experiment, we replaced the first stage with the matching automaton con-
structed by our technique. At each leaf of this automaton, wereplicate the technique
used by Snort, i.e., we build an Aho-Corasick automaton to recognize the longest string
contained in each of the signatures in the candidate set of the leaf5. Finally, a one-
on-one match is perfomed between the signatures returned bythis automaton and the
network packet. Our implementation reuses almost all of Snort code, including the code
for Aho-Corasick automaton, and the final one-on-one match.It only replaced the initial
packet classification component. As a result, the performance improvements obtained
by our technique are entirely due to the use of our sophisticated packet classifier.

We measured the total time taken by original Snort, and the version of Snort we
modified to use our matching automaton. These times were computed for a 21-million
packet trace collected at a University laboratory consisting of about 30 hosts. Since the
firewall is fully open to the Internet (i.e., the traffic is notpre-screened by another layer
of firewalls in the University or elsewhere), the traffic is a reasonable representative of
what one might expect a NIDS to be exposed to. We used the default signature set that
is shipped with Snort.

In this experiment, we observed that the one-on-one matching phase was invoked
about 120M times in the original Snort, whereas it was invoked only 40M times with our
packet classifier in place. This reduction in the number of one-on-one matches translates
to about 30% reduction in the overall time taken by Snort.

Figure5 shows the overall time taken by Snort with and without our modification,
as we vary the number of rules. While the performance is nearlyidentical for small rule
sets, it quickly increases to (and stabilizes at) about 30% at a few hundred signatures.

5 In the presence of non-determinism, we needed to modify the above technique so as to avoid
repetition of string-matching tests after backtracking. Specifically, we builtthe Aho-Corasick
at the first non-deterministic node encountered on a root-to-leaf path in the automaton, and per-
formed an intersection of the set of signatures returned by the Aho-Corasick with the signature
sets of each of the matching leaves.

7.2 Improvement in Space Usage

In this experiment, we evaluated gains in space usage obtained using our packet classi-
fication technique. We first compared our technique against that of Snort-NG [9], which
was the only other implementation of a sophisticated packetclassifier that we are aware
of that is applicable to NIDS like Snort. Snort-NG uses a different strategy from ours for
eliminating redundant tests: they convert all tests into a canonical form so that seman-
tically identical tests would also be syntactically identical. However, tests in canonical
form can in general be more expensive than the original test,e.g., in order to support
tests on IP addresses that may sometimes involve bit-masking operations and at other
times involve equality, they convert both tests into smaller tests that examine one bit
of address at a time. Secondly, Snort-NG uses an entropy-based algorithm (instead of
the criteria developed in Section5 of this paper) to decide which packet field to test at
each node. These factors lead to significant differences in the sizes of the automaton
constructed, as illustrated in Figure6.

We focused this evaluation on packet classification, and ignored the content-matching
components of signatures. (Recall that content-matchingwas considered in the ex-
periments in the previous section.) Since many signatures are identical except for the
content-matching part, the default signature set that camewith Snort-NG was reduced
from a size of 1635 to 305.

Figure6 shows the effect of increasing the number of rules on the number of au-
tomaton states. We can see from the graph that as the number ofrules increases, the
number of states inSnort NG increases much faster than our technique. For 300 rules,
Snort-NG automaton contains over 45K states whereas the automaton constructed by
our technique has only about 4K states, representing an order of magnitude improve-
ment in space utilization.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 50 100 150 200 250 300

N
o.

 o
f s

ta
te

s

Number of Filtering Rules

LR Tree
LR DAG

Adaptive Tree
Adaptive DAG

Adaptive DAG w/ benign non-det

Fig. 7.Effect of Optimizations on Automaton
Size for Snort Rules

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 50 100 150 200 250 300

M
at

ch
in

g
T

im
e

(in
 s

)

Number of Filtering Rules

Snort 2
Snort-NG

Condition Factorization

Fig. 8. Matching Time for Packet Classifica-
tion

Effect of Optimization Techniques Figure7 illustrates the effects of different opti-
mizations on the automaton size. We studied different combinations of techniques: with
and without sharing of equivalent states in the automata, and with different traversal or-
ders.

– Order of testing fields.As compared to left-to-right (L-R) order for examining
packet fields, our technique (which uses theselect function as described in Sec-

tion 6 produces tree automata that are much smaller: for 120 rules,the L-R au-
tomaton had 150,000 states, whereas the tree automaton had less than 3000 states.

– DAG Vs tree automata.Our results show that DAG automata were smaller than tree
automata by about 25% for our technique. Larger space reductions were achieved
with DAG optimization for L-R automata, but still, L-R automata remain signifi-
cantly larger than the one constructed by our technique.

– Benign nondeterminism.By exploiting benign non-determinism, we were able to
achieve dramatic reductions in space usage. This is becauseSnort contains many
rules which test some common fields. Our technique prefers these common fields
for testing, since they are the ones that are likely to be discriminating. Once these
common fields are tested, the residual rule sets contain manyindependent subsets.

We point out that a combination of our techniques was necessary to achieve the size
reductions we have reported. In particular, benign nondeterminism leads to large im-
provements in size when combined with discriminating tests. It is much less effective
when used with L-R technique, since the factors contributing to the occurrence of inde-
pendent filter sets do not arise frequently when the L-R technique is used.

7.3 Packet Classification Performance

In this section, we describe experiments to study the runtime performance of packet
classification. Unlike Section7.1, which considered packet classification as well as
content-matching time, this section focuses exclusively on the packet classification time
in order to measure the raw performance benefits provided by our technique. For these
experiments, we used the same 21M packet trace mentioned earlier.

Figure8 shows the matching time taken by Snort, Snort-NG and our technique for
classifying these packets as the number of rules change. In the Figure8, it can be seen
the matching time remains essentially constant with our technique, even as the number
of rules are increased from about 10 to 300. In contrast, the matching times for Snort
and Snort-NG increase significantly with the number of rules. The base matching time
for all the techniques (with no rules enabled) is basically the same, as it corresponds
to the time spent by Snort to read the packets from a file and do all related processing
except matching.

8 Related Work

[19],[10],[20], [17] are techniques targeted at routers where they can restrictthe prob-
lem so as to work on a small, predefined set of attributes such as IP address and port.
Our focus is on NIDS, where a much larger number of attributesmay be tested, and
moreover, the tests can be complex.

Pattern matching automata have been extensively studied inthe context of term
rewriting and theorem proving [15]. Sekar et al [16] presented a technique for adapting
the order of examination of fields in order to reduce space andmatching time complex-
ity of term-matching automata. Gustafsson and Sagonas [7] extended this technique to
handle binary data such as network packets. Our technique generalizes their technique

further by adding support for inequalities and disequalties. Moreover, our bit-mask op-
erations are more general than their bit-field operations. More importantly, their au-
tomata has an exponential worst-cast space complexity. Although they describe a tech-
nique for constructing linear-sizeguarded sequential automata, these automata require
runtime operations to manipulate match and candidate sets as a result, their transitions
have anO(N) complexity (whereN is the number of patterns), while our transitions
areO(1) expected time.

Techniques such as BPF [11], DPF [5] and Pathfinder [2] can also be viewed as
building matching automata where the packet fields are examined in the order they
occur, i.e., they rely on a left-to-right traversal insteadof relying on the techniques
described in Section5 for selecting the the tests that are performed. As shown in our
evaluation, our techniques result in significant gains in space usage, as compared to a
left-to-right traversal.

BPF+ [3] uses global dataflow techniques to identify opportunitiesfor eliminating
redundant tests. Our condition factorization technique ismore general than those of
BPF+, being able to reason about semantic redundancies in the presence of bit-masking
operations, and comparisons involving different constants. More importantly, condition
factorization takes a step beyond the passive approach of recognizing redundant tests
and eliminating them: it proactively decomposes complex tests into more primitive ones
so that their common components are exposed and shared.

DPF uses dynamic code generation, which allows dynamic reordering of tests. Dy-
namic reordering improves performance by detecting match failures earlier. Al-Shaer
et al [8] and Gupta et al [6] significantly improve on the dynamic reordering technique
used in DPF by using efficient algorithms to maintain statistics regarding the traffic.
Their techniques are analogous to profile-based optimizations in compilers, whereas
ours is analogous to static-analysis based optimizations.Thus, the two techniques can
complement each other.

Vern Paxson [12] developed Bro which is another popular NIDS. Sommer and Pax-
son [18] enhanced Bro signature matching to use regular expressions. An important
difference between Bro and Snort is that Bro is primarily stream-oriented: it assem-
bles packet sequences into streams before applying signatures. Commercial NIDS such
as those from CISCO and IBM employ a combination of packet-oriented and stream-
oriented matching techniques. The packet classification techniques developed in this
paper fit naturally in the context of packet-oriented NIDS (Snort or commercial sys-
tems), and can speed them up. Integrating them into a stream-oriented NIDS can be
a bit more involved, as these systems may apply certain testson packet fields against
some packets (e.g., the first packet in a stream) but not against others.

9 Conclusions

In this paper we presented new techniques for packet-matching. Our approach is based
on the concept of condition factorization, and proactivelycreates opportunities for shar-
ing common tests across different signatures. Unlike previous techniques, our tech-
niques provide a worst-case polynomial bound on the size of matching automata, while
ensuring excellent runtime performance in practice. Our experimental results demon-
strate a 30% gain in end-to-end performance of the popular Snort NIDS due to the use

of our techniques. They also demonstrate an order of magnitude reduction in space us-
age as compared to previous systematic packet classification techniques developed in
the context of NIDS, as well as matching times that remain virtually constant as the
number of rules is increased.

References

1. A. Aho and M. Corasick. Efficient string matching: An aid to bibliographic search. In
Communications of the ACM, vol 18, no. 6, pages 333–343, 1975.

2. M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar. Pathfinder: A pattern-
based packet classifier. InOperating Systems Design and Implementation, pages 115–123,
1994.

3. A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting global data-flow optimization
in a generalized packet filter architecture. InSIGCOMM, pages 123–134, 1999.

4. S. Chandra and P. McCann. Packet types. InSecond Workshop on Compiler Support for
Systems Software (WCSSS), May 1999., 1999.

5. D. R. Engler and M. F. Kaashoek. DPF: Fast, flexible message demultiplexing using dynamic
code generation. InSIGCOMM, pages 53–59, 1996.

6. P. Gupta and N. McKeown. Packet classification on multiple fields. InACM SIGCOMM,
1999.

7. P. Gustafsson and K. Sagonas. Efficient manipulation of binary datausing pattern matching.
J. Funct. Program., 16(1):35–74, 2006.

8. E. A.-S. Hazem Hamed, Adel El-Atawy. On dynamic optimization of packet matching in
high-speed firewalls. InIEEE Journal on Selected Areas in Communications, Vol 24, No. 10,
Oct 2006.

9. C. Kruegel and T. Toth. Using decision trees to improve signature-based intrusion detection.
In 6th Symposium on Recent Advances in Intrusion Detection (RAID), 2003.

10. T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using efficient
multi-dimensional range matching. InSIGCOMM, pages 203–214, 1998.

11. S. McCanne and V. Jacobson. The BSD packet filter: A new architecture for user-level packet
capture. InUSENIX Winter, pages 259–270, 1993.

12. V. Paxson. Bro: A system for detecting network intruders in real-time. In USENIX Security,
1998.

13. R. Ramesh, I. Ramakrishnan, and D. Warren. Automata-drivenindexing of prolog clauses.
In Seventh Annual ACM Symposium on Principles of Programming Languages, pages 281–
290, San Francisco, 1990. Revised version appears in Journal of Logic Programming, May
1995.

14. M. Roesch. Snort - lightweight intrusion detection for networks. In13th Systems Adminis-
tration Conference, USENIX, 1999.

15. R. Sekar, I. Ramakrishnan, and A. Voronkov. Term indexing. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning, volume II, chapter 26, pages
1853–1964. Elsevier Science, 2001.

16. R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching. InAutomata,
Languages and Programming, pages 247–260, 1992.

17. S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet classification using multidimen-
sional cutting. InSIGCOMM, 2003.

18. R. Sommer and V. Paxson. Enhancing byte-level network intrusiondetection signatures with
context. InACM CCS, 2003.

19. V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable layer four switch-
ing. In Proceedings of ACM SIGCOMM ’98, pages 191–202, sep 1998.

20. T. Y. C. Woo. A modular approach to packet classification: Algorithms and results. In
INFOCOM, 2000.

	[-.5in]Fast Packet Classification using Condition Factorization[-.25in]
	 Alok Tongaonkar, R. Sekar, Sreenaath Vasudevan [-.26in]

