
Online Signature Generation for Windows Systems

Lixin Li and James E. Just
Global InfoTek, Inc.

Reston, VA, USA.

R. Sekar
Stony Brook University
Stony Brook, NY, USA.

Abstract—In this paper, we present a new, light-weight
approach for generating filters for blocking buffer overflow
attacks on Microsoft Windows systems. It is designed to
be deployable as an “always on” component on production
systems. To achieve this goal, it avoids expensive and intrusive
techniques such as taint-tracking. The online nature of our
system enables it to provide protection from a range of memory
corruption exploits, including those involving unknown vul-
nerabilities, or known vulnerabilities but unknown exploits. In
contrast, most previous signature generation techniques need to
be run in sandboxed environments, and need working exploits
to generate signatures. Moreover, our technique overcomes the
“gap” problem faced by previous signature generation mech-
anisms, i.e., when the vulnerable memory region is corrupted
between the overflow and the time an attack is detected.
Another novel feature of our approach is that it is able to
reason about likely lengths of vulnerable buffers, which can
lead to more accurate signatures. Our experimental results
are very promising, and demonstrate that the approach can
generate effective signatures for many synthetic and real-world
vulnerabilities.

Keywords-signature generation; buffer overflow; self-healing

I. INTRODUCTION

Buffer overflows continue to be one of the most common
vulnerabilities prevalent today, especially dominating among
“critical updates” from vendors such as Microsoft. This
factor has motivated the deployment of defenses such as
address space randomization (ASR). Unfortunately, these
defenses simply convert a working exploit into a crash.
Since server restarts typically take significant time (of the
order of a second or more), an attacker can bring down
a server by repeatedly attacking a server with just a few
packets every second. Indeed, with the advent of botnets and
widespread prevalence of cyber extortion based on DDoS
threats, such attacks become very easy to carry out, yet
very hard to defend against. Moreover, repeated attacks can
compromise randomization defenses, especially when the
range of randomization is small (e.g., 256 in the case of
Windows Vista).

The drawbacks of existing buffer overflow defenses have
motivated the development of automated signature gen-

This work was funded in part by Defense Advanced Research
Project Agency (DARPA) under contract N00178-07-C-2005. Sekar’s work
was also supported by AFOSR grant FA9550-09-1-0539, ONR grant
N000140710928 and NSF grants CNS-0627687 and CNS-0831298. The
views and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of DARPA, the Naval Surface Weapons Center,
AFOSR, ONR, NSF, or the U.S. Government.

eration techniques that generate filters to block attack-
bearing inputs from being delivered to a vulnerable server.
Initially, this line of research targeted network worms, and
relied on “content-based signatures,” where the signature
captured characteristics of the attack payload. Unfortunately,
polymorphic attacks can evade these signatures, and hence
subsequent research focused on “vulnerability-oriented sig-
natures” [10], [5], [2], [7], [21]. These signatures capture
the characteristics of the underlying vulnerability (e.g., max-
imum length of input) rather than those of the attack payload.
Recent trends in this area has tended to emphasize signature
generality: i.e., its ability to block a wide a range of exploit.
This trend has favored the development of heavy-weight
signature generation techniques [5], [4], [2], [7], [21] that
were best suited for offline operation on honeypots or a
sandbox. However, offline techniques have some drawbacks:

• Defenses for zero-day exploits. The protection offered
by techniques deployed on honeypot or sandboxed sys-
tems will be unavailable to a production server until the
vulnerability is attacked on one of the honeypot systems
on which the signature generator is deployed, and the
resulting signature distributed. This leads to unneces-
sary delays in signature deployment, leaving critical
servers exposed to attacks. Worse, many of the previous
techniques rely on generating variants of attacks and
replaying them, and this would typically require the
availability of working exploits. Unfortunately, working
exploits won’t be available for unknown vulnerabilities,
as well as for many known vulnerabilities.

• Defense against guessing attacks. Since guessing at-
tacks on ASR can be completed within a short period
— say, several seconds — a production server may
be compromised before a signature is generated by
a heavy-weight technique; or between the time it is
generated and widely distributed.

In contrast, we present a light-weight technique that is
suitable for on-line operation on production systems. Our
technique differs from COVERS [10], another online signa-
ture generation technique, in many important ways. First,
the focus of this paper is on Microsoft Windows, while
COVERS is based on Linux. Second, our work makes
innovative use of modern memory error defenses (such as
return address cookies, heap metadata cookies, SafeSEH
protection, data execution prevention) to improve signature
generation. Finally, our work develops better analysis and
correlation techniques that enable robust signatures to be

generated in scenarios where COVERS may fail.

A. Approach Overview and Contributions

Our primary goal is to defend against zero day attacks
in production environments. Our focus is on light-weight
analysis techniques that can be invoked on-demand, so
that zero-day attacks can be detected and quickly analyzed
as they happen, while avoiding any significant overheads
during normal operation. Our approach leverages (fail-crash)
memory corruption defenses built into modern operating
systems for detecting memory corruption attacks. It then
uses an analysis of victim process memory to identify
possible memory corruption targets, and correlates the data
surrounding the target with recent inputs to identify the
input(s) responsible for the attack. It then generates a
signature (also called a blocking filter or simply a filter)
that characterizes this attack-bearing input. This signature
is then deployed to filter out repetitions of the exploit and
(hopefully) its variants.

Our approach is based on the observation that most mem-
ory corruption attacks involve copying data that overflows
a buffer and overwrites an adjacent pointer. If this pointer
value is incorrect (as is typically the case in the presence
of ASR), a memory exception is triggered at the time this
pointer value is dereferenced. This exception initiates an
analysis phase that involves correlating the crash-causing
data, namely, the data in the destination buffer that over-
flowed, to an input. Previous work has typically relied on
taint tracking [13] to identify this input, but unfortunately,
taint-tracking on C/C++ programs introduces high runtime
overheads, slowing down programs by a factor of two to ten.

We observe that most memory corruption attacks involve
simple copying of data. This raises the possibility that
correlation can be made by simply comparing the crash-
causing buffer to inputs, as done in the COVERS [10]
work. However, this approach runs into problems if the
copied contents get corrupted after the copy operation. For
instance, consider a stack-resident buffer. A buffer overflow
will typically corrupt a few local variables on the stack and
then the return address. If these local variables change before
the return (i.e., the time of crash), the buffer contents may
not exactly match the input. On our experimental platform,
namely, Windows, we found that such changes to inputs are
common, and hence an exact matching algorithm can fail to
correlate corrupted buffer with recent input.

We made the key observation that the sort of input
changes that occur due to program execution can be ac-
commodated using an approximate rather than an exact
matching algorithm. Based on this observation, we made
use of an approximate substring searching algorithm for
performing input correlation. After performing correlation,
our technique generates a blocking filter that characterizes
the attack input without matching any benign inputs. Like

previous techniques, the signature generation phase is guided
by input format specifications.

Although a sophisticated classification technique could be
used for generating signatures from a list of benign and
attack-bearing inputs, our current focus is on demonstrating
the feasibility of our approach, and hence we have focused
on simple techniques that reason about input lengths and
other characteristics that typically differ between benign
inputs and inputs responsible for crash.1

• Instead of tracking every move of input at machine
instruction level, as is done with many previous ap-
proaches that relied on taint-tracking, we are able to
infer flow of data from input to a vulnerable buffer by
using an efficient post-crash analysis of victim memory.

• Our techniques take advantage of modern (fail-crash)
memory exploit defenses built into Windows. Many
of these defenses (e.g., return address cookies) detect
memory corruptions at an earlier stage than more
generic defenses such as ASR. Our techniques leverage
this factor to develop simpler and more robust mecha-
nisms for identifying key details of the exploit.

• A key insight in our approach is that the use of an
approximate (rather than an exact) string matching
algorithm can lead to a technique that can be robust in
the face of “gaps” that occur due to memory updates
(or corruptions) that may occur between the time of
buffer overflow and the time of crash. Such gaps were
the norm rather than the exception on our experimental
platform.

• Unlike previous light-weight techniques that relied
purely on learning to develop length-based signatures,
we develop a new technique that can infer the likely
lengths of vulnerable buffers using a runtime memory
analysis and string matching. This enables our approach
to generate more accurate signatures.

• Our system can mitigate Denial-Of-Service attacks as
well as zero-day working exploits on memory error
vulnerabilities. This contrasts with other light-weight
signature generation techniques that generate blocking
filters based on checking if the “jump addresses” incor-
porated in the attack has a certain value (or range of
values), and hence can be fooled by DoS attacks that
need not contain a valid jump address.

• We have implemented the technique and evaluated it
on a synthetic server seeded with a variety of vulnera-
bilities, as well as a number of real world applications.
Our experiments show that our technique is effective

1Naturally, this focus implies that certain types of overflow vulnerabilities
won’t be handled, such as those where the overflow involves inconsistencies
between multiple message fields (e.g., a field that specifies the length of
a string in another message field, but the string happens to be longer than
the value specified in the first field) or concatenation of multiple message
fields. Nevertheless, our techniques were able to successfully generate
signatures for most real-world and synthetic vulnerabilities considered in
our experimental evaluation.

and has low performance overheads that is acceptable
for production use.

II. IMPACT OF WINDOWS EXPLOIT DEFENSES

Windows Vista provides the following defense mecha-
nisms against memory corruption exploits:

• /GS option (“return cookies”): This is a compiler
option that generates additional code to detect return
address (and saved base pointer) corruption. Similar
in style to StackGuard [6], the runtime check involves
verifying the integrity of a cookie that resides before
the protected items on the stack.

• /SafeSEH option: This is another compile-time option
that produces a table of safe Structured Exception
Handlers (SEH). Before control is transferred to any
exception handler code at runtime, the target address
must be present in this table. A runtime SEH link list
validation is built in Windows Server 2008.

• Heap overflow protection: Traditional heap overflows
involve corruption of heap metadata. Modern versions
of Windows incorporate cookies and other mechanisms
to detect metadata overwrites and abort the program.

• Address-space randomization: Windows Vista incorpo-
rates ASR, but the range of randomization is just 256.
This means that individual exploits will be blocked with
a probability of 99.6%, but brute force attacks have a
50% chance of succeeding in 128 attempts.

• Data Execution Prevention (DEP): DEP prevents in-
jected malicious code from executing in non-executable
(NX) memory regions such as the stack or heap.

These protections, collectively referred to as modern protec-
tions, seem to provide a formidable defense at first glance.
However, there are a number of reasons why memory
corruption attacks continue to be a serious threat:

• There still exist a vast number of systems that are
running older versions of Windows (e.g., XP) on which
some of these protections are unavailable.

• Some of these defenses (in particular, /GS, /SafeSEH,
NX, and some aspects of ASR) require a software
vendor to opt-in. Some vendors, due to compatibility or
performance concerns, don’t enable these protections.

• Most of these protection mechanisms can be circum-
vented using specially crafted attacks. For instance,
return address cookies can be bypassed by corrupting
data or function pointers on the stack; derandomization
attacks [16] are easy to mount on Windows ASR due to
its small range of randomization; return-to-libc attacks,
and the more general technique of return-oriented pro-
gramming [15], overcome NX. Finally, non-control data
attacks [3] can defeat almost all of these defenses.

• Finally, even when effective, these defenses convert
working exploits into crashes, which are seldom ac-
ceptable on a production server. Worse, attackers can
utilize these crashes to mount targeted DoS attacks.

As a result of these factors, memory corruption exploits
remain popular on Windows. But the defense mechanisms
have certainly skewed the distribution of exploits to some
extent. For instance, traditional heap overflows are rare on
modern Windows systems due to the effectiveness of heap
overflow protections. Traditional stack-smashing remains
possible on systems unprotected by /GS, but attacks that
corrupt exception handler pointers tend to be more popular,
as they work more reliably. We leverage these facts in this
paper: we develop general techniques that can perform attack
data correlation to input, while leveraging specific aspects of
Windows exploits to improve signature generation speed.

III. TECHNICAL APPROACH

Remote memory exploits rely on the ability of an attacker
to control the input to a vulnerable program. Taint-based
techniques, which track the flow of remote (untrusted) data
within the target program, have proven to be very effective
in detecting these attacks, as well as in correlating attacks
to specific inputs that contained the attack. Unfortunately,
taint-based techniques incur high performance overhead.
Moreover, they require deep instrumentation, wherein ev-
ery instruction in the original program is augmented with
additional instructions to perform taint-related computation.
Our approach therefore relies on inferring taint by comparing
memory contents with recent inputs.

We made similar observations in the context of injection
attacks on web applications, leading to the development of
a taint inference [14] approach. However, web application
vulnerabilities are quite different from memory corruption
vulnerabilities. For instance, they involve string data in
almost every case. More important, the technique described
in [14] is able to examine suspicious data before it is used in
an injection attack, whereas with memory corruption, attacks
are detected some time after data overflow takes place. Since
these attacks involve memory corruption, the copied data
may in turn be corrupted before it is analyzed by our post-
crash analyzer. For instance, if the vulnerability involves
a stack resident buffer, subsequent program execution may
result in changes to the data beyond the end of the buffer,
which may store local variables or saved registers. Thus, we
needed to develop a technique that infers taint in spite of
possible corruption of some sections of data copied into the
vulnerable buffer.

This problem of partial data corruption has been pointed
out by others, e.g., as the “gap” problem in [20]. Contrary to
what was initially thought of as a rare case, we encountered
gaps much more frequently on our experimental platform
(Windows), and hence believe that such corruptions may be
the norm rather than the exception.

To address corruption of overflowed data, we rely on
approximate matching rather than exact matching for in-
ferring taint (Approximate string matching is also used in
[14], but for a different purpose: to deal with minor input

Figure 1. System Overview

transformations that take place in web applications, e.g., con-
version of lowercase characters to uppercase, replacement
of spaces with underscore, etc.). This technique provides
a general solution to the problem of gaps, without any
regard to the specifics of the objects involved in corruption,
i.e., it does not matter if they relate to local variables,
compiler-generated temporaries, global variables, heap data,
etc. Another innovative aspect of our approach is that we
use this corruption to our benefit: the byte positions where
corruption has occurred provide clues as to where the end of
the buffer is, and hence gives us a handle on the size limits
that should be imposed on the input to avoid the overflow.

A. System Overview

Figure 1 illustrates our system. On the left side is the
Process Security Runtime (PSR) hosted inside the protected
application process. PSR is responsible for capturing inputs,
usually by intercepting network or file reads, enforcing input
filtering when applicable, and emitting security events from
security sensors to Live Security Analysis (LSA) on the
right side. LSA can be deployed at the local host or at
a remote host. It remains dormant during execution and
will be invoked only when a security event is received
from PSR. LSA performs security analysis, input correlation
and generates input filter when applicable. The rest of the
components in the figure are described below.

Security sensors are responsible for emitting security events
of interest to LSA. The most basic form of a security
event is a memory access exception, which is raised when
an instruction references an invalid address. In addition,
protections such as /GS and /SafeSEH can serve as sensors
as well, enabling attacks to be detected somewhat earlier.

Input Capture. When an input is received, our system will
make a copy and keep recent inputs around. Because attacks
typically lead to a crash quickly, these inputs are not buffered
for very long. The number of inputs to be buffered, as well as
the maximum time duration for which they may be buffered,
are both configurable.

Input Filter. When new inputs come in, they are matched
against the existing list of signatures previously generated.
Any input matching a signature will be dropped2. When
inputs received on a TCP connection are dropped, the
connection is also severed so as to preserve (reliable data
delivery) semantics of TCP. When the application tries to

2Since our signatures rely on length rather than content, all attacks that
exploit the same underlying vulnerability can be blocked, without any
regard to their payloads.

read a dropped input, a network error is signaled by the input
filter. Most applications expect occasional network errors,
and contain error-handling code to recover from this error
and continue normal operation.

Input filters can support a “logging” mode for specified
signatures, instead of the default “blocking” mode. This
mode is useful if the confidence level in a signature is not
high enough. In order to generate more accurate signatures,
additional logging is turned on when input matching a
“logging” signature is received. This additional on-demand
logging can be very helpful because it can potentially
provide intermediate states before a crash, and hence help us
construct the traces of events leading to the crash. It is also
possible for the level of logging to be escalated gradually.
For instance, in the first step of escalation, additional func-
tion interceptors could be turned on and the inputs/outputs
of these functions recorded. In the last step of escalation, an
entire memory dump could be produced.

Corruption Target Identification (CTI) is the first step
initiated when a security event is received by the live security
analysis (LSA) component. As described in Section III-B,
CTI computes a list of candidate memory locations that have
been targeted in the just-detected exploit.

Input Correlation is concerned with identifying the in-
put that was copied to the corruption target, and pinpoint
the bytes of this input involved in the attack. Our input
correlation relies on a fast approximate substring matching
algorithm and is described in more detail in Section III-C.

Signature generation is the last step of our analysis. Our
focus in this paper is on the correlation and corruption
target identification steps, but not on the development of
sophisticated signature generation algorithms. This limits
the class of memory corruption exploits that our current
prototype can handle, but on the other hand, the online nature
of our signature generator gives us more flexibility. For
instance, a coarse signature could be generated, and refined
over time. Additional logging could be initiated during this
to help guide this refinement. Signature generation is further
described in Section III-D.

B. Corruption Target Identification (CTI)

The goal of the CTI phase is to identify candidate lo-
cations that were corrupted in the exploit. CTI may return
multiple targets, and may, in the worse case, need to scan
the entire victim process memory to complete its task. Our
implementation performs this search in several steps, starting
from the most specific (and efficient) step and progressing to
the most general (and expensive) step. The search is stopped
at the first step where signature generation succeeds.

/GS cookie corruption. When this corruption is detected,
Windows Vista throws an int 0x3 exception with STA-
TUS STACK BUFFER OVERRUN debugging message.

With older Windows versions, our system can set a break-
point in kernel32!UnhandledExceptionFilter to
detect whether a security cookie got tampered with. At this
point, we can easily obtain the location of the corrupted
cookie, and this is returned as the corruption target.

/SafeSEH corruption. On Windows, exception handlers are
maintained as a linked list on stack. A pointer to the first
entry in this list is stored in the Exception Registration
Record in the Thread Environment Block, which in turn
resides at FS:[0]. CTI traverses this linked list to identify
the location of corrupted SEH entry. This location is returned
as the corruption target.

Heap metadata corruption detection. In this case, the lo-
cation of the corrupted heap block can be obtained and
returned as the corruption target. However, we have not
implemented this step in our prototype since it requires a
different implementation for Windows versions that support
heap metadata protection and those that don’t. Instead, our
approach was to “wrap” calls to malloc-related functions to
keep track of allocated heap blocks and their lengths. This
information is utilized, as described in step (4) below, to
identify corruption targets when an ASR/NX-induced mem-
ory access violation occurs after heap metadata corruption.

Generic ASR or NX detection. In the presence of NX,
injected code attacks always lead to a memory access vio-
lation. In the case of ASR, attack detection is probabilistic:
there is of course a small probability that the attacker is able
to guess the correct address, and the attack goes undetected.
Naturally, no signature generation is possible in this case.
A more likely scenario is that the attacker does not guess
the right address, but manages to guess a valid address.
In this case, a memory access violation may not happen
immediately; if and when it happens, it may be too late to
correctly diagnose the problem. As observed by Liang et al
[10], most servers use only a fraction of available memory
space, and hence the probability of delayed access violation
is quite small. We accept that signature generation would
fail in such cases, and will need to be attempted the next
time the attack is repeated3. Thus, we limit our discussion
to cases where there is an immediate access violation.

When a memory access violation occurs, we can easily
obtain the faulting address, i.e., the memory address whose
access caused the violation. However, in a typical memory
exploit based on corrupting a pointer value, the faulting
address corresponds to the value stored at the corruption
target, and not the corruption target itself. We therefore use
the following steps to identify the corruption target:

1) CTI examines the memory locations within a few
bytes of ESP to check if they contain the faulting
address. (This step will succeed on code that is not

3If a server uses 10% of its address space, then the expected number of
attacks for an immediate crash to occur can be calculated as 1.1.

compiled with /GS option.)
2) CTI traverses the SEH list to check if (a) any of excep-

tion handlers point outside legitimate code sections,
and (b) if any of the links in the list are broken. In
either case, the location of the corresponding SEH en-
try is returned as the corruption target. (This step will
succeed for SEH-based exploits when the /SafeSEH
option is not used.)

3) CTI traverses the entire stack of the faulting thread,
examining the stack for locations that contain the
faulting address, and returning all those locations
as corruption targets. (This step succeeds when the
corruption target is on the stack, but the previous two
cases don’t apply.)

4) CTI traverses the heap blocks to identify if any of their
metadata fields contain the faulting address. All such
locations are returned as the corruption targets. (This
step succeeds in the case of heap overflows.)

5) Finally, if all previous steps fail, CTI searches the
entire data section for locations containing the faulting
address, and return all of the matching locations as
corruption targets.

We remark that in our search, rather than looking for
occurrences of the faulting address, we look for values that
are close (within a range of ±16) to the faulting address.

C. Input Correlation

Once the initial analysis is done, LSA has a list of can-
didate corrupted targets. Whether they are really the targets
would be determined by comparing the content surrounding
the target with recent inputs. We use approximate matching
to cope with the “gap” problem outlined earlier4. We want
to demonstrate not only that we can handle gaps, but also
that by proactively identifying the gap, we can use it to
enhance the accuracy of the vulnerability/signature because
local variables are overflowed before the usually sensitive
targets like return address, exception handler etc.

Before input correlation proceeds, recent inputs are first
parsed and broken into message fields. Specifically, they are
broken into 〈name, value〉 pairs5. Then the following steps
are used to process each candidate C returned by the CTI.

• Quick elimination. The correlator scans the list of all
〈name, value〉 pairs and eliminates those not con-
taining the value stored at C. This step speeds up
correlation (by avoiding the next few steps for most
benign inputs), but has no impact on the signature that
is ultimately generated.

4As noted in [20], the gap problem poses a challenge for taint-tracking
techniques as well – it is not unique to taint-inference.

5Accurate parsing of complex network protocols can require significant
effort. There is obviously a trade-off between this effort and the ability to
generate accurate signatures. Since protocol parsing is not the main focus
of this work, we rely on approximate parsing: i.e., breaking the message
into certain key fields, while accepting the possibility that some complex
substructures may not be broken into individual fields.

• Approximate substring match. This step is undertaken
for each 〈name, value〉 pair that remains after the
previous step. Let s denote the content of memory
locations around the corruption target C, specifically,
locations C−k1∗|value| through C+k2∗|value|, where
|value| denotes the length of value; and k1 and k2 are
tunable constants between 0 and 2. We use approximate
substring match to identify, among all substrings of
s, those substrings u of s that have the smallest edit
distance to value. In this regard, we limit ourselves to
substrings that are within an edit distance threshold d
that is specified6. Reference [14] describes an algorithm
speeding up approximate string matching so that it
provides much better than quadratic time performance
under these conditions.

Once a matching substring u is identified, we check if
the approximate string match reports a cluster of “delete”
operations in matching value with u, and if this cluster is
located close to (and before) C. If so, the beginning of these
delete operations is identified as the beginning of the gap.

The outputs of input correlation step include the message
and field involved in the attack, the corresponding location
of u and C, and the location of a gap, if any. If multiple
candidates succeed in the approximate match step, we select
the best candidates (based on the length of match and edit
distance) and only output those.

There are times when there are a number of candidates
C1 < C2 < · · · < Cn that are close to each other, e.g.,
when an attacker replicates the jump address many times.
Rather than running the approximate substring search step
n times on these candidates, we can simply run it once
between locations C1−k1∗|value| through Cn+k2∗|value|.
Note, however, that the CTI step won’t return a sequence
of locations just because a jump address is replicated: in
particular, in the case of /GS or /SafeSEH protections, as
well as heap overflows, our CTI step will be able to pinpoint
the candidates since it has accurate information on the
locations of security-sensitive targets.

D. Signature Generation
Our focus in this work is on length-based signatures.

They take the form {Name=name, MAXLEN=l}, where
name is the name of a message field, and l specifies the
maximum length of this field. Unlike previous approaches
such as COVERS [10], our technique is able to set a
maximum length without having to rely entirely on training
data. However, if there are multiple candidates returned by
the input correlation step — a situation that we have not
encountered in our experiments — then we can select the
one that yields the best signature in terms of the separation
between the lengths of benign (i.e., training) inputs and
malicious input(s).

6In our experiments, we set d to be 0.2, which roughly means that there
can be at most 20% difference between two strings.

The value of MAXLEN is determined as follows. If a gap
is present, then the maximum length of field name is set as
the distance between the beginning of u and the beginning
of the gap. A gap usually occurs because some variable that
resides past the end of a vulnerable buffer was modified.
Thus the beginning of the gap serves as a good indicator of
where the vulnerable buffer ends.

When no gap is present, we treat C (the corruption target)
as an upper bound, and set MAXLEN as the distance between
the beginning of u and C. This makes sense because C
denotes the location of a security-sensitive target that was
corrupted by the attack, and this target should reside past the
end of the buffer. In many cases, including heap metadata
corruption and /GS cookie and /SafeSEH corruption, the CTI
step provides an accurate value for C, and hence there is
a high confidence in MAXLEN. But in some cases, we do
not have sufficient confidence in C, e.g., when the entire
stack is scanned for occurrences of a faulting address, and
this address is repeated many times in consecutive memory
locations L1 through Ln. In such a case, to avoid false
positives, we should use Ln to set the maximum length.

There may be instances where the signature generated as
described in the above paragraph may not be satisfactory. In
particular, the maximum length l computed may be too long
or too short. The former case leads to false negatives, i.e.,
an input that satisfies the length constraint still leads to an
exploit. The online nature of our technique enables tuning
of the length to address this problem. In particular, when
false negatives are encountered, we can adjust the maximum
length to be the geometric mean of bmax and l, where bmax

denotes the maximum length of this field among benign
inputs. It is possible that this new value of l is still too
long, and needs to be further refined. The use of geometric
mean limits the number of such refinement steps needed to
log(mmax− bmax), where mmax denotes the largest length
of this field among malicious inputs.

Alternatively, the maximum length could be too short,
leading to false positives. To reduce their likelihood, our
approach compares the maximum length computed as de-
scribed above with bmax. If bmax > l then MAXLEN is set to
the geometric mean of bmax and mmin, where mmin denotes
the minimum length of this field among all malicious inputs.

Clearly, the signatures described above have a simple
structure, and hence may not be able to address complex
vulnerabilities. In particular, vulnerabilities whose exploita-
tion relies on the relationship between multiple message
fields are not handled. For instance, there is a class of buffer
overflows where a vulnerable program reads the value of a
message field, and uses it to allocate a buffer, and copies
another message field into this buffer [20]. More sophisti-
cated machine learning techniques could potentially address
such vulnerabilities. However, our focus in this paper has
been on post-crash analysis techniques that leverage modern
memory corruption defenses, and showing the feasibility of

Vulnerability Field Attack Gap size MAX benign Attack Signature
description name target (Bytes) length length length
16-byte stack BO, no /GS method RA 0 9 1.1K 48
16-byte stack BO with /GS method RA 0 9 1.1K 48
16 byte stack BO, 32-byte local array method RA 32 9 1.1K 16
32-byte stack BO source SEH 0 15 1.1K 36
32-byte stack BO, 4-byte local integer source SEH 4 15 1.1K 32
64-byte Heap BO Freelist[00] data UEF 0 60 1.1K 64
64-byte Heap BO Freelist[1-127] data UEF 0 60 1.1K 64
260-byte Heap BO Lookaside list data SEH 0 256 1.1K 260
128-byte Heap BO triggering coalesce data RA 0 112 1.1K 128

Figure 2. Generation of Input Filters for Synthetic Application MEVS.

using these techniques for light-weight signature generation.

IV. SYSTEM IMPLEMENTATION

A. User Environment

We assume our system will run on a typical Windows
platform, Windows XP or Vista. Our focus is on applications
such as a web server, FTP server and other network tools
that are popular targets for remote attacks. Our system does
not assume the availability of source code or debug symbols.

B. System infrastructure

We use Detours [8] from Microsoft Research to imple-
ment interceptors for input capture and filtering (currently,
network inputs). Detours is a library for intercepting ar-
bitrary Win32 binary functions on x86 machines. Detours
are inserted at execution time, with the code of the tar-
get function modified in memory and the original target’s
functionality still available as a general subroutine. We
used Detours to intercept network socket APIs and capture
network input to a program. The input is passed to LSA
through a named pipe. We also intercepted malloc to keep
track of memory blocks in the heap.

For LSA, we used the Windows Debug Engine (WDE)
[12] to implement our analysis techniques. This choice
was motivated by the facts that the same debug engine is
used for both Windows user and kernel level debugging,
and it can support both live debugging and post-mortem
debugging using the same API. WDE also supports remote
debugging so that post-crash analysis can be done at a
remote site instead of local host. WDE is used by popular
Microsoft debuggers such as Windbg, Visual Studio and
other command line debuggers like KD, CDB and NTSD.

V. EVALUATION

Our evaluation made use of synthetic as well as real-
world vulnerabilities. The former were incorporated in a
synthetic vulnerable server MEVS (Memory Error Vul-
nerability Server), which provides a “string processing”
service. A request to the server has three fields: a method,

which specifies the operation to be performed by the server,
and is one of {“ECHO”, “REVERSE”, “UPPERCASE”,
“LOWERCASE”}; a source, which is a machine name or
an IP address; and data, which provides the operand for the
operation specified by method. MEVS design is extensible,
allowing new vulnerabilities to be introduced easily. It is
designed in a way that simplifies the use of Metasploit to
attack these vulnerabilities.

The use of synthetic server enabled us to experiment
with many different vulnerabilities and exploit variations,
including: use of working payload vs random data, use of
text string vs binary data, enabling of and disabling of
/GS protection, overwrite of RA (return address) vs SEH
vs Function Pointer, exploits that lead to gaps and those
that lead to no gaps, etc. For heap based buffer overflow,
we experimented with neighboring block in four different
locations: Freelist [00], Freelist [1 - 127], Look-aside list
and overflow to trigger coalescing of heap blocks.

Figure 2 summarizes our results for MEVS. Signatures
were generated for all exploits of the synthetic vulnera-
bilities. For stack buffer overflows, signature precision is
improved when a gap is identified. For instances, in the
case of 16-byte stack buffer overflow, after identifying the
gap, our system generates a signature of length 16, which
corresponds to the buffer boundary. This length is more
precise than the 48-byte length that was generated in the
absence of a gap. Similarly, a gap caused by a local integer
increased the signature precision too. For heap based buffer
overflow, our CTI and input correlation steps are very
accurate in determining the maximum length from the length
of the heap block involved in the overflow.

Figure 3 summarizes our results for real-world vulnera-
bilities on popular applications such as IIS and FTP. Each
of the vulnerabilities shown in this figure are described in
more detail below.

The first vulnerability we examined was a stack buffer
overflow in the w3who ISAPI extension DLL (CVE-2004-
1134). The w3who.dll library is a utility designed to provide
auditing of server configuration remotely through a Web

Target Vulnerability Field Gap size MAX benign Attack Signature
application identification name (bytes) length length length
IIS5 CVE-2004-1134 QueryString 0 20 8.0K 248
FreeFTPd 1.08 OSVDB-20909 user 0 14 1.8K 1002
Quick TFTP Pro 2.1 BugTraq-28459 mode 0 4 1.3K 1004
Steamcast 0.9.75 CVE-2008 0550 User-Agent 0 16 1.1K 1005
POP Peeper 3.4.0.0 BugTraq-34192 From 8 32 1.1K 328
TalkativeIRC 0.4.4.16 BugTraq 34141 PRIVMSG 30 56 1.0K 232

Figure 3. Generation of Input Filters for Real World Applications.

browser. When a long parameter is passed in as http query
string, a stack buffer overflow results. Our working exploit
targets Windows 2000 and Windows XP (SP2), and uses a
stack overflow to overwrite the return address and/or SEH.

Real world vulnerability OSVDB-20909, is a stack buffer
overflow in a freeware FreeFTPd version 1.0.8, at its multi-
protocol file transfer service. The vulnerability is related to
handling the field of “user”. The exploit overwrites a stack
buffer in freeFTPd service, and involves return address and
SEH overwrite as well.

Quick Tftp Server Pro version 2.1 has a buffer-overflow
vulnerability. Because the application fails to properly
bounds-check user-supplied data for the “mode” field, an
attack input can overflow a stack buffer and overwrite the
return address or SEH.

Steamcast 0.9.75 and prior versions have a stack buffer
overflow vulnerability (CVE-2008 0550) that enables attacks
using the http User-Agent field to overwrite return address.

POP Peeper 3.4.0.0 is vulnerable in its “From” field. This
vulnerability can lead to stack buffer overflow that can be
used to overwrite the return address/SEH.

TalkativeIRC 0.4.4.16 has a vulnerability (BugTraq Id
34141) that allows the return address and SEH handler to
be overwritten by supplying an excessively long value for
the “PRIVMSG” field.

As mentioned in Section II, the advent of memory exploit
defenses on modern Windows systems have made heap
overflows difficult, thus prompting attackers to focus on
stack overflows. This explains why our real-world exploits
were all stack overflows.

In all 6 real world cases, our experiments identified the
vulnerable buffer and generated blocking signatures. In 2 of
these 6 cases, a gap is identified, and it makes the signature
more precise.

A. False Positives

It is important for signatures to have very low (if not zero)
false positive rate. Since our signature generation mechanism
was able to infer the buffer bound from the location of the
corruption target and/or the gap, we believe that they will
not lead to false positives. Our experimental results support
this claim as well: as shown in Figure 3, there is a large

difference between maximum benign size and minimum
attack size of vulnerable fields. In addition, we performed
a false positive analysis by running the Apache and FTP
servers with signatures turned on, and did not experience
any false positives.

B. False Negatives

It is desirable to avoid false negatives, but we consider
them to be less serious than false positives, provided that the
signature can be refined, and false positives avoided after a
small number of refinement steps. We already described such
a refinement technique that converges in at most log mmax

steps, where mmax is the largest size of vulnerable field
across all benign inputs.

Experimentally, our evaluation shows a large difference
between mmax and the signature length for 4 out of 6 real-
world exploits. For the remaining two, the difference, though
not as large, still remains significant.

False negatives may also occur because the underlying
vulnerability is too complex to be addressed using the simple
signature format that we use — in this case, it is likely that
signature generation will fail, a limitation noted earlier.

C. Performance

Runtime overhead. The main runtime overhead is to cap-
ture and filter inputs at “detoured” input functions, as well
as malloc-related functions. Since the intercepted inputs are
maintained in memory, and filtering is based on length,
malloc related logging only involves keeping start and size
information in a table, the runtime overhead is relatively
small. We measured this overhead for the freeFTPd server
version 1.0.8. In particular, we measured the download time
for 6 files of sizes are 1.7KB, 17KB, 110KB, 7.9MB, 23MB
and 29MB. For base line test, the original application ran
without any protection (no interception or any protection
component attached). We fetched the same set of files from
the FTP server, repeated 5 times, cleaning up cache between
runs, and then calculating the average CPU time (sum of
kernel cpu time and user cpu time) used. The baseline
CPU time was 212.2ms. We repeated the same action with
protections turned on, and the CPU time was 220ms. The
overall overhead was thus about 4%.

Signature generation time. Security analysis is performed
only at crash time, and hence its performance overhead is
not a serious concern. For this reason, we have not done
significant performance optimization on signature generation
as yet. Nevertheless, we target the overhead to be low
enough — roughly in the sub-second range.

Signature generation is fastest in the case of /GS and
/SafeSEH protections. In these cases, the CTI phase searches
only a few locations, and correspondingly, the number of
calls to approximate string matching are also small. As
a result, signature generation is very fast, taking about a
millisecond in our experiments.

If the exception is caused by ASR or NX and it involves
a stack overflow, then the search takes longer, as the entire
stack may need to be scanned. In our experiments, this case
typically takes about 100 milliseconds.

If the exception involves heap corruption, then a much
larger number of locations are scanned by our current
implementation. Due to the rarity of heap overflows, this
case has not been optimized at all, and hence takes about
800ms.

The measurements for both runtime overhead and signa-
ture generation time were performed on a VirtualPC 2007
with a guest Windows XP SP2 guest OS and 256MB RAM
running on a DELL M4300 with 2GB RAM and Windows
XP SP2 host OS.

VI. RELATED WORK

Windows Error Report is the first step for application
crash response provided by Microsoft. Abouchaev et al
[1] present an excellent bug fix guideline for Microsoft
internal developers regarding crash and exploitability. Ac-
cording to this document, different types of exceptions have
different potentials for exploitability. Based on this work,
an exploitable crash analyzer built as a Windows debugger
extension is developed [17]. The tool provides crash cat-
egorization and exploitability assessment. It is targeted at
developers and is mainly used in Microsoft internal fuzz
testing to identify vulnerabilities. The tool assumes that the
information in the faulting instruction is controlled by an
attacker, but does not attempt to relate crash back to input.

Slowinska and Bos [20] identified the “gap” problem and
proposed adding a new dimension — timestamp — to taint
analysis to solve the problem. Though their approach may
be more general, it is not applicable for online usage due to
high overhead of taint-tracking.

Researchers have used program structural constraints for
automated security debugging in Linux debugging environ-
ment [9]. It may be possible to apply program structural
constraints to enhance our initial corruption target identifi-
cation if these constraints can be identified reliably without
access to source code.

There have been a number of research efforts on gen-
erating blocking signatures for network worms. Much of

this work focused on “content-based signatures,” where the
signature captured characteristics of the attack payload. The
problem with such signatures is that attackers can easily
evade these signatures since they have full control over
the payload. In contrast, the underlying vulnerabilities are
dependent on the implementation details of a victim applica-
tion. Attackers have no control over these vulnerabilities, and
have very little choice in terms of the methods for exploiting
them. Thus, signature generation techniques that focus on
vulnerabilities can be much more resistant to evasion.

Brumley et al [2] developed an approach for gener-
ating vulnerability oriented signatures based on symbolic
execution techniques. While the techniques work well to
capture features that are closely related to the program paths
exercised by an exploit, generalization of the technique to
the case where other vulnerable paths are considered remains
to be a challenge. As a result, for real-world applications,
the signatures generated by this technique are not general
enough.

Unlike [2], which relies on a whitebox approach for
signature generation, COVERS [10] uses a blackbox tech-
nique that exploits the features of buffer overflow exploits to
generate vulnerability oriented signatures for them. Another
difference between [2] and [10] is that the latter aims
to generate signatures very quickly so that they could be
deployed immediately, thus preserving server availability.
The work presented in this paper is similar to COVERS in
its use of post-crash memory analysis, but differs from it in
several significant ways. First, COVERS uses exact matching
only, so it can fail to generate signatures when a “gap” is
present. Second, the approach presented in this paper is able
to reason about likely buffer lengths, and generate signatures
based on these. In contrast, COVERS signatures are based
only on comparing the sizes of benign and attack inputs,
and are hence less accurate. Finally, COVERS is focused
on Linux, whereas the work presented in this paper targets
Windows.

Several researchers have focused on developing tech-
niques to generalize signatures. PacketVaccine [21] uses a
randomization-based approach to generate variants of an
exploit and uses these variants to ensure that a generalized
signature is generated. ShieldGen [7] develops a more sys-
tematic approach for generating attack variants by exploiting
a precise specification of underlying network protocols. Both
these techniques are complementary to our approach, and
represent a different tradeoff in terms of speed of signature
generation versus generality.

VII. CONCLUSION

We presented a new signature generation technique for
Windows-based applications that is light-weight enough to
be deployed on production systems. The online nature of our
system enables it to provide protection from a wide range
of memory corruption exploits, including those involving

unknown vulnerabilities, or known vulnerabilities but un-
known exploits. In contrast, most previous techniques need
to be run in sandboxed environments, and need working
exploits to generate signatures. Our technique uses taint-
inference [14] rather than heavy-weight taint analysis. It uses
an innovative post-crash analysis of victim process memory
and approximate substring matching to reason about likely
lengths of vulnerable buffers, and uses this information
to improve signature accuracy. Moreover, our technique is
able to handle “gaps” that are commonly associated with
Windows exploits, and posed a challenge to many previous
signature generation techniques. Our experimental results are
promising, and demonstrate that the approach can generate
accurate signatures for many real-world servers.

VIII. ACKNOWLEDGEMENTS

We would like to thank Mark Cornwell for his contribu-
tions in testing and evaluation.

REFERENCES

[1] A. Abouchaev, D. Hasse, S. Lambert, and G. Wroblewski.
CRASH COURSE-Analyze Crashes To Find Security Vul-
nerabilities In Your Apps. MSDN Magazine-Louisville, pages
60–69, 2007.

[2] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. To-
wards automatic generation of vulnerability-based signatures.
In Proceedings of the 2006 IEEE Symposium on Security and
Privacy, pages 2–16. IEEE Computer Society Washington,
DC, USA, 2006.

[3] Shuo Chen, Jun Xu, and Emre Can Sezer. Non-control-
hijacking attacks are realistic threats. In USENIX Security
Symposium, 2005.

[4] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado.
Bouncer: Securing software by blocking bad input. In
Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, pages 117–130. ACM New
York, NY, USA, 2007.

[5] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. ACM SIGOPS Operating Systems Review,
39(5):133–147, 2005.

[6] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian
Zhang, and Heather Hinton. StackGuard: Automatic adap-
tive detection and prevention of buffer-overflow attacks. In
USENIX Security Symposium, pages 63–78, San Antonio,
Texas, January 1998.

[7] W. Cui, M. Peinado, H.J. Wang, and M.E. Locasto. Shieldgen:
Automatic data patch generation for unknown vulnerabilities
with informed probing. In IEEE Symposium on Security and
Privacy, 2007. SP’07, pages 252–266, 2007.

[8] G. Hunt and D. Brubacher. Detours: Binary interception of
Win32 functions. In Proceedings of the 3rd USENIX Windows
NT Symposium, pages 135–143, 1999.

[9] C. Kil, E.C. Sezer, P. Ning, and X. Zhang. Automated
Security Debugging Using Program Structural Constraints.
In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-Third Annual, pages 453–462, 2007.

[10] Z. Liang and R. Sekar. Fast and automated generation of
attack signatures: A basis for building self-protecting servers.
In Proceedings of the 12th ACM conference on Computer and
communications security, pages 213–222. ACM New York,
NY, USA, 2005.

[11] D. Litchfield. Defeating the Stack Based Buffer Overflow
Prevention Mechanism of Microsoft Windows 2003 Server.
NGSSoftware Ltd, http://www.nextgenss.com, 2003.

[12] Microsoft. Debugger Engine and Extension APIs.
http://msdn.microsoft.com/en-us/library/cc267863.aspx.

[13] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Network and Distributed
System Security Symposium (NDSS), 2005.

[14] R. Sekar. An Efficient Black-box Technique for Defeating
Web Application Attacks. NDSS, 2009.

[15] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM conference on Computer and
communications security, pages 552–561. ACM New York,
NY, USA, 2007.

[16] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effectiveness
of address-space randomization. In ACM Conference on
Computer and Communication Security (CCS), pages 298–
307, Washington, DC, October 2004.

[17] J. Shirk and D. Weinstein. Automated Real-time and Post
Mortem Security Crash Analysis and Categorization. In
CanSecWest, 2009.

[18] skape. Reducing the Effective Entropy of GS Cookies.
http://www.uninformed.org/?v=all&a=32&t=txt, 2007.

[19] Skywing skape. Bypassing Windows Hardware-enforced
DEP. http://www.uninformed.org/?v=2&a=4&t=txt, 2005.

[20] A. Slowinska and H. Bos. The age of data: pinpointing
guilty bytes in polymorphic buffer overflows on heap or stack.
In 23rd Annual Computer Security Applications Conference
(ACSAC07).

[21] X.F. Wang, Z. Li, J. Xu, M.K. Reiter, C. Kil, and J.Y. Choi.
Packet vaccine: Black-box exploit detection and signature
generation. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 37–46. ACM
New York, NY, USA, 2006.

	I Introduction
	I-A Approach Overview and Contributions

	II Impact of Windows Exploit Defenses
	III Technical Approach
	III-A System Overview
	III-B Corruption Target Identification (CTI)
	III-C Input Correlation
	III-D Signature Generation

	IV System Implementation
	IV-A User Environment
	IV-B System infrastructure

	V Evaluation
	V-A False Positives
	V-B False Negatives
	V-C Performance

	VI Related Work
	VII Conclusion
	VIII Acknowledgements
	References

