
A Server- and Browser-Transparent CSRF Defense
for Web 2.0 Applications∗

Riccardo Pelizzi and R. Sekar
Stony Brook University

ABSTRACT
Cross-Site Request Forgery (CSRF) vulnerabilities consti-
tute one of the most serious web application vulnerabilities,
ranking fourth in the CWE/SANS Top 25 Most Danger-
ous Software Errors. By exploiting this vulnerability, an at-
tacker can submit requests to a web application using a vic-
tim user’s credentials. A successful attack can lead to com-
promised accounts, stolen bank funds or information leaks.
This paper presents a new server-side defense against CSRF
attacks. Our solution, called jCSRF, operates as a server-
side proxy, and does not require any server or browser mo-
difications. Thus, it can be deployed by a site administrator
without requiring access to web application source code, or
the need to understand it. Moreover, protection is achieved
without requiring web-site users to make use of a specific
browser or a browser plug-in. Unlike previous server-side
solutions, jCSRF addresses two key aspects of Web 2.0: ex-
tensive use of client-side scripts that can create requests to
URLs that do not appear in the HTML page returned to the
client; and services provided by two or more collaborating
web sites that need to make cross-domain requests.

1. INTRODUCTION
The stateless nature of HTTP necessitates mechanisms

for maintaining authentication credentials across multiple
HTTP requests. Most web applications rely on cookies for
this purpose: on a successful login, a web application sets a
cookie that serves as the authentication credential for future
requests from the user’s browser. As long as this login ses-
sion is active, the user is no longer required to authenticate
herself; instead, the user’s browser automatically sends this
cookie (and all other cookies set by the same server) with
every request to the same web server.

The same origin policy (SOP), enforced by browsers, en-
sures confidentiality of cookies: in particular, it prevents
one web site (say, evil.com) from reading or writing cook-

∗This work was supported in part by ONR grant N000140710928,
NSF grant CNS-0831298, and AFOSR grant FA9550-09-1-0539.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’11 Dec. 5-9, 2011, Orlando, Florida USA
Copyright 2011 ACM 978-1-4503-0672-0/11/12 ...$10.00.

ies for another site (say, bank.com). However, browsers en-
force no restrictions on outgoing requests: if a user visits an
evil.com web page, possibly because of an enticing email
(see Figure 1), a script on this page can send a request to
bank.com. Moreover, the user’s browser will automatically
include bank.com’s cookies with this request, thus enabling
Cross-site Request Forgery (CSRF). A CSRF attack thus
enables one site to “forge” a user’s request to another site.
Using this attack, evil.com may be able to transfer money
from the user’s account to the attacker’s account [26]. Al-
ternatively, evil.com may be able to reconfigure a firewall
protecting a home or local area network, allowing it to con-
nect to vulnerable services on this network [2, 3, 6].

Since CSRF attacks involve cross-domain requests, a web
application can thwart them by ensuring that every sensitive
request originates from its own pages. One easy way to
do this is to rely on the Referrer header of an incoming
HTTP request. This information is supplied by a browser
and cannot be changed by scripts, and can thus provide a
basis for verifying the domain of the page that originated a
request. Unfortunately, referrer header is often suppressed
by browsers, client-side proxies or network equipment due to
privacy concerns [1]. An alternative to the Referrer header,
called Origin header [1], has been proposed to mitigate these
privacy concerns, but this header is not supported by most
browsers. As a result, it becomes the responsibility of a web
application developer to implement mechanisms to verify the
originating web page of a request.

A common technique for identifying a same-origin request
is to associate a nonce with each web page, and ensuring
that all requests from this page will supply this nonce as
one of the parameters. Since the SOP prevents attackers
from reading the content of pages from other domains, they
are unable to obtain the nonce value and include it in a re-
quest, thus providing a way to filter them out. Many web
application frameworks further simplify the incorporation of
this technique [25, 9, 14]. Nevertheless, it is ultimately the
responsibility of a web application developer to incorporate
these mechanisms. Unfortunately, some web application de-
velopers are not aware of CSRF threats and may not use
these CSRF prevention techniques. Even when the develo-
per is aware of CSRF, such a manual process is prone to
programmer errors — a programmer may forget to include
the checks for one of the pages, or may omit it because of a
mistaken belief that a particular request is not vulnerable.
As a result, CSRF vulnerabilities are one of the most com-
monly reported web application vulnerabilities, and is listed
as the fourth most important software vulnerability in the

Attacker Bank

Server
Victim

Malicious

Server
Bank

Database

Please visit evil.com
Click on link

GET evil.com

Send response

POST bank.com – data + cookies

Valid session ID

Transfer money

Browser

$(‘invisible form’).submit()

Figure 1: Illustration of a CSRF attack

CWE Top 25 list [7].
Prompted by the prevalence of CSRF vulnerabilities and

their potential impact, researchers have developed techniques
to retrofit CSRF protection into existing applications. No-
Forge [17] implements CSRF protection using the same basic
nonce-based approach outlined earlier. On the server-side,
it intercepts every page sent to a client, and rewrites URLs
found on the page (including hyperlinks and form destina-
tions) so that they supply the nonce when requested. Reque-
stRodeo [16] is conceptually similar but is deployed on the
client-side rather than the server side. Unfortunately, since
these techniques rely on static rewriting of link names, they
don’t work well with Web 2.0 applications that construct
web pages dynamically on the browser. More generally, ex-
isting CSRF defenses suffer from one or more of the following
drawbacks:

1. Need for programmer effort and/or server-side modifica-
tions. Many existing defenses are designed to be used by
programmers during the software development phase. In
addition to requiring programmer effort, they are often
specific to a development language or server environ-
ment. More importantly, they cannot be deployed by a
site administrator or operator that doesn’t have access
to application source code, or the resources to undertake
code modifications.

2. Incompatibility with existing browsers. Some techniques
require browser modifications to provide additional in-
formation (e.g., the referrer or origin [1] header), while
others rely on browsers enforcement of policies on cross-
origin requests (e.g., NoScript [19], CsFire [8], SOMA
[20], RequestRodeo [16]). These approaches thus leave
server administrators at the mercy of browser vendors
and users, who may or may not be willing to adopt these
browser modifications.

3. Inability to protect dynamically generated requests. Ex-
isting server-side defenses, including NoForge [17],
CSRFMagic [25], and CSRFGuard [23], do not work
with requests that are dynamically created as a result
of JavaScript execution on a browser.

4. Lack of support for legitimate cross-origin requests. Pre-
vious server-side token-based schemes similar to NoForge

are aimed at identifying same-origin requests. How-
ever, there are many instances where one domain may
trust another, and want to permit cross-origin requests
from that domain. Such cross-origin requests are not
supported by existing server-side solutions, and there
does not seem to be any natural way to extend them to
achieve this.

We therefore present a new approach for CSRF defense
that does not suffer from any of the above drawbacks. Our
solution, called jCSRF, is implemented in the form of a
server-side proxy. Note that on web servers such as Apache
that support a plug-in architecture, jCSRF can be imple-
mented as a web server module, thus avoiding the drawbacks
associated with proxies such as additional performance over-
heads and HTTPS compatibility.

jCSRF operates by interposing transparently on the com-
munication between clients and servers, modifying them as
needed to protect against CSRF attacks. As a server-side
proxy, it avoids any need for server-side changes. jCSRF
also avoids client-side changes by implementing client-side
processing using a script that it injects into outgoing pages.
It can protect requests for resources that are already present
in the web page served to a client, as well as requests that are
dynamically constructed subsequently within the browser by
scripts. Finally, it incorporates a new protocol that enables
support of legitimate cross-domain requests.

jCSRF protects all POST requests automatically, without
any programmer effort, but as we describe later, it is diffi-
cult (for our technique and those of others) to protect against
GET-based CSRF without some programmer effort. More-
over, GET-requests are supposed to be free of side-effects as
per RFC2616 [11], in which case they won’t be vulnerable to
CSRF. For these reasons, jCSRF currently does not protect
against GET-based CSRF.

2. APPROACH OVERVIEW
As described before, the essence of CSRF is a request to a

web server that originates from an unauthorized page. We
use the terms target server, and protected server to refer to
such a server that is targeted for a CSRF attack. An autho-
rized page is one that is from the same web server (“same-
origin request”), or from a second server that is deemed ac-

ceptable by this server (“authorized cross-origin request”).
In the former case, no special configuration of jCSRF is
needed, but in the latter case, we envision the use of a con-
figurable whitelist of authorized sources for a cross-origin
request.

We have implemented jCSRF as a server-side proxy, but
it can also be implemented as a server-side module for web-
servers that support modules, such as Apache. This proxy
is transparent to web applications as well as clients (web-
browsers), and implements a server- and browser-independent
method to check if the origin of a request is authorized. Con-
ceptually, this authorization check involves three steps:

• In the first step, an authentication token is issued to
pages served by the protected server.

• In the second step, a request is submitted to jCSRF,
together with the authentication token.

• In the third step, jCSRF uses the authentication token
to verify that the page from which the request originated
is an authorized page. If so, the request is forwarded to
the web server. Otherwise, the request is forwarded to
the server after stripping all the cookies.

Note that stripping off all cookies will cause an authenti-
cation failure within the web application, except for requests
requiring no authentication, e.g., access to the login page of
the web application, or another informational page that con-
tains no user-specific information. Thus, jCSRF is secure by
design and will prevent CSRF attacks. Specifically, its se-
curity relies only on three factors: unforgeability of authen-
tication tokens, secure binding between the token and the
original page, and the correctness of the authorization pol-
icy used in the third step. Other design or implementation
errors may lead to false positives (i.e., legitimate requests
being denied) but not false negatives.

Note that conceptually, the first two steps are similar to
those used in previous defenses such as NoForge [17]. Thus,
the key novelty in our approach is the design of protocols
and mechanisms that ensure that CSRF protection can be
achieved for:

• dynamically created requests: requests that are constructed
as a result of script execution on the client (web-browser).
Such requests are common in Web 2.0 applications using
AJAX.

• cross-origin requests: requests from a web page served
by one web site A to another website B, provided B
trusts A for this purpose.

When requests are dynamically created, the strategy used
by NoForge of statically rewriting the links (to include an
authentication token) is not applicable. We have there-
fore developed a new approach that uses injected JavaScript
to carry out this function. In particular, when a page is
served by a web application, jCSRF injects some JavaScript
code, called jCSRF-script, into this page. On the browser,
jCSRF-script is responsible for obtaining the authentication
token, and supplying it together with every request origi-
nating from this page. By comparing the domain of the
current page and the domain of a request, this script can
distinguish between same-origin and cross-origin requests,
and use different means to obtain the authentication tokens
in each case.

We also point out that a static rewriting strategy does not
provide a way to validate cross-origin requests. In particular,
if a server A embeds a cross-origin request for server B in
its page, then the client would need a token for accessing B,
but the server A has no easy way to obtain such a token.
Note that it cannot directly request such a token from B
since the token would have to be bound in some way to the
user’s cookies for B, and A has no access to these cookies. In
contrast, we develop a protocol that can support cross-origin
requests naturally.

From a conceptual point of view, jCSRF approach can be
applied to both GET and POST requests. However, in prac-
tice, the “authorized origin” constraint, which forms the ba-
sis of all CSRF defense mechanisms, should not be imposed
on many GET-requests. Examples include (a) login pages
and other pages that contain no security-sensitive data, and
(b) book-marked pages, which may or may not contain sen-
sitive data. Application-specific configuration would be re-
quired to list such landing pages (case (a)) for each applica-
tion, and except them from authorization checks. Handling
case (b) would require some level of browser cooperation,
something we do not assume in our work. Moreover, since
it is recommended practice to avoid side-effects in GET-
request (as per RFC2616 [11]), they are less likely to be
vulnerable as compared to POST-requests. Finally, certain
HTML elements such as img and frame cause the browser
to issue a GET request before jCSRF-script has a chance
to add the authentication token, requiring jCSRF-script to
resubmit the requests for these elements and complicate its
logic. For these reasons, in our current implementation of
jCSRF, GET requests are not subjected to the “authorized
origin” constraint.

Below, we provide more details on the key steps in jCSRF.

2.1 Injecting jCSRF-script into web pages
When a page is served by a protected server, jCSRF-proxy

automatically injects jCSRF-script into the page. This can
be done without having to perform the complex task of par-
sing full HTML. Instead, the new script is added by inserting
a line of the form

<script type="text/javascript" src=... ></script>

immediately after the <head> tag. Also, jCSRF-proxy in-
cludes a new cookie in the HTTP response (unless one exists
already) that can be used by jCSRF-script to authenticate
same-origin requests. The rest of the page is neither exam-
ined nor modified by jCSRF-proxy. As a result, the proxy
does not know whether the page contains any cross-origin
(or same-origin) requests. It is left to the jCSRF-script to
determine on the client-side whether a request being sub-
mitted is a same-origin or cross-origin request.

If jCSRF-proxy is implemented as a stand-alone proxy,
then it may not be easy to handle HTTPS requests as the
proxy will now intercept encrypted content. Although this
can potentially be rectified by terminating the SSL sessions
at the proxy, a simpler and more preferable alternative is
to implement the proxy’s logic as a module within the web
server.

2.2 Protocol for Validating Requests
Although there is just a single protocol that uses differ-

ent mechanisms to validate cross-origin and same-origin re-
quests, it is easier to describe them separately. We first

Server
User

jCSRF

Proxy
Visit safe.com

GET safe.com
GET safe.com

<html>…</html>Set-Cookie: Cat

<html><script src=jcsrf.js>…</html>

Submit form

jCSRF

Handler

POST post.php

Cookie: Cat

Data: form data + Pat

Check if Cat and Pat

match

POST post.php

Data: form data
<html>…</html>

<html><script src=jcsrf.js>…</html>

Copy Cat from

cookies into form as

Pat

Register Submit

handler for forms

Browser

Display page

Figure 2: Same-Origin Protocol Workflow

describe the same-origin validation since it is easier to un-
derstand, and then proceed to describe the cross-origin case.

2.2.1 Same-Origin Protocol.
The same-origin protocol, illustrated in Figure 2, is a sim-

ple stateless protocol which authenticates same-origin re-
quests. Red dotted lines in the figure demarcate request-
response cycles.

Initially, an authentication token needs to be issued to
authorized pages. Since jCSRF permits POST requests only
from authorized pages, the very first request from a user
has to be a GET request. Such a request is characterized
by the fact that a cookie Cat used by jCSRF is not set.
The server’s response to this request is modified by jCSRF-
proxy to set this cookie to a cryptographically secure random
value. In addition, jCSRF-proxy also injects jCSRF-script
in the response as previously described. When this page
is received by the browser, jCSRF-script executes, and will
ensure (as described further in Section 2.3) that the value
of Cat is copied into a new parameter Pat for all requests
originating from this page.

Note that all pages returned by a protected server are
modified as above, not just the initial GET request. As
such, subsequent requests can provide Cat as well as Pat.
This information is then used in the second step of the pro-
tocol in Figure 2 to validate POST requests. In particular,
jCSRF-proxy checks if Pat = Cat, and if so, the request is
forwarded to the server after stripping out Pat. A missing
Pat or Cat, or if Pat 6= Cat, it is deemed an unauthorized re-
quest. In this case, jCSRF-proxy strips off all cookies before
the request is forwarded to the server. Since web applica-
tions typically use cookies to store authentication data, this
ensures that the request will be accepted only if it requires

no authentication. Note that cross-origin GET requests can
be limited in the same way as POST requests, but for rea-
sons described before, the current implementation of jCSRF
does not do so.

Correctness.
In order to protect against CSRF, this protocol needs to

guarantee the following properties:

• scripts running on an attacker-controlled page visited by
user’s browser cannot obtain the authentication token
for the protected domain.

• any token that may be obtained by the attacker, say,
using his own browser, cannot be used to authenticate a
request from user’s browser to the protected domain

• the attacker should not be able to guess an authentica-
tion token that is valid for the protected domain

The first property is immediate from the SOP: since the
authentication token is stored as a cookie, attacker’s code
running on the user’s browser runs on a different domain
and has no access to it.

The second property holds because the attacker, apart
from being prevented by the SOP from reading the token,
is also prevented from setting the token. Therefore, any
token obtained by the attacker and embedded into forms
sent by the user would not match the cookie that jCSRF-
proxy previously set for the user.

The third property is ensured by the fact that the authen-
tication token is randomly chosen from a reasonably large
keyspace. Specifically, jCSRF-proxy for a server S generates
Cat as follows. First, a 128-bit random value IR is generated
from a true random source, such as /dev/random. A pseudo-
random number generator, seeded with IR, is then used to

User
Source

Proxy (S)

Submit form

S jCSRF

handler

POST post.php

Cookie: Cat

Data: form data + P
ST

at

<html><script src=jcsrf.js>…</html>

Insert P
ST

at into form

Target

Proxy (T)

Decrypt P
ST

at to check for

Cat and S

T

IFRAME

XmlHttpRequest

X-No-Csrf: Yes

Data: S

Set-Cookie: Cat

P
ST

at
postMessage P

ST
at to S

GET T iframe

T iframe

Browser

Visit safe.com
GET safe.com

<html><script src=jcsrf.js>…</html>

Register submit

handler for form

P
ST

at = AESKt(Cat || S)

Display page

Figure 3: Cross-Origin Protocol Workflow

generate a sequence of pseudorandom numbers R1, R2,
From these, nonces N1, N2, . . . are generated using secret-
key encryption (specifically, the AES algorithm) as follows:

Ks = IR, Ni = AESKs(Ri)

Whenever jCSRF-proxy receives a request with a missing
(or invalid) Cat, it sets Cat to Ni and increments i.

Note that this protocol design does not require Ni val-
ues to be stored persistently, since the validation check is
stateless: jCSRF-proxy simply needs to compare Cat and
Pat values in the submitted request. Hence, if jCSRF-proxy
crashes, it can simply start all over, generating a new IR and
so on. Similarly, Ks can be refreshed on a periodic basis by
setting it to a new random value from /dev/random.

2.2.2 Cross-Origin Protocol
Figure 3 illustrates our protocol that enables pages from

a (source) domain S to submit requests to a (target) do-
main T . Note that servers have been omitted to reduce the
number of actors involved in the picture. Before describing
the specifics of the protocol, note that the mechanism used
in the same-origin case cannot be used for cross-origin re-
quests: jCSRF-script runs on the source domain and there-
fore has no access to the target domain’s cookies, which
should contain the authentication token for requests to that
domain. An obvious approach for overcoming this problem
is to have the source domain communicate directly with the
target domain to obtain its authentication token, but this is
not easy either. In particular, a correct protocol must bind
the subset of user’s cookies containing security credentials
(for domain T) to jCSRF’s authentication token (also for
domain T). Unfortunately, jCSRF-proxy, being application-

independent, is unaware of which cookies contain user cre-
dentials, and hence cannot achieve such a binding on its own.
We therefore develop a protocol that exploits browser-side
functionality to avoid the need for a new protocol between
S and T . In this protocol, javascript code executing on the
user’s browser communicates with T to obtain an authen-
tication token and communicates it to jCSRF-script. This
enables jCSRF-script to include the right value of Pat when
it makes its cross-origin request to T .

Note that there may be many instances where the user
loads a page from S containing a form for T , but never ac-
tually submits it. To avoid the overhead of additional com-
munication with T in those instances, the steps for passing
T ’s authentication token to jCSRF-script are performed only
when the user submits a cross-domain form. In addition to
reducing the overhead, this approach has privacy benefits
since T does not get to know each time the user visits a
page that allows submitting data to T .

The specifics of our cross-domain protocol are as follows.
When a POST action is performed on a page from S, jCSRF-
script checks if the target domain T is different from S and
if T accepts authenticated requests. This information can
either be supplied by the web administrator of S as a list
of jCSRF-compatible origins or detected by attempting to
load a special image jCSRF-image.jpg from T : the error

and load events can be used to detect whether the resource
was found. If the host does not support jCSRF, then jCSRF-
script simply submits the post to T without any authentica-
tion tokens. Otherwise, jCSRF-script injects an iframe into
the page for the URL

http://T/jCSRF-crossdomain.html?domain=S

This page will contain javascript code that sets up the au-
thentication token PST

at that a page from S can present to
T . The steps involved in this process are as follows:

• First, the script within the iframe makes an XmlHttpRe-

quest to the domain T , providing S (given by the pa-
rameter domain in the above request) as an argument.
XmlHttpRequests can only be issued to same-origin re-
sources and, unlike ordinary requests, are allowed to in-
clude custom HTTP headers. Therefore, a request bear-
ing the custom header X-No-CSRF proves to T that the
request came from a page served to the user’s browser
by T .

• This XmlHttpRequest is served by jCSRF-proxy. If the
user’s jCSRF cookie (i.e., the cookie Cat) is not set, it is
set by jCSRF-proxy using a nonce value Ni as described
for the same origin case. In addition, jCSRF-proxy sends
back the authentication token:

PST
at = AESKT (Cat||S)

Here, KT is a (random-valued) secret key generated for
T using the procedure described for the same-origin pro-
tocol.

• In the next step, PST
at needs to be passed on jCSRF-

script so that it can complete the request to server T .
This is accomplished using the postMessage API, which
provides a secure mechanism for the framed script from
domain T to communicate with a script from domain
S. Note that a framing page from a malicious domain
A cannot trick the frame from T into sending PST

at :
postMessage can be instructed to deliver the message to
a specific target origin which is chosen by T . Whenever
T is instructed to send PST

at , this will be sent to S only,
thus preventing A from reading the message.

Some of the older browsers do not support the postMes-

sage API. In that case, a technique called location hash
polling1 can be used in its place.

• Once the framing page has received the token, the jCSRF-
script from S adds it to the form and submits the POST
request to T .

• When jCSRF-proxy for domain T receives a POST re-
quest, it decrypts it using KT , and checks if the cookie
Cat included with the POST is a prefix of the decrypted
data. If so, it checks if the domain S, which represents
the remaining part of the decrypted data, is authorized
to submit cross-domain POST requests. If so, the re-
quest is passed on the server. In all other cases, jCSRF-
proxy treats the request as unauthorized, and strips all
cookies before it is forwarded to T .

1In location hash polling [12], a framing page sends its URL to a
framed page as a parameter. The framed page can then append
a token to the URL of the framed page using an anchor at the
end of the URL. The basis for this technique is that this URL
change does not cause the framing page to reload; instead the
value appended to the URL is available for polling. If a malicious
page from domain A lies about its URL (pretending to be a page
from S), then the update will cause the outer page to reload from
domain S, thus defeating the attempt by A to read data written
by T .

Correctness.
Correctness of the cross-domain protocol relies on the

same three properties as the same origin protocol:

• scripts running on an attacker-controlled page visited by
user’s browser cannot obtain the authentication token
for the protected domain.

• any token that may be obtained by the attacker, say,
using his own browser, cannot be used to authenticate a
request from user’s browser to the protected domain

• the attacker should not be able to guess an authentica-
tion token that is valid for the protected domain

For the first property, note that because of the semantics
of the postMessage API, an attacker-controlled page can ei-
ther receive an authentication token that encodes its true
domain A, or it may lie about its origin and not receive the
token at all. In the latter case, the first property obviously
holds. In the former case, although there is an authentica-
tion token, it contains the true origin of the attacker. On
receiving this token, jCSRF-proxy will deny the request, as
the attacker domain A is not authorized to make cross-origin
posts.

The second property holds because the attacker is un-
able to set (or read) the value of user’s cookie Cat for the
protected domain T . Thus, even if he obtains an authenti-
cation token P by interacting with T using his own browser,
he cannot use it with user’s cookie Cat that will have a dif-
ferent value from the cookie value sent to the attacker by
T . (Recall that T uses cryptographically random nonces to
initialize Cat.)

The third property is ensured by the fact that the authen-
tication token is randomly chosen from a reasonably large
keyspace.

2.3 Design and Operation of jCSRF-script
As noted before, jCSRF-script needs to intercept all POST-

requests and add the authentication token as an additional
parameter to these requests. There are two ways in which
browsers may issue POST requests:

• Submission of HTML forms, represented by form tags.
Note that it is not necessary for the page to contain a
form tag, because the form can be constructed dynami-
cally using Javascript. Also, it is not necessary for the
user to submit the form explicitly, because the form can
be submitted automatically using Javascript.

• XmlHttpRequest submissions. Unlike form submissions,
where the response cannot be accessed by the submitting
script, the response to XmlHttpRequest can be read by the
script making the request.

Compatibility requires handling both types of primitives.
We now describe how jCSRF-script achieves this.

2.3.1 HTML Form Submission
Modern browsers allow Javascript code to register call-

backs for specific events concerning the web page presented
to the user. These functions are called event handlers. To
ensure that every form is submitted to the web application
with an authentication token, jCSRF-script registers a sub-
mit handler for each POST-based form. This handler then
checks if the submission is to the same-origin or cross-origin.

Application Version LOC Type Compatible
phpMyAdmin 3.3.7 196K MySQL Administration Tool Yes
SquirrelMail 1.4.21 35K WebMail Yes
punBB 1.3 25K Bulletin Board Yes
WordPress 3.0.1 87K Content-Management System Yes
Drupal 6.18 20K Content-Management System Yes
MediaWiki 1.15.5 548K Content-Management System Yes
phpBB 3.0.7 150K Bulletin Board Yes

Figure 4: Compatibility Testing

In the former case, jCSRF-script simply adds the authentica-
tion token as an additional parameter to the POST request.
In the latter case, it uses the cross-domain protocol to first
obtain a token for the target domain, and then adds this
token as an additional parameter to the POST request.

Note that the web application might define its own event
handlers for the submission event, mostly to validate the
form contents. If the web application handler ran after
jCSRF’s handler, it would have access to the authentication
token. In some rare cases, the presence of the token might
confuse the web application handler which only expects a
predefined set of fields. Therefore, jCSRF-script detects if
the web application defines its own handlers and wraps them
with a function which removes the token before calling the
web application handler, reinserting the token afterward.
There are two types of event handlers: DOM0 handlers
(registered with the HTML attribute onSubmit or by as-
signing a function to the JavaScript property form.submit)
and DOM2 handlers (registered with the addEventListe-

ner function). The former type of handler is detected by
periodically checking all forms for new, unwrapped submit
handlers, which can be done through the previously men-
tioned submit property of form elements, since handlers are
JavaScript functions and functions are first-class objects in
JavaScript. The latter type requires overriding the add-

EventListener method to directly wrap new handlers dur-
ing their registration, since there is no way to query the set
of listeners registered for a specific (event, object) pair.

2.3.2 XmlHttpRequest
For XmlHttpRequests, jCSRF-script modifies the send me-

thod of the class. For a browser supporting DOM proto-
types [13], this can be done simply by substituting the send

function, while on older browsers it is done by completely
wrapping XmlHttpRequest functionality in a proxy object that
hides the original class, and redirects all requests made by
the web application to the proxy class. As explained in 2.2.2,
adding a special header X-No-CSRF is enough to prove that
the request is same-origin and therefore safe.

2.3.3 Compatibility
jCSRF-script uses jQuery’s live method [24] to reliably

interpose on submission of dynamically generated forms: in-
stead of binding an event handler to a specific DOM element
at call time, live registers a special handler for the root ele-
ment which is then invoked once the event that fired on one
of its descendants bubbles up the DOM tree. The purpose of
the special handler is to find the element responsible for the
event, check whether it matches the element type specified
to live and apply the event handler supplied to live to it.
jCSRF-script can thus bind its handler to the submit event
for all future forms by calling

$(’form’).live(’submit ’, handler)

Overriding addEventListener requires DOM prototypes sup-
port, which is not available on old browsers (IE7 and older).
On these browsers, only DOM0 events can be wrapped.

Even though we did not encounter this scenario in any
of the web application we tested, the techniques used to
wrap DOM0 and DOM2 handlers may not work properly if
the web application (or another software similar to jCSRF
which transforms the HTML output) is using them as well.
For example, if another piece of code other than jCSRF-
script polls forms for the presence of submit handlers, a race
condition can ensue: either the two wrapper functions are
composed in a nondeterministic fashion, or one wrapper is
overwritten by a subsequent attempt to wrap the function
by the second piece of code.

Note that failure to wrap an event handler does not neces-
sarily imply a compatibility issue with jCSRF: most web ap-
plications define their own handlers to predicate on specific
form fields, enforcing constraints such as “the field age must
be a number”. Only handlers that predicate on classes of
fields might be incompatible with jCSRF on older browsers.
For example, the constraint “all fields must be shorter than
10 characters” could create a problem for the token field if
the handler is not wrapped.

3. EVALUATION

3.1 Compatibility
To verify that jCSRF is compatible with existing appli-

cations, we deployed popular open-source Web applications
and accessed them through the proxy, checking for false pos-
itives by manually testing their core functionality. We tested
jCSRF with two browsers (Firefox and Google Chrome)
and the following applications: phpMyAdmin, SquirrelMail,
punBB, Wordpress, Drupal, Mediawiki, and phpBB. As Fig-
ure 4 shows, these are complex web applications consisting
of thousands of lines of code that would require substan-
tial developer effort to audit and fix CSRF vulnerabilities.
jCSRF was able to protect all applications without breaking
their functionality in any way.

Note that these web applications did not perform cross-
origin requests, and therefore our evaluation did not cover
the cross-origin protocol. Nevertheless, we believe that the
primary source of incompatibility in the cross-origin protocol
will remain the same as the same-origin protocol, namely,
reliably interposing on submit events. As a result, we expect
the compatibility results for the cross-origin protocol to be
similar to those shown in Figure 4.

It is worth mentioning that jCSRF requires JavaScript
enabled. If it is disabled, say, through the use of a browser
extension such as NoScript [19], then requests would be sent
out unauthenticated, resulting in false positives.

3.2 Protection

To test the protection offered by jCSRF, we selected 2
known CVE vulnerabilities and attempted to exploit them.
The results are summarized in Figure 5.

First, we exploited the CVE-2009-4076 [4] vulnerability
on the open source web mail application RoundCube [22].
Emails are sent using a POST request, but its origin is not
authenticated. We built an attack page on an external web-
site that fills out and submits an email message. jCSRF suc-
cessfully blocked the attack, because the POST request was
missing the authentication token. Second, we exploited the
CVE-2009-4906 [5] vulnerability on the Acc PHP eMail web
application. This vulnerability allows changing the admin
password with a POST request from an external website.
jCSRF was able to thwart this attack as well.

We limited our evaluation to two because the effectiveness
of jCSRF does not need to be established purely through
testing. Instead, we have provided systematic arguments
as to why the design is secure against CSRF attacks. A
secondary factor was that reproducing vulnerabilities is a
very time-consuming task, and can be further complicated
by difficulties in obtaining specific software versions that are
vulnerable, and dependencies on particular configurations of
applications, operating systems, etc.

Finally, two attacks are out of scope for a tool such as
jCSRF, but should be mentioned for completeness: XSS at-
tacks and same-domain CSRF attacks. XSS attacks can be
used to break the assumption that same-origin scripts are
under the control of the web developer, to issue token re-
quests and leak results to the attacker, thus defeating the
purpose of jCSRF. We point out that a successful XSS at-
tack grants the attacker far more serious capabilities than
the ability to craft requests on the victim’s browser using his
cookies. In fact, the attacker can simply steal the cookies
directly and send authenticated requests as the victim from
his own machine! To our knowledge, no other server-side
CSRF defense can resist in case of an XSS attack. Same-
origin CSRF attacks can be carried out by injecting a form
in a server response and tricking the user into submitting it.
jCSRF-script would add the correct authentication token,
because it has no way to realize that the form present in the
DOM tree was indeed supplied by the attacker [27].

3.3 Performance
In this section, we estimate the overhead imposed by jCSRF.

A page embedding jCSRF-script issues three different type
of requests to its target jCSRF-proxy:

1. GET requests. For these, the browser does not perform
any special processing, and thus incurs no overhead. On
the server-side, jCSRF-proxy only needs to generate a
new token if the user does not have one already.

2. Same-Origin POST requests. Before the actual submis-
sion, jCSRF-script copies the authentication token Cat

from the cookies to the form as Pat. Therefore, no over-
head is introduced on the client, and the proxy only
needs to check that Cat = Pat, which is an inexpensive
operation.

3. Cross-Origin POST requests. The cross-origin protocol
requires three additional GET requests for authentica-
tion: one to detect whether the target web application
is running jCSRF, one to fetch the iframe from it that

requests the token and one for the actual XmlHttpRe-

quest that fetches the token. Therefore, this additional
network delay dominates any other delay introduced by
token generation and verification by the proxy. Although
this overhead is non-negligible, we point out that cross-
origin POST requests make up only a small fraction of
HTTP requests [18], and therefore the delay due to these
roundtrips is not likely to affect the overall user browsing
experience.

We built a simple web application, deployed it locally and
compared the response time of unprotected vs. protected
same-origin and cross-origin POST requests. jCSRF pro-
tection incurred at most 2ms overhead.

4. RELATED WORK

4.1 Server-side Defenses
NoForge [17] was the first approach that used tokens to

ascertain same-origin requests without requiring modifica-
tions to the application’s source code. Implemented as a
server-side proxy, NoForge parses HTML pages served by a
web server, and adds a token to every URL referring to this
server. It associates this token with the cookie representing
the session id for the application. When a subsequent GET-
or POST-request is received, it checks if this request con-
tains the token corresponding to the session id. jCSRF is
clearly influenced by NoForge, but makes several significant
improvements over it:

• NoForge requires developer help to specify the name of
the cookie containing the session id. Not only is this
effort unnecessary in our approach, but it is also the
case that our technique is compatible with alternative
schemes for authentication, such as those that store au-
thentication credentials in multiple cookies, or schemes
that support persistent logins that, at different times,
may be associated with different session ids.

Moreover, NoForge needs to maintain server-side state in
the form of valid (session id, token) pairs. In contrast,
jCSRF does not maintain state, and is less prone to DoS
attacks.

• jCSRF supports web sites where URLs are dynamically
created by client-side execution of scripts.

• jCSRF supports cross-origin requests whereas NoForge
can only protect same-origin requests. NoForge’s ap-
proach does not easily extend to cross-origin case since
it relies on a mapping between cookies and tokens on
the server side. In the cross-origin case, the cookies that
are visible to the origin and target domains are different,
and so it is unclear how the states maintained on the two
domains can be correlated.

An important difference between NoForge and jCSRF is
that the former protects GET-requests as well. However, as
discussed before, there are a number of difficulties in CSRF
protection for GET-requests: inability to bookmark pages,
need for developer effort to identify “landing pages” that do
not need CSRF protection (which are not supported by No-
Forge), and so on. In the interest of providing a simple, fully
automated solution, jCSRF protects only POST-requests.

Bayawak [15] can be thought of as extending NoForge to
enforce a stronger policy: URLs in the web application are

Application Version LOC Type CVE Stopped
RoundCube 0.2.2 54K Webmail CVE-2009-4076 Yes
Acc PHP eMail 1.1 3K Mailing List Manager CVE-2009-4906 Yes

Figure 5: Protection Evaluation

augmented with a special token not only to ensure that the
request is same-origin, but also to constrain the order in
which web pages can be visited. As such, it also protects
against workflow attacks that aim to disrupt the session in-
tegrity by sending out-of-sync requests. This increased pro-
tection is obtained at the cost of additional programmer ef-
fort needed to specify permissible workflows. Bayawak does
not address cross-origin requests or URLs that are dynami-
cally created on the client-side.

X-PROTECT [27] is a server side defense that employs
white-box analysis and source code transformation to over-
come the shortcomings of other black-box approaches, namely
their inability to protect against same-origin CSRF and their
need to specify landing pages manually.

4.1.1 Developer Tools
Most web frameworks for rapid application development

[9, 14, 21, 10, 26] include functionality to simplify CSRF
protection, typically using a NoForge-like approach. For
example, Django [9], a Python-based framework, provides
CSRF protection for POST requests by requiring a specific
template tag to be added to HTML forms, which is trans-
lated to a hidden form field containing a token that is also
returned through cookies. To check whether the token in
the cookies and the form match before executing the appli-
cation logic, Django provides function wrappers to instru-
ment views (python functions associated to URLs). CSRF-
Magic [25] provides a similar capability for PHP applica-
tions. Web developers need to include an import statement
in their PHP files to activate this protection. The purpose of
the included file is to register output and input filters. The
output filter executes before the HTML page is sent to the
client, and adds a token to POST forms. The input filter
checks for the presence of this token.

CSRFGuard [23] is similar to CSRFMagic, but is designed
for Java EE applications. It examines incoming GET and
POST requests for the presence of a valid token. CSRF-
Guard introduced an option for client-side insertion of to-
kens using a script. Although this appears similar to our
technique of injecting jCSRF-script, its operation is differ-
ent. In particular, their client-side script adds the token to
content available when the page fires the load event, and
hence does not handle requests that may be dynamically
constructed by various scripts associated with this page.
Moreover, unlike NoForge, it allows web developers to con-
figure a set of landing pages that do not require a valid token,
thus mitigating the usability issues related to GET-request
protection at the cost of additional developer effort.

CSRF tools for developers are an invaluable resource for
rapid application development. Their benefit is that they
provide a finer granularity of control for programmers, as
compared to fully automated approaches such as jCSRF.
The main drawback of developer tools is the need for pro-
grammer effort. Moreover, programmers may overlook to
add checks in all places they are required, thus leaving vul-
nerabilities.

The basic idea of comparing a token and cookie value
to verify same origin requests is similar between these ap-

proaches and jCSRF. However jCSRF goes beyond these
tools by (a) providing support for cross-origin requests, and
(b) supporting requests to URLs that are generated dynam-
ically on the client-side.

4.2 Browser Defenses
Zeller and Felten [26] present a Firefox plugin which imple-

ments a simple policy to prevent POST-based CSRF: cross-
site POST requests must be authorized by the user. The
drawback of this simple approach is the fatigue stemming
from repeated user prompts. NoScript [19] implements a
more sophisticated policy that can avoid prompts. In par-
ticular, it restricts only those POST requests that go from
an untrusted origin to a trusted origin. NoScript primar-
ily targets sophisticated, security-conscious users who are
willing to put in the effort needed to populate their list of
trusted origins.

De Ryck et al [8] presents a CSRF protection plugin for
Firefox, CsFire. It studies cross-domain interactions on the
web, and uses the results to design a cross-domain policy
that protects against CSRF attacks while optimizing com-
patibility with existing web applications. This policy re-
lies on the concept of relaxed SOP, which allows communi-
cation between subdomains of the same registered domain
(e.g. mail.google.com and news.google.com). Their policy
also introduces the idea of direct interaction: since CsFire
is a browser plugin, it has access to UI information such
as whether a request was initiated by a user click. Cross-
Origin GET requests initiated by user clicks are allowed,
while cross-origin POST requests are not allowed in any
case. Instead of blocking the request altogether, the plu-
gins strips the cookies from the request, which are necessary
to carry out a successful CSRF attack.

RequestRodeo [16] differs from the above techniques in
that it is implemented outside of a browser as a client-side
proxy. It relies on an approach similar to NoForge, but
rather than blocking a request, it simply strips all cookies
from such requests. Another difference is that it has no
exceptions for landing pages. This can significantly affect
usability.

A key advantage of browser-side defense is that it protects
users even if web sites are not prompt in fixing their vulner-
abilities. Moreover, they have accurate information about
the origin of requests, whether they result from clicking on
a bookmark, or a link on a web page trusted by a user.
Their primary drawback is that the defense is applied to all
web sites and pages, regardless of whether they have any
significant security impact. Such indiscriminate application
significantly increases the odds of false positives. Moreover,
it is easier for a server-side solution residing on a target do-
main to determine whether it trusts the origin domain of
a request. In contrast, browser-based defenses require the
user to make this determination, and moreover, do it for all
origins and target domains.

4.3 Hybrid Defenses
These defenses require both browser and server modifica-

tions. Referrer headers are the best known mechanism in

this context. Using this HTTP header, a web browser can
provide the crucial information that servers lack: namely,
the origin domain of the current request. Given this infor-
mation, a server can implement a simple CSRF protection
mechanism that denies requests from domains that it does
not trust. Unfortunately, due to privacy concerns, it is com-
mon to suppress referrer headers [1]. Barth et al [1] proposed
a new header, called the origin header, to overcome these pri-
vacy concerns by suppressing some of the information pro-
vided by referrer headers, e.g., the query string. Currently,
only Webkit-based browsers implement this header. More-
over, there may be lingering privacy concerns even with this
origin header.

SOMA [20] is an alternate approach that aims to address
a range of threats, including CSRF and XSS. With SOMA,
a target domain is able to specify the set of allowable ori-
gin domains and vice-versa. Its implementation relies on a
browser plug-in that retrieves these policies from the source
and target domain and disallows any cross-origin requests
that violate either policy.

Hybrid defenses often represent the best solutions that
can be achieved by bringing together the information and
mechanism that are available on browsers as well as web-
servers. Their key drawback is that both sides have to be
modified simultaneously in order to achieve their benefits.
For this reason, their adoption can take a long time. For
instance, the origin header represents a relatively modest
change, but even after about 3 years since that proposal was
made, there is just a single major browser that supports it.

5. CONCLUSIONS
We introduced jCSRF, a tool to transparently protect

web applications against CSRF attacks without requiring
source code changes or configuration. Unlike similar solu-
tions which modify all outgoing HTML responses to contain
tokens, jCSRF uses JavaScript to augment requests dynami-
cally. This allows jCSRF to also handle requests to resources
that are not directly served by the protected web appli-
cation, but rather generated dynamically on the browser.
Moreover, jCSRF provides a protocol to authenticate cross-
origin requests, which extends the applicability of the tool
to complex, multi-domain deployments. Because it is imple-
mented as a proxy, it should pose no compatibility problems
with any web application, regardless of the language used or
the web server it runs on. Our evaluation results show that
jCSRF is a practical solution for automatically protecting
web applications against CSRF attacks.

6. ACKNOWLEDGMENTS
We thank Siddhi Tadpatrikar for her work on implement-

ing jCSRF-script for the same origin protocol.

7. REFERENCES
[1] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses

for Cross-Site Request Forgery. In CCS, 2008.

[2] CVE Editorial Board. CVE-2007-3574. http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2007-3574, 2007.

[3] CVE Editorial Board. CVE-2009-2073. http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2009-2073, 2009.

[4] CVE Editorial Board. CVE-2009-4076. http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2009-4076, 2009.

[5] CVE Editorial Board. CVE-2009-4906. http://web.nvd.
nist.gov/view/vuln/detail?vulnId=CVE-2009-4906, 2009.

[6] CVE Editorial Board. CVE-2010-1482. http://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2010-1482, 2010.

[7] CWE and SANS Institute. 2010 CWE/SANS Top 25 Most
Dangerous Software Errors. http://cwe.mitre.org/top25/,
March 2011.

[8] P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and
W. Joosen. CsFire: Transparent client-side mitigation of
malicious cross-domain requests. In ESSOS, 2010.

[9] Django Software Foundation. Django.
http://www.djangoproject.com, 2011.

[10] EllisLab Inc. Code Igniter. http://codeigniter.com/, 2002.

[11] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, 1999.

[12] J. Fraser. Backwards compatible window.postMessage().
http://www.onlineaspect.com/2010/01/15/
backwards-compatible-postmessage/, 2010.

[13] F. Guisset. JavaScript-DOM Prototypes in Mozilla.
https://developer.mozilla.org/en/JavaScript-DOM
Prototypes in Mozilla, 2002.

[14] D. H. Hansson. Ruby on Rails. http://rubyonrails.org,
2011.

[15] K. Jayaraman, G. Lewandowski, P. Talaga, and S. Chapin.
Enforcing Request Integrity in Web Applications. Data and
Applications Security and Privacy, 2010.

[16] M. Johns and J. Winter. RequestRodeo : Client Side
Protection against Session Riding. In OWASP Europe,
2006.

[17] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross
site request forgery attacks. In Securecomm, 2007.

[18] W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser
protection against cross-site request forgery. In SecuCode,
2009.

[19] G. Maone. NoScript. http://noscript.net/, 2011.

[20] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji.
SOMA: Mutual approval for included content in web pages.
In CCS, 2008.

[21] Pylons. Pylons Project. http://pylonsproject.org/, 2011.

[22] RoundCube.net. RoundCube - Free Webmail for the
Masses. http://roundcube.net/, 2010.

[23] E. Sheridan. OWASP: CSRFGuard Project.
https://www.owasp.org/index.php/Category:
OWASP CSRFGuard Project, 2011.

[24] The jQuery Project. .live() - jQuery API.
http://api.jquery.com/live/, 2011.

[25] E. Z. Yang. CSRFMagic. http://csrf.htmlpurifier.org/,
2008.

[26] W. Zeller and E. Felten. Cross-site request forgeries:
Exploitation and prevention, 2008.

[27] M. Zhou, P. Bisht, and V. Venkatakrishnan. Strengthening
XSRF Defenses for Legacy Web Applications Using
Whitebox Analysis and Transformation. In ICISS, 2011.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-3574
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-3574
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2073
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2073
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4076
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4076
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4906
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4906
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1482
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1482
http://cwe.mitre.org/top25/
http://www.djangoproject.com
http://codeigniter.com/
http://www.ietf.org/rfc/rfc2616.txt
http://www.onlineaspect.com/2010/01/15/backwards-compatible-postmessage/
http://www.onlineaspect.com/2010/01/15/backwards-compatible-postmessage/
https://developer.mozilla.org/en/JavaScript-DOM_Prototypes_in_Mozilla
https://developer.mozilla.org/en/JavaScript-DOM_Prototypes_in_Mozilla
http://rubyonrails.org
http://noscript.net/
http://pylonsproject.org/
http://roundcube.net/
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
http://api.jquery.com/live/
http://csrf.htmlpurifier.org/

	1 Introduction
	2 Approach Overview
	2.1 Injecting jCSRF-script into web pages
	2.2 Protocol for Validating Requests
	2.2.1 Same-Origin Protocol.
	2.2.2 Cross-Origin Protocol

	2.3 Design and Operation of jCSRF-script
	2.3.1 HTML Form Submission
	2.3.2 XmlHttpRequest
	2.3.3 Compatibility

	3 Evaluation
	3.1 Compatibility
	3.2 Protection
	3.3 Performance

	4 Related Work
	4.1 Server-side Defenses
	4.1.1 Developer Tools

	4.2 Browser Defenses
	4.3 Hybrid Defenses

	5 Conclusions
	6 Acknowledgments
	7 References

