
Address-Space Randomization for Windows Systems∗

Lixin Li and James E. Just R. Sekar
Global InfoTek, Inc., Reston, VA Stony Brook University, Stony Brook, NY

{nli,jjust}@globalinfotek.com sekar@cs.stonybrook.edu

Abstract

Address-space randomization (ASR) is a promising
solution to defend against memory corruption attacks
that have contributed to about three-quarters of US-
CERT advisories in the past few years. Several tech-
niques have been proposed for implementing ASR on
Linux, but its application to Microsoft Windows, the
largest monoculture on the Internet, has not received
as much attention. We address this problem in this pa-
per and describe a solution that provides about 15-bits
of randomness in the locations of all (code or data) ob-
jects. Our randomization is applicable to all processes
on a Windows box, including all core system services,
as well as applications such as web browsers, office ap-
plications, and so on. Our solution has been deployed
continuously for about a year on a desktop system used
daily, and is robust enough for production use.

1 Introduction

An overwhelming majority of security advisories from
US CERT in recent years has been attributed to mem-
ory corruption attacks. Typically, these attacks en-
able a remote attacker to execute arbitrary code on
the victim system, thereby providing a mechanism for
self-propagating worms, installation of backdoors (in-
cluding “bot” software), spyware, or rootkits. Address-
space randomization (ASR) [16, 3, 23, 4] provides a
general defense against memory corruption attacks.
Although several ASR techniques have been described
for Linux [16, 3, 23, 4], to the best of our knowledge,
there hasn’t been any previous work describing ASR
for the largest monoculture on the Internet, namely,
the Microsoft Windows platform. We address this
problem, and describe a system called DAWSON (“Di-
versity Algorithms for Worrisome SOftware and Net-
works”) that provides about 15-bits of randomness in
the locations of all code or data.

In parallel with our work, some commercial prod-
ucts for Windows ASR have begun to emerge, namely,

∗This work was partially funded by Defense Advanced
Research Project Agency under contract FA8750-04-C-0244.
Sekar’s work was also supported in part by an ONR grant
N000140110967 and NSF grants CNS-0208877 and CCR-
0205376. The views and conclusions contained in this document
are those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of the
Defense Advanced Research Project Agency, NSF, ONR, or the
U.S. Government.

Wehntrust [21] and Ozone [20]. In addition, Windows
Vista is going to be shipped with a limited implemen-
tation of ASR [9]. However, these products suffer from
one or more of the following drawbacks:
• Insufficient range of randomization. Windows Vista

randomizes base addresses over a range of 256 possi-
ble values. This level of randomization is hardly suf-
ficient to defeat targeted attacks: the attacker simply
needs to try their attack an average of 128 times be-
fore succeeding. This isn’t likely to significantly slow
down self-replicating worms either. Wehntrust and
Ozone provide more randomization, but significantly
less than that of DAWSON in some memory regions
such as the stack.

• Incomplete randomization. Often, only a subset
of memory regions are randomized. For instance,
Wehntrust does not randomize some memory regions.
With Ozone, no information is available beyond the
fact that the stack and the DLLs are randomized.
Unfortunately, if the address of any writable memory
region is predictable, the attacker can modify their
attack so as to inject code into this region and ex-
ecute it. Therefore, DAWSON randomizes all such
memory regions.

• Lack of detailed analysis. With Wehntrust and
Ozone, even the most basic information about their
implementation (e.g., the complete list of memory
regions that are randomized) isn’t available. As a
result, one cannot independently analyze or evalu-
ate the quality of protection provided by them. In
contrast, we provide a detailed analytical as well as
experimental evaluation of DAWSON.

1.1 Contributions of this paper

• Development of practical techniques for real-
izing ASR on Windows. The architecture of Win-
dows is quite different from UNIX, and poses several
unique challenges that necessitate the development
of new techniques for realizing randomization. Some
of these challenges are:
– Difficulty of relocating critical DLLs. Security-

critical DLLs such as ntdll and kernel32 are
mapped to a fixed memory location by Windows
very early in the boot process. Since most of the
APIs targeted by attack code, including all of the
system calls, reside in these DLLs, we needed to



Figure 1. Memory Error Exploits.

develop techniques to relocate these DLLs.
– Lack of access to OS or application source code.

This means that the primary approach used by
Linux ASR implementations, namely, modification
of the kernel source, is not an option on Windows.

– Lack of UNIX-style shared libraries. In UNIX,
dynamically loaded libraries contain position-
independent code, which allows them to be shared
even if they are loaded at different addresses by dif-
ferent processes. In contrast, Windows DLLs need
to be stored at the same memory address by all
processes that share a single copy of the DLL.

• Robust implementation. DAWSON applies ASR
to all Windows services, as well as user applications.
We have had this system running on a production
laptop installed with Windows XP, Office, and SQL
and IIS servers. In addition to the standard set
of OS services and applications, we have routinely
used Office applications, Windows development tools
(MSVC, .Net, etc.), SQL and IIS servers, and web
browsers (e.g., IE and Firefox), and haven’t experi-
enced any compatibility or robustness issues. Perfor-
mance overhead of DAWSON is typically under 5%.

• Analytical evaluation of effectiveness. We de-
velop a classification of memory corruption attacks,
and use it subsequently to compare previous works.
We then provide a detailed analytical evaluation of
our approach and provide estimates of success prob-
abilities for various types of attacks.

• Experimental evaluation. We have evaluated the
ability of DAWSON to defeat memory corruption at-
tacks using 5 real-world exploits, as well as a range
of sophisticated memory corruption attacks on a syn-
thetic application.

1.2 Paper Organization

We begin with a classification of memory corruption
attacks in Section 2 and describe the strengths and
weaknesses of ASR in defending against these attacks.
With this background, we then provide a comparison

of DAWSON with previous work in Section 3. Our
technical approach is described in Section 4, followed
by analytical and experimental evaluation in Sections 5
and 6 respectively. Finally, concluding remarks appear
in Section 7.

2 ASR and Memory Corruption Attacks

Intuitively, a memory error occurs in C programs when
the object accessed via a pointer expression is different
from its referent, i.e., the object intended by the pro-
grammer. Memory errors are classified into spatial and
temporal errors. Temporal errors occur when a pointer
is dereferenced beyond the lifetime of its referent, e.g.,
access to freed (or reallocated) memory. Security ex-
ploits haven’t targeted temporal errors, and indeed, it
is unclear how they can be used in attacks. Conse-
quently, security research has focused on spatial errors,
which are caused by (a) dereferencing a pointer that
holds a value outside of the bounds of its referent, or
(b) dereferencing a non-pointer or a corrupted pointer
value.

Figure 1 classifies spatial memory error exploits
based on whether pointer corruption is involved or not;
and if so, whether the corrupted pointer refers to a data
or code object; and if this object holds values provided
(“injected”) by the attacker or values already existing
in victim process memory. Within “pointer corruption
attacks,” we include attacks that corrupt values used
in address computation, e.g., an integer value used as
an array subscript.

Absolute address randomization (AAR), used in
[16, 3, 23], randomizes the absolute memory address
of various code and data objects, but the relative dis-
tances between objects aren’t randomized. AAR blocks
pointer corruption attacks, since the attacker is no
longer able to predict the object that will be refer-
enced by a corrupted pointer value. For instance, a
stack-smashing attack involves overwriting the return
address on the stack with a value that points to a buffer
variable used to hold attacker-provided data. The lo-



cation of this variable becomes unpredictable in the
presence of AAR, thus defeating the attack.

Relative address randomization (RAR) techniques
[4] randomize inter-object distances as well, and hence
can defeat non-pointer attacks. DAWSON imple-
ments only AAR, and hence addresses only the pointer-
corruption attacks (4 of the 5 categories shown in Fig-
ure 1). In practice, AAR is very effective since mem-
ory error exploits reported so far have been based on
pointer corruption.

2.1 Limitations of AAR

We list the known limitations of ASR here, referring
the reader to previous works such as [3] for details.
• Local attacks are launched from the same host as the

victim application. AAR is based on the secrecy of
a “randomization key.” In practice, however, it is
hard to protect this secret from local users and ap-
plications, and hence AAR has been used mainly to
defend against remote exploits. Indeed, most AAR
implementations (including DAWSON) aren’t even
designed to defend against local threats, including
threats due to malicious code that, by some mecha-
nism, runs on the same host as the victim application.

• Relative address attacks don’t rely on absolute loca-
tions of data. Examples include data corruption at-
tacks that don’t require pointer corruption, and par-
tial pointer corruption attacks that overwrite only
the least significant byte(s) of an address.

• Information leakage attacks utilize a vulnerability to
first read the value of some pointer, and then use it
to compute the location of other objects in memory1.

• Brute-force (guessing) attacks repeatedly attempt to
guess the value to be used for corrupting a pointer.

• Double-pointer attacks require two vulnerabilities
that are exploited in two steps. First, an attacker
picks a random memory address A, and writes attack
code at this address by exploiting an absolute address
vulnerability, e.g., a heap overflow or a format-string
bug. In the second step, the attacker uses a rela-
tive address vulnerability (e.g., a buffer overflow) to
overwrite a code pointer with A.

DAWSON does not defend against the first three of
these attack types, but as discussed in Section 5, it
provides probabilistic protection against the other two.

2.2 Need to Relocate All Memory Regions

In addition to these limitations, some implementations
of AAR may suffer from the weakness that the locations
of some memory objects may not be randomized. This

1Most previous approaches such as StackGuard (with ran-
dom or XOR canary) [7], ProPolice [8] and PointGuard [6] are
susceptible to such attacks as well.

limitation can totally undermine the effectiveness of
AAR, as we describe below. If a code region S is not
randomized, then the attacker can execute a return-to-
existing code attack into S. Of particular relevance in
Windows is the common use of the instruction sequence
jmp esp which causes a control-transfer to the top of
the stack. During attacks, it is common for the top of
the stack to contain attacker provided data. Thus, this
instruction sequence allows for execution of injected
code.

Any unrandomized writable section W poses a ma-
jor threat, as it is possible to mount a 2-step attack as
follows. In the first step, the attacker injects a short
opcode sequence (such as jmp esp or other sequence
that can utilize values in registers) into W . In the next
step, control is transferred to this code2.

Unrandomized read-only data sections don’t pose as
great a threat. Note that until the attacker’s code gets
control, it is not possible to “read” the contents of arbi-
trary memory in order to obtain values of pointers etc.
However, there is a small chance that the read-only re-
gion contains data that corresponds to an exploitable
instruction sequence.

3 Related Work

We use Figure 1 to compare previous techniques for
memory error exploit protection. Early techniques
such as StackGuard [7] and RAD [5] focused on protect-
ing return addresses. ProPolice [8] extends StackGuard
to protect all data on the stack from buffer overflow at-
tacks, but does not address attacks on heap or static
data. Libsafe/Libverify [1] also targets stack-smashing
vulnerabilities, but does so without requiring source-
code access. [17] shows how to use binary-rewriting to
implement RAD.

PaX [16], address obfuscation [3], and transparent
runtime randomization [23] use memory layout ran-
domization to defeat pointer corruption attacks on
Linux. DAWSON achieves the same effect on Win-
dows. Relative address randomization, in addition to
absolute address randomization, is achieved in [4] using
a source-to-source transformation.

Non-executable data segments and instruction set
randomization [2, 13] address all injected code attacks.
Program shepherding [14] uses runtime monitoring of
branch targets to defeat injected code attacks.

Pointguard [6] randomizes (“encrypts”) stored
pointer values, and can hence be effective against all
pointer corruption attacks. However, the approach
does not consider the possibility that pointers may be

2Such attacks require absolute-address vulnerabilities such as
heap overflows or format-string bugs that are quite common.



Type Description Protection Granularity
of Rebasing

Free Free space Inaccessible Not rebased

Code Executable or DLL code Read-only 15 bits

Static data Within executable or DLL Read-Write 15 bits

Stack Process and thread stacks Read-Write 29 bits

Heap Main and other heaps Read-Write 20 bits

TEB Thread Environment Block Read-Write 19 bits

PEB Process Environment Block Read-Write 19 bits

Parameters Command-line and Environment variables Read-Write 19 bits

VAD Returned by virtual memory allocation routines Read-Write 15 bits

VAD Shared Info for kernel and user mode Unwritable Not rebased

Figure 2. Types of regions within virtual memory of a Windows process.

aliased with non-pointer data, and hence can break le-
gitimate programs.

Complete memory error protection techniques can
deterministically stop all memory exploits, but they
impose a significant overhead [24, 11, 19] and/or suffer
from incompatibility with legacy code [15, 10].

3.1 ASR Implementations on Windows

Wehntrust [21] is a third-party implementation of ASR
for Windows. As compared to our technique, it does
not randomize all memory regions — in particular, sev-
eral writable memory regions, including the environ-
ment variables, arguments, and the PEB/TEB aren’t
relocated. (Their product literature does claim the
ability to relocate PEB/TEB, but in version 1.0.0.9
of their software, PEB/TEB wasn’t relocated.) In ad-
dition, they provide 19 bits or less randomness in the
stack, as opposed to the 29 bits in our implementation.

Ozone is another third-party ASR implementation,
but we haven’t been able to find any information on
their product other than [20], according to which they
randomize the stack and the DLLs, but it is unknown if
the heap and other regions of the process memory are
randomized. Moreover, randomness in stack addresses
is much smaller than ours — just 16-bits.

Windows Vista is going to incorporate a limited
amount of ASR. According to [9], the stack, heap,
DLLs and the executables that ship with the OS are
randomized, but it is unclear whether other regions are.
More importantly, they use only 8-bits of randomness,
which makes brute-force attacks much easier than in
DAWSON3. Moreover, older versions of the OS, includ-
ing XP and 2003, are going to be widely deployed for
a long time to come, and hence our solution would still
be necessary, even if one were to be satisfied with 8-bits
of randomness.

3Vista relies on a combination of NX (non-executable data),
ASR and other techniques to defeat memory corruption attacks,
and hence its designers seem to believe that 8-bit randomization
is adequate.

4 Approach Description

We use the following techniques to implement AAR on
Windows without modifying the kernel or applications:

• Injecting a randomization DLL into a target process:
Much of the randomization functionality is imple-
mented in a DLL. We ensure that this DLL gets
loaded very early in the process creation. This DLL
“hooks4” standard Windows API functions relating
to memory allocation, and randomizes the base ad-
dress of all memory regions.

• Customized loader: Some of the memory allocation
happens prior to the time when the randomization
DLL gets loaded. To randomize memory allocated
prior to this point, we make use of a customized
loader, which makes use of lower level API functions
provided by ntdll to achieve randomization.

• Kernel driver5: Base addresses of some DLLs are
determined very early in the boot process, and to
randomize these, we have implemented a boot-time
driver. In a couple of instances, we had to resort
to in-memory patching of the kernel executable im-
age, so that some hard-coded base addresses can be
replaced by random values. (Naturally, such patch-
ing is kept to a bare minimum in order to minimize
porting efforts across different versions of Windows.)

We use these techniques to randomize the base address
of different memory regions in Windows as shown in
Figure 2. Below, we describe our approach for ran-
domizing each of these memory regions.

4“Hooking” is the term used in Windows literature to refer
to interception of function calls, typically in DLLs. There are
several standard techniques for this, and the interested reader is
referred to [18, 12].

5The term “driver” in Windows literature corresponds
roughly to the term “kernel module” in UNIX literature. In
particular, it isn’t necessary for such drivers to be associated
with any devices.



4.1 Dynamically Linked Libraries

UNIX operating systems generally rely on shared li-
braries, which contain position-independent code. This
means that they can be loaded anywhere in virtual
memory, and no relocation of the code would ever be
needed. This has an important advantage: different
processes may map the same shared library at different
virtual addresses, yet be able to share the same physical
memory. In contrast, Windows DLLs contain absolute
references to addresses within themselves, and hence
are not position-independent. Specifically, if a DLL is
to be loaded at a different address from its default loca-
tion, then it has to be explicitly rebased, which involves
updating absolute memory references within the DLL
to correspond to the new base address.

Since rebasing modifies the code in a DLL, there is
no way to share the same physical memory on Win-
dows if two applications load the same DLL at dif-
ferent addresses. As a result, the common technique
used in UNIX for library randomization, i.e., mapping
each library to a random address as it is loaded, would
be very expensive on Windows: it requires a unique
copy of each library for every process. To avoid this,
our approach is to rebase a library the first time it is
loaded after a reboot. All processes will then share this
same copy of the library6. This default behavior for a
DLL can be changed by explicit configuration, using a
DAWSON-specific entry in the Windows Registry.

Rebasing is implemented by hooking the NtMap-
ViewOfSection function in ntdll, and changing a pa-
rameter that specifies the new base address. This ap-
proach does not work for certain libraries such as ntdll
and kernel32 that get loaded very early during the re-
boot process. We have developed a kernel-mode driver
to rebase such DLLs. Specifically, we use an offline
process to create a (randomly) rebased version of these
libraries (using the standard rebase tool) before a re-
boot. Then, during the reboot, our custom boot-driver
gets loaded before the Win32 subsystem is started up,
and overwrites the disk image of these libraries with
the corresponding rebased versions. When the Win32
subsystem starts up, these libraries are now loaded at
random addresses.

Note that when the base of a DLL is randomized,
the base address of code as well as static data within
the DLL gets randomized. The granularity of random-
ization that can be achieved is somewhat coarse, since

6This means that an attack based on the absolute location
of a library may succeed against all application that use this li-
brary. However, since our main goal is to stop an attack before
it compromises any one process, this limitation isn’t a signifi-
cant concern. But it does mean that the analytical results in
Section 5 must be interpreted as the number of attempts across
all processes running on a host since a reboot.

Windows requires DLLs to be aligned on a 64K bound-
ary, thus removing 16-bits of randomness. In addition,
applications can typically use only up to 2GB of mem-
ory on Windows, thus reducing the randomness in DLL
addresses to 15-bits.

4.2 Stack Randomization

Unlike UNIX, where multithreaded servers aren’t the
norm, most servers on Windows are multi-threaded.
Moreover, most request processing is done by child
threads, and hence it is more important to protect
the thread stacks. Our approach to randomize thread
stacks is based on hooking the CreateRemoteThread
call, which in turn is called by CreateThread to cre-
ate a new thread. This routine takes the address of a
start routine as a parameter, i.e., execution of the new
thread will begin with this routine. We replace this
parameter with the address of a “wrapper” function
written by us. This wrapper function first allocates a
new thread stack at a randomized address by hooking
NtAllocateVirtualMemory. However, this isn’t suf-
ficient, since the allocated memory has to be aligned
on a 4K boundary. Since only the lower 2GB of ad-
dress space is typically usable, this leaves us with only
19-bits of randomness. To increase this, our wrapper
routine decrements the stack by a random number be-
tween 0 and 4K that is a multiple of 4. (Stack should
be aligned on a 4-byte boundary.) This provides an ad-
ditional 10-bits of randomness (for a total of 29 bits).

The above approach does not work for randomiz-
ing the main thread that begins execution when a new
process is created. This is because the CreateThread
isn’t involved in the the creation of this thread. To
overcome this problem, we have written a “wrapper”
program to start an application that is to be random-
ized. This wrapper is essentially a customized loader.
It uses the low-level call NtCreateProcess to create
a new process with no associated threads. Then the
loader explicitly creates a thread to start executing
in the new process, using a mechanism similar to the
above for randomizing the thread stack. The only dif-
ference is that this requires the use of a lower-level
function NtCreateThread rather than CreateThread
or CreateRemoteThread.

4.3 Executable Base Address Randomization

In order to “rebase” the executable, we need the exe-
cutable to contain relocation information. This infor-
mation is normally included in DLLs but is not typ-
ically present in release versions of COTS binaries7.
This requires a minimal level of cooperation from the

7This is true in the UNIX world as well — applications
need to be compiled with relocation information or as position-
independent code in order for ASR to be applicable.



software vendor. As ASR gradually gains acceptance,
we believe that vendor cooperation will become easier
to obtain. We point out that unlike debug information,
there are no significant intellectual property concerns
with providing relocation information.

When relocation information is available, rebasing of
executables is similar to that of DLLs: an executable
is rebased just before it is executed for the first time
since a reboot, and future executions can share this
same rebased version.

If relocation information is not present, then the
executable cannot be rebased8. While randomization
of other memory regions protects against most known
exploits, an attacker can craft “return-to-exe” attacks
that exploit the code already present in the executable.

4.4 Heap Randomization

Windows applications typically use many heaps, each
created using a RtlCreateHeap function. We hook this
function and modify the base address of the new heap.
Due to alignment requirements, this can provide only
19 bits of randomness. To increase it further, we hook
individual requests for allocating memory from this
heap, specifically, RtlAllocateHeap, RtlReAllocate,
and RtlFreeHeap, and increase allocations by 8 or 16
bytes, providing one more bit of randomness for a total
of 20 bits.

The above approach is not applicable for rebasing
the main heap, since its address is determined before
the randomization DLL is loaded. Specifically, the
main heap is created using a call to RtlCreateHeap
within the LdrpInitializeProcess function. Our
kernel driver patches this call and transfers control to
a wrapper function. This wrapper function modifies
a parameter to the RtlCreateHeap so that the main
heap is rebased at a random address aligned on a 4K
page boundary.

In addition, we add a 32-bit “magic number” to the
headers used in heap blocks to provide additional pro-
tection against heap overflow attacks. Heap overflow
attacks operate by overwriting control data used by
heap management routines. This data resides next to
the user data stored in a heap-allocated buffer, and
hence could be overwritten using a buffer overflow vul-
nerability. Typically, the attack takes effect when the
overwritten block is freed. By checking the magic-
number at this point, we make it virtually impossible
to carry out this type of attack.

8It isn’t possible to simply analyze the binary to reconstruct
relocation information. This is because there is no way to dis-
tinguish pointers (that need to be relocated) from integer values
(which should not be relocated) in binary code: both would typ-
ically appear as constants in binary code.

4.5 PEB and TEB

PEB and TEB are created in kernel mode, specifically,
in the MiCreatePebOrTeb function of ntoskrnl.exe.
The function itself is complicated, but the algorithm
for PEB/TEB location is simple: it searches the first
available address space from an address specified in a
variable MmHighestUserAddress. Our approach is to
patch the memory image of ntoskernel.exe in our
boot driver so that it uses the contents of an another
variable RandomizedUserAddress that is initialized by
our boot driver. By initializing this variable with dif-
ferent values, PEB and TEB can be located at any of
219 possible 4K-aligned addresses within the first 2GB
of memory.

4.6 Environment/Command-line parameters

On Windows, environment variables and process pa-
rameters reside in separate memory areas. In normal
programs, they are accessed using a pointer stored in
the PEB, but if their locations are predictable, then an
attacker can use them directly in attacks. To relocate
them, our approach is to allocate randomly-located
memory and copy over the contents of the original en-
vironment block and process parameters to the new lo-
cation. Following this, the original regions are marked
as inaccessible, and the PEB field is updated to point
to the new locations.

4.7 VAD Regions

There are two types of VAD regions [22]. The first
type is normally at the top of user address space (on
SP2 it is 0x7ffe0000-0x7ffef000). These pages are
updated from kernel and read by user code, thus pro-
viding processes with a faster way to obtain informa-
tion that would otherwise be obtained using system
calls. This type of pages are created in the kernel mode
and are marked read-only, and hence we don’t ran-
domize their locations. A second type of VAD region
represents actual virtual memory allocated to a pro-
cess using VirtualAlloc. For these regions, we wrap
the VirtualAlloc function and modify its parameter
lpAddress to a random multiple of 64K.

4.8 Discussion

Attacks on DAWSON Implementation. In addi-
tion to attacks on randomization, which have previ-
ously been discussed, there could be attacks on DAW-
SON implementation and the runtime infrastructure
used by it. It is important to note that DAWSON is
targeted at protecting benign applications from remote
exploits. Malicious applications could try to subvert
the API-hooking mechanism used in DAWSON imple-
mentation, but benign applications won’t exhibit such



behavior until such time malicious code is injected into
its memory and starts execution. However, DAWSON
will prevent execution of such code, and hence subver-
sion of API-hooking is not a real threat to DAWSON.

Local attacks, such as those launched by malicious
code that may already be resident on the victim sys-
tem, aren’t our focus. Local attacks can indeed sub-
vert or disable the entire DAWSON system. As men-
tioned before, previous AAR techniques such as those
of [16, 3, 23] are also defeated by local attacks since
they don’t provide mechanisms to protect randomiza-
tion keys from local processes.
Memory Fragmentation One commonly cited prob-
lem of ASR is that of possible memory fragmentation,
which may significantly reduce usable memory space
for applications. We point out, however, that there is
a simple way to avoid memory fragmentation: generate
a random key k, and add this to the default location
at which each memory object would have been allo-
cated in the absence of ASR. Addresses are “wrapped”
around as needed to stay within user-addressable mem-
ory, and the lower-order bits zeroed out to meet align-
ment requirements. The value of k can be different for
different processes in UNIX, but has to be shared across
all processes in Windows due to its use of DLLs as op-
posed to shared libraries. Naturally, the technique can
be extended to use different keys for different memory
regions such as DLLs, stacks and heaps, but this will
introduce some amount of fragmentation. In general,
the trade-off is between the number of different random
keys used and the degree of fragmentation.
Portability across Windows versions. DAWSON
is primarily based on hooking several Win32 API func-
tions and very few native API functions. Both these
APIs are quite stable (with respect to the functional-
ities relevant to our implementation) across Windows
2000, XP, and 2003, thereby easing porting. In terms of
porting efforts, the main effort has been in PEB/TEB
porting, since it relies on kernel patching. It took us
several hours to port the patch from Windows SP1 to
SP2, and Windows 2003. Other parts of implementa-
tion, which were based on user level DLLs and kernel
mode drivers, did not require any change.

5 Analytical Evaluation

In this section, we estimate the effort needed to defeat
attack classes that specifically target our approach.

5.1 Brute-Force Attacks

Figure 3 summarizes the expected number of attempts
required for different attack types. Note that the ex-
pected number of attacks is given by 1/2p, where p
is the success probability for an attack. The numbers

Attack type Attack target
Stack/Heap Static data/code

Injected code 262K* 16.4K

Existing code N/A 16.4K

Injected data 262K* 16.4K

Existing data > 524K 16.4K

Figure 3. Expected attack attempts.

marked with an asterisk depend on the size of the at-
tack buffer, and a value of 4KB has been assumed to
compute the numbers in the table.

Note that an increase in number of attack attempts
translates to a proportionate increase is the total
amount of network traffic to be sent to a victim host
before expecting to succeed. For instance, the expected
amount of data to be sent for injected code attacks on
stack is 262K ∗ 4K, or about 1GB. For injected code
attacks involving buffers in the static area, assuming a
minimum size of 128 bytes for each attack request, is
16.4K ∗ 128 = 2.1MB.

Injected code attacks. For such attacks, note that
the attacker has to first send malicious data that gets
stored in a victim program’s buffer, and then overwrite
a code pointer with the absolute memory location of
this buffer. Our approach does not disrupt the first
step, but foils the second step with a high probability.
The probability of a correct guess can be estimated
from the randomness in the base address of different
memory regions:
• Stack: Figure 2 shows that there is 29 bits of random-

ness on stack addresses, thus yielding a probability
of 1/229. To increase the odds of success, the at-
tacker can prepend a long sequence of NOPs to the
attack code. A NOP-padding of size 2n would enable
a successful attack as long as the guessed address falls
anywhere within the padding. Since there are 2n−2

possible 4-byte aligned addresses within a padding of
2n-bytes, the success probability becomes 1/231−n.

• Heap: Figure 2 shows that there is 20 bits of random-
ness in heap addresses. Specifically, bits 3 and bits
13–31 have random values. Since a NOP padding
of 4K bytes will only affect bits 1 through 12 of ad-
dresses, bits 13–31 will continue to be random. As
a result, the probability of successful attack remains
1/219 for a 4K padding. It can be shown that for
larger NOP padding of 2n bytes, the probability of
successful attack remains 1/231−n.

• Static data: According to Figure 2, there are 15-bits
of randomness in static data addresses: specifically,
the MSbit and the 16 LSbits aren’t random. Since
the use of NOP padding can only address randomness
in the lower order bits of address that are already pre-



CVE Id Target Attack Type Effective?

CVE-2003-0533 Microsoft LSASS Stack smash/code injection Yes

CVE-2003-0818 Microsoft ASN.1 Library Heap overflow/code injection Yes

CVE-2002-0649 MSSQL 2000/MSDE Stack smash/code injection Yes

CVE-2002-1123 MSSQL 2000/MSDE Stack smash/code injection Yes

CVE-2003-0352 Microsoft RPC DCOM Stack-smash/jump to EXE code No

Figure 4. Effectiveness in stopping real-world attacks.

dictable, the probability of successful attacks remains
1/215. (This assumes a NOP padding < 64K.)

Existing code attacks. An existing code attack may
target code in DLLs or in the executable. In either case,
Figure 2 shows that there are 15-bits of randomness in
these addresses. Thus, the probability of guessing the
desired code address is 1/215.

Note that exploitable code sequences may occur at
multiple locations within a DLL or executable, and
this may increase the probability of successful attacks.
However, note that the randomness in code addresses
arise from all but the MSbit and the 16 LSbits. It
is quite likely that different exploitable code sequences
will differ in the 16 LSbits, which means that exploiting
each one of them will require a different attack attempt.
Thus, the probability of 1/215 will likely hold.

Injected data attacks involving pointer corrup-
tion. The calculations and the results here are similar
to that for injected code attacks9.

Existing Data Attacks involving pointer corrup-
tion. The main difference between injected data and
existing data attacks is that the idea of repeating the
attack data isn’t useful here. Thus, the probability of
a successful attack on the stack is 2−29, on the heap is
2−20 and on static data is 2−15.

5.2 Double-pointer attacks

From an attacker’s perspective, a double-pointer at-
tack has the drawback that it requires two distinct
vulnerabilities: an absolute address vulnerability and
a relative address vulnerability. Its benefit is that the
attacker need only guess a writable memory location,
which requires far fewer attempts. For instance, if a
program uses 200MB of data (10% of the roughly 2GB
virtual memory available), then the likelihood of a cor-
rect guess for A is 0.1. For processes that use much
smaller amount of data, say, 10MB, the success proba-
bility falls to 0.005.

9Note that the idea of NOP padding is applicable at a higher
level for data attacks: replicate the attack data several times
in order to account for some uncertainty in the location of the
target object.

6 Experimental Evaluation

6.1 Functionality

We have implemented DAWSON on Windows
2003 and Windows XP platforms, including SP1
(build 2600, xpsp1.020828-1920) and SP2 (build
2600.xpsp2 rtm.040803-2158). Most tests have been
done on XP versions with default configurations, and
Microsoft Office 2003 and SQLServer 8.00.194.

Over the past year, we have been using a DAWSON-
protected system as one of our development machines.
We have routinely used applications such as the Inter-
net Explorer, SQLServer, Windbg, Windows Explorer,
Word, WordPad, Notepad, Regedit, and so on. We
used Windbg to print the memory map of these appli-
cations and verified that all regions have been rebased
to random addresses. The addition of randomization
has been without a glitch, and has not caused any per-
ceptible loss of functionality or performance.

6.2 Effectiveness on Real-world Attacks

We tested the effectiveness of DAWSON in stopping
several real-world attacks. We used the Metasploit
framework (http://www.metasploit.com/) for test-
ing purposes. Our testing included all working metas-
ploit attacks on Metasploit Version 2.4 that were ap-
plicable to our test platform (Windows XP SP1), and
are shown in Figure 4. We first ran the exploits with
DAWSON protections enabled but with randomization
set to zero (i.e., no memory address is randomized)
and verified that the exploits were successful. We then
used DAWSON with non-zero randomization and ver-
ified that four of the five failed. The successful attack
was one that relied on predictability of code addresses
in the executable, since DAWSON could not randomize
these addresses due to unavailability of relocation infor-
mation for the executable section for this server. Had
the EXE section been randomized, this attack would
have failed as well10.

10Specifically, it used a stack-smashing vulnerability to return
to a specific location in the executable. This location had two pop
instructions followed by a ret instruction. At the point of return,
the stack top contained a pointer that pointed into a buffer on
the stack that held the input from the attacker. This meant that
the return instruction transferred control to the attacker’s code
stored in this buffer.



Program Workload Base DAWSON Standard
Runtime Overhead Deviation

Notepad Start up, open a 1.4 MB text file 1.031s 3.4% 2.5%

Winword Start up, open a 42 MB word document 5.489s 3.2% 3.8%

Excel Start up, open a 398KB spreadsheet 0.794s 2.9% 2.6%

Powerpoint Start up, open a 4MB powerpoint file 1.216s 2.1% 2.2%

Sqlserver Startup, login to database, run 5 SQL queries, shutdown 0.992s 3.1% 2.4%

Firefox Start up and visit www.google.com 1.070s 10.5% 1.2%

Testheap issue 1M malloc’s of random-size blocks ranging up to 64K 9.395s 12.4% 1.9%

Figure 5. Performance overhead of DAWSON

6.3 Effectiveness on Sophisticated Attacks

The problem with real-world attacks is that they tend
to be rather simple. In order to test the effectiveness
against many different types of vulnerabilities, we de-
veloped a synthetic application that was seeded with
several vulnerabilities. We then developed 14 distinct
attacks to exploit these vulnerabilities:

• stack buffer overflow attacks that overwrite
– return address to point to

∗ 1. injected code on stack
∗ existing call esp code in

· 2. the executable
· 3. ntdll DLL
· 4. kernel32 DLL
· 5. one of the application’s DLLs

∗ 6. existing code in a DLL (“return-to-libc”)
– 7. a local function pointer to point to injected code

• heap overflow attacks that overwrite
– 8. a local function pointer with address of DLL
– 9. a function pointer in the PEB (RtlCritical-

Section field) with DLL code address
• 10. a heap lookaside list overflow that overwrites the

return address on the stack to point to DLL code
• 11. a process heap critical section list overflow that

overwrites a function pointer with DLL address
• integer overflow attacks that overwrite
– 12. a global function pointer with DLL address
– 13. an exception handler pointer stored on the

stack so that it points to existing code in a DLL
• 14. a format string exploit on a sprintf function

that prints to a stack-allocated buffer.

We verified that when DAWSON is run with zero ran-
domization, all these exploits worked on Windows XP
SP1 as well as SP2. Finally, we ran DAWSON in nor-
mal mode and verified that all 14 attacks failed.

6.4 Runtime performance

Performance measurements were carried out on a
Dell PowerEdge SC420 (2.8GHz Pentium 4 CPU with
2.5GB memory) running Microsoft Windows XP SP2.

Most of DAWSON overhead occurs at application
initialization time. This is because during startup,
operations that are associated with significant DAW-
SON overheads occur far more frequently than during
steady-state operation, e.g., DLL rebasing, dynamic
memory allocations and thread creations. For this
reason, our measurements are concerned mainly with
startup times. The overheads that we measured for
various programs are shown in Figure 5. “Base run-
time” refers to the total CPU time (in seconds) for
running a benchmark without DAWSON. The numbers
reported are the average across ten runs. Note that
for most applications, the measured overheads were
around 3%. Since this number is close to the standard
deviation in our measurements, the overhead would es-
sentially be imperceptible to a user. Firefox is an ex-
ception, and our analysis found that it performs a very
large number of memory allocations at startup time
(about 300K). Since DAWSON introduces significant
overheads for malloc calls, Firefox startup is slowed
down by 10%. When malloc randomizations were dis-
abled, the overhead fell down to about 1%. This result
is similar to that of testheap, a malloc-intensive micro
benchmark we created.

In addition, we measured boot-time overheads,
which is mainly concerned with creating rebased ver-
sions of ntdll, kernel32 and user32 DLLs on the disk.
DAWSON added 0.53 seconds to the boot time, with
a standard deviation of 3.2% across six runs.

7 Conclusion

In this paper, we presented DAWSON, a lightweight
approach for effective defense of Windows-based sys-
tems against remotely launched memory corruption at-
tacks. DAWSON protects all services and applications
by randomizing their memory layout. Specifically, all
code sections and writable data segments are rebased,
providing a minimum of 15-bits of randomness in their
locations. Our technique does not require access to the
source code of applications or the operating system.
However, in order to provide full protection, it does re-
quire a minimal level of help from the vendors in terms



of providing relocation information for the executables.
We established the effectiveness of DAWSON using

a combination of theoretical analysis and experiments.
DAWSON introduces low performance overheads, and
does not impact the functionality or usability of pro-
tected systems. These factors make it a practical solu-
tion for stopping a broad range of memory corruption
attacks. A widespread deployment of DAWSON can
significantly alleviate the common mode failure prob-
lem for the Windows monoculture.

Acknowledgements

We would like to thank Karl Levitt and Jeff Rowe for
numerous dicussions on the DAWSON project; Tufan
Demir for his contributions to proof-of-concept proto-
types for some of the techniques that were implemented
into DAWSON; and Jason Li for developing an early
version of our vulnerable synthetic application. We
would also like to thank Mark Cornwell for his exten-
sive contributions in testing and evaluation; and Jason
Minto for his help in various phases of this project. Fi-
nally, we would like to thank Sandeep Bhatkar and the
anonymous reviewers for their thoughtful reviews that
significantly improved the final version of this paper.

References

[1] Arash Baratloo, Navjot Singh, and Timothy Tsai.
Transparent run-time defense against stack smashing
attacks. In USENIX Technical Conference, 2000.

[2] Elena Gabriela Barrantes, David H. Ackley, Stephanie
Forrest, Trek S. Palmer, Darko Stefanović, and
Dino Dai Zovi. Randomized instruction set emulation
to disrupt binary code injection attacks. In ACM Com-
puter and Communications Security (CCS), 2003.

[3] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar.
Address obfuscation: An efficient approach to combat
a broad range of memory error exploits. In USENIX
Security Symposium, 2003.

[4] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney.
Efficient techniques for comprehensive protection from
memory error exploits. In USENIX Security Sympo-
sium, 2005.

[5] Tzi-cker Chiueh and Fu-Hau Hsu. RAD: A compile-
time solution to buffer overflow attacks. In IEEE Int’l
Conference on Distributed Computing Systems, 2001.

[6] Crispin Cowan, Steve Beattie, John Johansen, and
Perry Wagle. PointGuard: Protecting pointers from
buffer overflow vulnerabilities. In USENIX Security
Symposium, 2003.

[7] Crispin Cowan et al. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In
USENIX Security Symposium, 1998.

[8] Hiroaki Etoh and Kunikazu Yoda. Protect-
ing from stack-smashing attacks. Published on

World-Wide Web at URL http://www.trl.ibm.com/

projects/security/ssp/main.html, 2000.

[9] Michael Howard. ASLR features in Windows
Vista. Published on World-Wide Web at URL
http://blogs.msdn.com/michael howard/archive/

2006/05/26/608315.aspx, 2006.

[10] Trevor Jim, Greg Morrisett, Dan Grossman, Micheal
Hicks, James Cheney, and Yanling Wang. Cyclone: a
safe dialect of C. In USENIX Annual Technical Con-
ference, 2002.

[11] Robert W. M. Jones and Paul H. J. Kelly. Backwards-
compatible bounds checking for arrays and pointers
in C programs. In Third International Workshop on
Automated Debugging, 1997.

[12] Yariv Kaplan. API spying techniques for windows 9x,
NT and 2000. Published on World-Wide Web at URL
www.internals.com/articles/apispy/apispy.htm,
2000.

[13] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis
Prevelakis. Countering code-injection attacks with
instruction-set randomization. In ACM Computer and
Communications Security (CCS), 2003.

[14] Vladimir Kiriansky, Derek Bruening, and Saman Ama-
rasinghe. Secure execution via program shepherding.
In USENIX Security Symposium, 2002.

[15] George C. Necula, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy code.
In ACM Symposium on Principles of Programming
Languages (POPL), 2002.

[16] PaX. Published on World-Wide Web at URL
http://pax.grsecurity.net, 2001.

[17] Manish Prasad and Tzi cker Chiueh. A binary rewrit-
ing defense against stack-based buffer overflow attacks.
In USENIX Annual Technical Conference, 2003.

[18] Mark Russinovich and Bryce Cogswell. Windows NT
system-call hooking. Dr. Dobb’s Journal, Jan 1997.

[19] Olatunji Ruwase and M. S. Lam. A practical dynamic
buffer overflow detector. In Network and Distributed
System Security Symposium, 2004.

[20] Eugune Tsyrklevich. Ozone. Published on World-Wide
Web http://www.blackhat.com/presentations/

bh-usa-05/bh-us-05-tsyrklevich.pdf, 2005.

[21] WehnTrust. Published on World-Wide Web at URL
http://www.wehnus.com/products.pl, 2006.

[22] windbg. Published on World-Wide Web at URL
http://www.microsoft.com/whdc/devtools/

debugging/installx86.mspx, 2006.

[23] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K.
Iyer. Transparent runtime randomization for secu-
rity. In Symposium on Reliable and Distributed Sys-
tems (SRDS), 2003.

[24] Wei Xu, Daniel C. Duvarney, and R. Sekar. An effi-
cient and backwards-compatible transformation to en-
sure memory safety of C programs. In ACM SIGSOFT
International Symposium on the Foundations of Soft-
ware Engineering, 2004.


