
A Portable User-Level Approach for
System-wide Integrity Protection†

Wai-Kit Sze and R. Sekar
Stony Brook University
Stony Brook, NY, USA

ABSTRACT
In this paper, we develop an approach for protecting system in-
tegrity from untrusted code that may harbor sophisticated malware.
We develop a novel dual-sandboxing architecture to confine not
only untrusted, but also benign processes. Our sandboxes place
only a few restrictions, thereby permitting most applications to
function normally. Our implementation is performed entirely at
the user-level, requiring no changes to the kernel. This enabled us
to port the system easily from Linux to BSD. Our experimental re-
sults show that our approach preserves the usability of applications,
while offering strong protection and good performance. Moreover,
policy development is almost entirely automated, sparing users and
administrators this cumbersome and difficult task.

1. Introduction
The state-of-practice in malware defense relies on reactive mea-

sures, such as virus scanning and software patches. While this prac-
tice may have been adequate in the past, it cannot cope with today’s
sophisticated malware that employ complex evasion and subversion
techniques to overcome deployed defenses. It is thus important to
develop principled defenses that provide reliable protection regard-
less of malware sophistication.

A natural (and perhaps the best studied) proactive defense is to
sandbox potentially malicious code. This approach can be applied
to software from untrusted sources [11], which may be malicious
to begin with; or to software from trusted sources [16, 6, 20] that is
benign to start with, but turns malicious due to an exploit. However,
there are several challenges with sandboxing untrusted code:

• Difficulty of policy development. Experience with SELinux [16]
and other projects [3, 22] show that policy development requires
a great deal of expertise and effort. Moreover, policies that
provide even modest protection from untrusted code can break
many legitimate applications.

• Subversion attacks on benign software. Even highly restrictive
policies can be inadequate, as malware can co-opt benign appli-
cations to carry out prohibited operations: Malware may trick a
user to run a benign application in insecure ways or exploit vul-
nerabilities in benign applications to perform arbitrary actions.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ACSAC ’13, December 09 - 13 2013, New Orleans, LA, USA
Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2015-3/13/12 ...$15.00.

• Difficulty of secure policy enforcement. Non-bypassable poli-
cies usually have to be enforced in the OS kernel. They are usu-
ally much harder to develop than user-level defenses. Moreover,
kernel-based solutions cannot be easily ported across different
OSes, or even different versions of the same OS.

An alternative to sandboxing is isolated execution of untrusted code.
One-way isolation [15, 23] permits untrusted software to read any-
thing, but its outputs are held in isolation. Two-way isolation limits
both reads and writes, holding the inputs as well as outputs of un-
trusted applications in an isolated environment. The app model on
Android, Apple iOS, and Windows 8 sandbox are generally based
on this two-way isolation model.

Isolation approaches provide stronger protection from malware
since they block all interactions between untrusted and benign soft-
ware, thereby preventing subversion attacks. They also provide
much better usability because they permit sufficient access for most
applications to work. However, they too have several significant
drawbacks, especially in the desktop environment:

• Fragmentation of user data. Unlike sandboxing, which contin-
ues to support the model of a single namespace for all user data,
isolation causes a fragmentation: user data is partitioned into
two or more containers, each representing a disjoint namespace.

• Inability to compose applications. The hallmark of today’s desk-
top OSes is the ability to compose applications together. UNIX
pipelines represented one of the early examples of application
composition. Other common forms of composition can happen
through files or scripts, e.g., printing a spread sheet into a PDF
file and then emailing this PDF file. Unfortunately, strict isola-
tion prevents one application from interacting with any data (or
code) of other applications, thus precluding composition.

• No protection when isolation is breached. Strict isolation may
be breached either due to a policy relaxation, or through manual
copying of files across isolation contexts. Any malware present
in such files can subsequently damage the system.

In contrast, our approach combines the strengths of sandboxing
and isolation of untrusted code, while avoiding most of their weak-
nesses. Like sandboxing, all user data is held within one name
space, thereby providing a unified view. Like isolation, our ap-
proach preserves the usability of applications, and does not require
significant policy development effort. At the same time, it avoids
the weakness of isolation-based approaches, allowing most typi-
cal interactions between applications, while ensuring that system
security isn’t compromised by these interactions. An open-source
implementation of our system is available [26].

†This work was supported in part by grants from NSF (CNS-
0831298) and AFOSR (FA9550-09-1-0539).

Term Explanation
malicious intentionally violate policy, evade enforcement
untrusted possibly malicious

benign program non-malicious but may contain vulnerabilities
benign process process whose code and inputs are benign,

hence non-malicious

Figure 1: Key terminology

1.1 Approach Overview and Salient Features
Sophisticated malware can evade defenses using multi-step at-

tacks, with each step performing a seemingly innocuous action.
For instance, malware may simply deposit a shortcut on the desk-
top with a name of a commonly used application instead of writing
files in system directories directly. It can wait until the user double-
clicks on this shortcut and do its work. Alternatively, malware may
deposit files that contain exploits for popular applications, with the
actual damage inflicted when a curious user opens them. The first
example involves a benign process executing code derived from a
malicious source, while the second example involves a vulnerable
benign application being compromised by malicious data.

To thwart all malware attacks regardless of the number of steps
involved, we use integrity labels to systematically track the influ-
ence of untrusted sources on all files. Files coming from the OS
vendor (and any other source that is trusted to be non-malicious)
are given the label benign (Figure 1), while the remaining files are
given the label untrusted. Note that benign programs may con-
tain exploitable vulnerabilities, but only untrusted programs can be
malicious, i.e., may intentionally violate policy and/or attempt to
evade enforcement. Exploitation of vulnerabilities can cause be-
nign programs to turn malicious. However, an exploit represents
an intentional subversion of security policies, and hence cannot oc-
cur without the involvement of malicious entities. Consequently,
benign processes, which are processes that have never been influ-
enced by untrusted content, cannot be malicious. New files and
processes created by benign processes can hence be labeled benign.
Processes that execute untrusted code (or read untrusted inputs), are
labeled as untrusted, as are the files created or written by them.

The core of our approach is information-flow based integrity
preservation, similar to the Biba integrity model [5]. Our main
contribution is that of solving the key challenges in adopting such
a model to contemporary operating systems:

• Secure information-flow tracking and policy enforcement with-
out OS kernel changes. Absence of kernel changes not only
simplifies the implementation but also makes it possible to ex-
periment with the large base of existing OS and application soft-
ware. Moreover, it leads to a smaller TCB, and makes the im-
plementation portable across OSes.

• Preserving user experience. Enforcement of mandatory access
control (MAC) policies such as MLS or Biba model can often
break existing applications, since many previously permitted op-
erations are now disallowed by the MAC policy. Our approach
incorporates several refinements to the basic information flow
policy that preserve functionality without degrading integrity.
As a result, our approach can preserve the user experience on
contemporary OSes, as shown by our experiments.

• Automating policy development. Policy refinements often come
with a steep price: they require substantial development efforts,
typically for every application. Thus, protecting an entire OS
distribution can become prohibitively expensive if policies have
to be developed manually. We therefore present techniques that
automate policy development in almost all cases.

We expand on these points further below.

1.1.1 Secure enforcement and tracking without OS changes
Our approach encodes integrity labels into file ownership and

permission. In particular, untrusted files are those that are owned
by a set of newly created untrusted userids, or are writable by these
users. Untrusted processes are all run with an untrusted userid.
This encoding enables us to leverage existing OS mechanisms for
tracking and propagating integrity labels. In particular, note that
files as well as child processes inherit their ownership from that
of the process that created them. As a result, any file or process
created by an untrusted process will have the label of untrusted.

Benign processes and files are characterized by their ownership
by a userid other than an untrusted userid. In addition, benign files
will have write permissions that make them unwritable by untrusted
userids. As a result, files created by benign processes will have
benign labels, once again ensuring correct propagation of labels.

In addition to tracking integrity labels, our userid-based encod-
ing also provides the foundation for sound policy enforcement with-
out OS kernel changes. Specifically, existing OS mechanisms can
correctly enforce policies on untrusted processes: by virtue of our
integrity label encoding, benign files have permission settings that
make them unwritable by untrusted userids. Although we need to
develop additional enforcement mechanisms for benign processes,
e.g., to prevent them from reading untrusted files, this is a con-
siderably simpler task than policy enforcement on untrusted code.
In particular, challenges in secure policy enforcement arise mainly
due to evasion attacks. Since benign processes cannot be malicious,
they won’t attempt evasion. Indeed, a simple yet secure implemen-
tation can be developed within the address space of a benign pro-
cess, e.g., by replacing libc, which makes all system calls on behalf
of a process, with a version that enforces the desired policies.

1.1.2 Preserving user experience
Increased security is usually achieved through stronger security

policies. These stronger policies will invariably deny some (oth-
erwise allowed) operations, thus impacting functionality. While
careful policy development may reduce the scope of functionality
loss, experience with SELinux [16] and other projects [3, 22] show
that (a) the effort and expertise involved in developing good poli-
cies is considerable, and (b) the resulting policies can still lead to
unacceptable loss of functionality (or security). The fundamental
problem is that finding the “boundary” between legitimate and inse-
cure behaviors can be very hard. For instance, consider identifying
the complete set of files that must be protected to ensure host in-
tegrity. An overly general list will cause untrusted applications to
fail because their file accesses are denied, while omissions in this
list will impact benign system operations. If untrusted software is
prevented from writing any files within a user’s home directory, this
can affect its usability. If, on the other hand, it is permitted to write
any file, it may be able to install backdoors into the user’s account,
e.g., by modifying files that are automatically executed with user’s
privileges, such as the .bashrc file.

We overcome the dilemma with a novel dual-sandbox architec-
ture. The first of these sandboxes performs eager policy enforce-
ment. To minimize breaking legitimate functionality, it blocks only
those operations that can cause irreparable damage, e.g., overwrit-
ing an existing benign file. This sandbox, called untrusted sandbox
(U), needs to be secure against any attempts to circumvent it.

Operations with unclear security impact, such as the creation of
new files, are left alone by the second sandbox, called benign sand-
box (B). While these actions could very well be malicious, there
isn’t enough information to make that conclusion with confidence.
Hence, we rely on B to observe subsequent effects of this action to
determine if it needed to be stopped. For instance, if such a file is

Untrusted Process

7

4

OS

2

8

3

1

5 6

UH

Outer Sandbox

Inner Sandbox UI

Transparency Library UL

Process
Helper

Figure 2: Untrusted sandbox

used by a benign process, it could compromise the benign process.
B prevents such use.

Our dual-sandbox architecture achieves several important goals:
First, it provides robust enforcement of complex policies without
requiring OS kernel modifications. Second, it preserves function-
ality of both benign and untrusted applications by implementing
many important transparency features, so that security benefits of
our approach can be achieved without requiring changes to appli-
cations, or the way in which users use them.

1.1.3 Automating policy development
To build a practical system that preserves user experience, we

need as much (if not more) emphasis on the policies as on the en-
forcement mechanisms. However, policy development is often a
manual process that requires careful consideration of every appli-
cation and file on the system. Given that a typical Linux system
may have thousands of applications and many tens of thousands
of files, this becomes a truly daunting task. We have therefore de-
veloped a procedure for classifying files into different categories:
code, configuration, preference and data. Based on this inference,
we provide a detailed policy that works without needing manual
analysis of applications or file residing on the system.

1.2 Paper Organization
Section 2 details our approach for information-flow tracking and

describes the untrusted sandbox U . Section 3 describes benign
sandbox B. Policy inference is described in Section 4, followed
by a description of our implementation and evaluation (Section 5).
Related work is discussed in Section 6, followed by concluding re-
marks in Section 7.

2. Containing Untrusted Processes
Our untrusted sandbox, illustrated in Figure 2, consists of a sim-

ple inner sandbox UI based on OS-provided access control mecha-
nisms, and an outer sandbox that is realized using a library UL and
a user-level helper process UH .

The inner sandbox UI enforces an isolation policy that limits
untrusted processes so that they can only write untrusted files (Sec-
tion 2.1). This strict policy, by itself, can cause many untrusted ap-
plications to fail. The transparency library UL (Section 2.2) com-
ponent of the outer sandbox masks these failures so that applica-
tions can continue to operate as if they were executing directly on
the underlying OS. In particular, UL remaps some of the failed re-
quests (primarily, system calls) so that they would be permitted by
UI . In other cases, it forwards the request to the helper process UH ,
which runs with the userid of a normal user, to carry out the request.
The helper UH uses a policy that is more permissive than the inner
sandbox, but will still ensure information-flow based integrity.

In addition to modifying or relaying requests from untrusted pro-
cesses, the transparency library UL may also modify the responses
returned to them in order to preserve their native behavior. We pro-

vide two examples of remapping/relaying to illustrate its benefit:

• When a benign application is run with untrusted inputs, it will
execute as an untrusted process, and hence will not be able to
update its preference files. To avoid application failures that may
result due to this, UL can redirect these accesses to untrusted
private copies of such files.

• Untrusted applications will experience a failure when they at-
tempt to create files in the home directory of a user u, since this
directory is not writable by untrusted userids. In this case, UL

can forward the request to the helper process, which runs with
the privileges of u and hence can perform this access.

Whether a particular file access is remapped/relayed is determined
by security policies, a topic further discussed in Section 4. Simi-
larly, the policy enforced by UH is also discussed below.

2.1 Inner Sandbox UI
Contemporary desktop OSes provide access control mechanisms

for protecting system resources such as files and IPCs. Moreover,
processes belonging to different users are isolated from each other.
We repurpose this mechanism to realize the inner sandbox. Such
repurposing would, in general, require some changes to file permis-
sions, but our design was conceived to minimize such changes: our
implementation on Ubuntu Linux required changing permissions
on less than 60 files (Section 5). Moreover, it preserves all of the
functionality relating to the ability of users to share access to files.

The basic idea is to run untrusted processes with newly-created
userids that have very little, if any, direct access to modify the file
system. For each non-root userid1 R in the original system, we
add a corresponding untrusted userid Ru. Similarly, for each ex-
isting group G, we create an untrusted group Gu that consists of
all userids in G and their corresponding untrusted userids. To fur-
ther limit accesses of Ru, we introduce a new group Gb of exist-
ing (“benign”) userids on the system before untrusted userids are
added. File permissions are modified so that world-writable files
and directories become group-writable2 by Gb. Similarly, world-
executable setuid programs are made group executable by Gb.

With the above permission settings, no Ru will have the per-
mission to create files, and hence will need to rely on the helper
process UH to create them. Since UH runs with the userid R, these
files will be owned by R. To identify them an untrusted, UH sets up
the group owner of this file to be Gu, where G is the primary group
of R. As a result, untrusted processes will not be able to change
permissions on these files or overwrite them without the help of
UH , thus enabling the helper to exert full control over their access.
Untrusted processes cannot modify benign files either, since the be-
nign sandbox ensures appropriate permission settings on them.

Untrusted processes can compromise benign processes through
communication. Some communication mechanisms, such as pipes
between parent and child processes, need to be closed when a child
process of a benign process becomes untrusted. This can happen
in our system only through the execve system call. Other commu-
nication mechanisms such as signals and IPC are restricted by the
OS based on userids, and hence the inner sandbox will already pre-
vent them. For intra-host socket communication, the benign sand-
box is responsible for identifying the userid of the peer process and
blocking the communication. To block communication with exter-
nal hosts, appropriate firewall rules can be used.

Using userid as an isolation mechanism has been demonstrated
in systems like Android and Plash [2] for isolating applications.

1We don’t support untrusted code execution with root privileges.
2If group permissions are already used, then we use ACLs instead.

One of our contributions is to develop a more general design that
not only supports strict isolation between applications, but also per-
mits controlled interactions. (Although Android can support inter-
actions between applications, such interactions can compromise se-
curity, providing a mechanism for a malicious application to com-
promise another benign application. In contrast, our approach en-
sures that malicious applications cannot compromise benign pro-
cesses.) Our second contribution is that our approach requires no
modifications to (untrusted or benign) applications, whereas An-
droid and Plash require applications to be rewritten so that they do
not violate the strict isolation policy.

2.2 Transparency Library UL
For untrusted processes, UL replaces the standard C-library in

our system, and provides its function through system call wrappers.
Note that UL operates with the same privileges as the untrusted
process, so no special security mechanisms are needed to protect it.
UL’s main purpose is to mimics unprotected execution environment
for untrusted processes.

Userid and group transparency.
Applications may fail simply because they are being run with

different user and group ids. For this reason, UL wraps getuid-
related system calls to return R for processes owned by Ru. It also
wraps getgid-related system calls to return G for processes group-
owned by Gu. This mapping is applied to all types of userids,
including effective, real and saved userids. As a result, an untrusted
process is not even aware that it is being executed with a different
userid from that of the user invoking it.

This modification is important for applications that query their
own user or groupid, and use them to determine certain accesses,
e.g., if they can create a file in a directory owned by R. If not,
the application may refuse to proceed further, thus becoming un-
usable. Some common applications such as OpenOffice, gedit,
eclipse and gimp make use of their userid information. UL en-
sures that such applications remain usable.

File access transparency.
When a file request is denied by the inner sandbox, UL forwards

the call transparently to the helper process UH running with the
privileges of R. UH , if it chooses to permit the operation, will open
the file and transmit the file descriptor back to UL via a UNIX-
domain socket. UL then forwards this descriptor to the untrusted
process. This technique enables subsequent read/write operations
to be performed directly by the untrusted process, thereby avoiding
a hop to UH for most operations.

2.3 Helper Process UH
In the absence of our protections, programs will be executed with

the userid R of the user running it. Thus, the maximum access they
expect is that of R, and hence UH can be run with R’s privileges.

Observe that the inner sandbox imposes restrictions (on Ru rel-
ative to R) for only three categories of operations3: file/IPC op-
erations, signaling operations (e.g., kill), and tracing operations
(e.g., ptrace). We have not found useful cases where Ru needs to
signal or trace a process owned by R. IPC objects with permission
settings are treated the same as files. Consequently, we focus the
discussion on file system operations:

• Reading user-readable files: UH permits an untrusted process

3Recall that R cannot be root, and hence many system calls (e.g.,
changing userid, mounting file systems, binding to low-numbered
sockets, and performing most system administrative operations) are
already inaccessible to R-processes. This is why it is sufficient to
consider these three categories.

owned by Ru to read any file that is readable by R, including
files that do not have explicit read permission for Ru.

• Executing user-executable files: Except for setuid files, UH per-
mits an untrusted process with userid Ru to execute any file that
can be executed by R.

• Creating new files or directories in user-writable directories:
An untrusted process is permitted by UH to create new files or
directories in any directory writable by R.

• Overwriting of existing files: UH permits any file overwrite that
would succeed for R. However, unless the target file is un-
trusted, the original file is left unchanged. Instead, UH trans-
parently creates a private copy of the file for any subsequent use
by Ru. File removals are treated in a similar way.

• Operations to manipulate permissions, links, etc.: These oper-
ations are handled similar to file modification operations: if the
target file(s) involved is untrusted, then UH permits the change
but with integrity labels preserved. Otherwise, the changes are
performed on a private copy of the original file that is created
for Ru. As before, all references to the original file by Ru are
redirected to this copy.

Note that redirection leads to namespace fragmentation: a file be-
ing accessed needs to be searched within the redirection space, and
then the main file system. Users may have a hard time locating
such files, as they are visible only to untrusted processes. Our im-
plementation reduces this fragmentation by limiting redirection to
application preference files: applications need to modify these files
but users are unlikely to look for (or miss) them. Data files are
not held in the redirection space. We discuss in Section 4.1 how to
distinguish between these file types.

While we do not emphasize confidentiality protection, our sys-
tem provides the basis for sound enforcement of confidentiality re-
strictions by tightening the policy on user-readable files.

3. Protecting Benign Processes
Our benign sandbox completes the second half of our sandbox

architecture. Whereas the untrusted sandbox prevents untrusted
processes from directly damaging benign files and processes, the
benign sandbox is responsible for protecting benign applications
from indirect attacks that take place through input files or inter-
process communication.

A simple way to protect benign applications is to prevent them
from ever coming into contact with any thing untrusted. However,
total separation would preclude common usage scenarios such as
the use of benign applications (or libraries) in untrusted code, or the
use of untrusted applications to examine or analyze benign data. In
order to support these usage scenarios, we partition the interaction
scenarios into three categories as follows.

• Logical isolation: By default, benign applications are isolated
from untrusted components by the benign sandbox.

• Unrestricted interaction: The other extreme is to permit benign
applications to interact freely with untrusted components. This
interaction is rendered secure by running benign applications
within the untrusted sandbox.

• Controlled interaction: Between the two extremes, benign ap-
plications may be permitted to interact with untrusted processes
while remaining a benign process. Since malware can exploit
vulnerabilities of benign software through these interactions, they
should be limited to trusted programs that can protect them-
selves in such interactions.

The first and third interaction modes are supported by a benign

sandboxing library BL. As described Section 3.1, it enforces poli-
cies to protect benign code from accidental exposure to untrusted
components. The second interaction mode makes use of the un-
trusted sandbox described earlier, as well as a benign sandboxing
component (Section 3.2) for secure context switch from benign to
untrusted execution mode.

3.1 Benign Sandboxing Library
Since benign processes are non-malicious, they can be sand-

boxed using a replacement library BL for the standard C library.
In the isolation mode, BL enforces the following policies.

• Querying file attributes: Operations such as access and stat

that refer to untrusted files are denied. An error is returned to
indicate permission denial.

• execve and open for reading: These are handled in the same
way as file attribute query operations.

• Changing file permissions: These operations are intercepted to
ensure that benign files aren’t made writable to untrusted users,
and that untrusted files aren’t turned into benign ones. These
restrictions prevent unintended changes to the integrity labels of
files. However, there may be instances where a benign process
output needs to be marked untrusted. An explicit function is
provided in the replacement C-library for this purpose.

• Interprocess communication channel establishment: This in-
cludes operations such as connect and accept. The OS is
queried for the userid of the peer process. If it is untrusted, the
communication will be closed and return a failure code.

• Loading kernel modules: If the OS provides a system call to
load a kernel module using a file path, the library will deny this
call if the file is untrusted. Otherwise, loading a module would
require a process to mmap the module into its memory. Since this
file open will be denied for untrusted files, they can’t be loaded
as kernel modules.

In addition to isolation, BL can also support controlled interac-
tion between benign and untrusted processes. This option should
be exercised only with trustworthy programs that are designed to
protect themselves from malicious inputs. Moreover, trust should
be as narrowly confined as possible, so BL can limit these interac-
tions to specific interfaces and inputs on which a benign application
is trusted to perform sufficient input validation.
BL provides two ways by which trust-confined execution can

deviate from the above default isolation policy. In the first way,
an externally specified policy identifies the set of files (or commu-
nication end points such as port numbers) from which untrusted
inputs can be safely consumed. The policies can also specify if
certain outputs should be marked as untrusted. In the second way,
a trusted process uses an API provided by BL to explicitly bypass
the default isolation policy, e.g., trust_open to open an input file
even though it is untrusted. While this option requires changes to
the trusted program, it has the advantage of allowing its program-
mer to determine whether sufficient input validation has been per-
formed to warrant trusting a certain input.

3.2 Secure Context Switching
Switching security contexts (from untrusted to benign or vice-

versa) is an error-prone task. One of the advantages of our design
is that it leverages a well-studied solution to this problem, specifi-
cally, secure execution of setuid executables in UNIX.

A switch from untrusted to benign domain can happen through
any setuid application that is executable by untrusted users. Well-
written setuid programs protect themselves from malicious users.

Moreover, OSes incorporate several features for protecting setuid
executables from subversion attacks during loading and initializa-
tion. While these should be sufficient for a safe switching out of
untrusted domain, our design further reduces the risk with a default
policy that prevents untrusted processes from executing setuid exe-
cutables. This policy can be relaxed for specific setuid applications
that are deemed to protect themselves adequately.

Transitions in the opposite direction (i.e., from benign to un-
trusted) require more care because processes in untrusted context
cannot be expected to safeguard system security. We therefore in-
troduce a gateway application called uudo to perform the switch
safely. Since the switch would require changing to an untrusted
userid, uudo needs to be a setuid-to-root executable. It provides
an interface similar to the familiar sudo4 program on UNIX sys-
tems — it interprets its first argument as the name of a command
to run, and the rest of the arguments as parameters to this com-
mand. By default, uudo closes all benign files that are opened in
write mode, as well as IPC channels. These measures are necessary
since all policy enforcement takes place at the time of open, which,
in this case, happened in the benign context. Next, uudo changes
its group to Gu and userid to Ru, and executes the specified com-
mand. (Here, R represents the real userid of the uudo process.)

We view uudo as a system utility, similar to sudo, that enables
users to explicitly execute commands in untrusted mode. While
it may seem like a burden to have to use it every time an untrusted
execution is involved, experience with the use of sudo suggests that
it is easy to get used to. Moreover, the use of uudo can be inferred
(Section 4.2) in common usage scenarios: launching an application
by double-clicking on a file icon, running an untrusted executable,
or running a benign command with untrusted file argument.

4. Policy Inference
In the preceding sections, our focus was on policy enforcement

mechanisms, and the different ways they could handle a particular
access request. To build a practical system that preserves user ex-
perience, we need as much (if not more) emphasis on the policies
that specify the particular way each and every request is handled.
This is the topic of this section.

4.1 Untrusted Code Policy
Our policy for untrusted processes is geared to stop actions that

have a high likelihood of damaging benign processes. A benign
process may be compromised by altering its code, configuration,
preference or input files. Of these, the first three choices have a
much higher likelihood of causing harm than the last. For this rea-
son, our policy for untrusted processes is based on denying access
to code, configuration and preference files of benign processes.
However, note that benign applications may be run as untrusted
processes, and in this case, they may fail if they aren’t permitted
to update their preference files. For this reason, preference file ac-
cesses need to be redirected, while denying writes of configuration
and code files.

To implement this policy, we could require system administrator
(or OS distributors) to specify code, configuration and preference
files for each application. But this is a tedious and error-prone task.
Moreover, these details may change across different software ver-
sions, or simply due to differences in installation or other options.

A second alternative is to do away with this distinction between
different types of files, and apply redirection to all benign files that
are opened for writing by untrusted processes. But this approach

4The name uudo parallels sudo, and stands for “untrusted user do,”
i.e., execute a command as an untrusted user.

has several drawbacks as well:

• Redirection should be applied to as few files as possible, as users
are unaware of these files. In particular, if data files are redi-
rected, users may not be able to locate them. Thus, it is prefer-
able to apply redirection selectively to preference files.

• If accesses to all benign files are redirected, this will enable a
malicious application to compromise all untrusted executions
of benign applications. As a result, no benign application can
be relied on to provide its intended function in untrusted execu-
tions. (Benign executions are not compromised.)

• Finally, it is helpful to identify and flag accesses that are poten-
tially indicative of malware. This helps prompt detection and/or
removal of malware from the system.

We therefore develop an automated approach for inferring differ-
ent categories of files so that we can apply redirection to a narrow
subset of files.

Explicitly specified versus implicit access to files.
When an application accesses a file f , if this access was trig-

gered by how it was invoked or used, then this access is considered
to be explicitly specified. For instance, f may be specified as a
command-line argument or as an environment variable. Alterna-
tively, f may have been selected by a user using a file selection
widget. A file access is implicit if it is not explicitly specified.

Applications seldom rely on an explicit specification of their
code, configuration and preference files. Libraries required are
identified and loaded automatically without a need for listing them
by users. Similarly, applications tend to “know” their configura-
tion and preference files without requiring user input. In contrast,
data files are typically specified explicitly. Based on this obser-
vation, we devise an approach to infer implicit accesses made by
benign applications. These accesses are monitored continuously,
and a database of implicitly accessed files, together with the mode
of access (i.e., read-only or read/write) is maintained for each ex-
ecutable. The policy for untrusted sandbox is developed from this
information, as shown in Figure 3.

Note that our inference is based on accesses of benign processes.
Untrusted executions (even of benign applications) are not consid-
ered, thus avoiding attacks on the inference procedure.

Computing Implicitly Accessed Files.
Files that are implicitly accessed by an application are identified

by exclusion: they are the set of files accessed by the application
but are not explicitly specified. Identifying explicitly specified files
can be posed as a taint-tracking problem. Taint sources include: (a)
command-line parameters, (b) environment variables, and (c) file
names returned by a file selection widget. In addition to propagat-
ing taint in the usual way, i.e., through assignments and memory
copying operations, there are a few other rules for propagation:

• if a file with a tainted name is opened, then all of the contents of
the file are marked tainted.

• if a directory with a tainted file name is opened, then all of the
file names from this directory are marked as tainted.

Finally, explicitly specified file names as those that are tainted.
In terms of implementation, we rely on taint inference [21] rather

than taint analysis. Some aspects of the structure of file names are
exploited to increase accuracy, and to deal with differences in the
manner of specification of file names.

We construct a data structure to store the list of explicitly identi-
fied names for each process. These names are then matched against
every open system call to identify explicitly accessed files. Be-
cause there can be multiple explicitly identified names, we used

Implicitly accessed by benign Explicitly
read and

write
other accessed

Inferred type Preference Code and
configuration

Data

Action Redirect Deny Deny

Figure 3: Untrusted Sandbox policy on writing benign files

Aho-Corasick algorithm [4] for efficient string matching.

4.2 Benign Code Policy
Policies can also be inferred for benign programs, although some

of the aspects are too complex to resolve entirely automatically.

Logical isolation.
The default policy for benign code is to prevent consumption of

untrusted inputs, while returning a “permission denied” error code.

Untrusted execution.
Requiring users to explicitly invoke uudo has the benefit that

users know in advance whether they can trust the outputs or not.
However, it is an inconvenience for users to make this decision all
the time. Hence, our system can also automatically infer the use of
uudo. The idea is as follows: if an execution will fail without uudo
but may succeed with it, we automatically invoke uudo. Currently,
we have implemented this for the simple cases of benign applica-
tions invoked with untrusted input files. This technique works well
when applications are launched by a file manager when the user
double-clicks a file, or uses a “open with” dialog. It also works for
simple commands that take a file name argument. Handling more
general cases, e.g., pipelines, is a topic of future work.

Trust-confined execution.
There does not seem to be a practical way to automatically de-

cide which applications are trustworthy. However, it is possible to
identify where trust is inappropriate: given the critical role played
by implicitly accessed files, it does not seem appropriate to trust ap-
plications to defend themselves from untrusted data in these files.
In this manner, the inference procedure described earlier is helpful
for determining trust confinement policies.

5. Implementation and Evaluation
Our primary implementation was performed on Ubuntu 10.04.

Fifteen assembly instructions were inserted around each system
call invocation sites in system libraries (libc and libpthread).
This allows us to intercept all system calls. Our implementation
then modifies the behavior of these system calls as needed to real-
ize the sandboxes described in Section 2 and 3. We also modified
the loader to refuse loading untrusted libraries for benign processes.

When our system is installed, existing files are considered as be-
nign. We found no world-writable regular files, so no permission
changes were needed for them. There were 26 world-writable de-
vices, but we did not change their permissions because they do not
behave like files. We also left permissions on sockets unchanged
because some OSes ignore their permissions. Instead, we perform
checking within the accept system call. World-writable directory
with sticky-bit set were left unmodified because OSes enforce a
policy that closely matches our requirement. Half of the 48 world-
executable setuid programs were modified to group-executable by
Gb. The rest were setgid programs and were protected using ACLs.

There are a few pivotal benign applications such as web browsers,
email readers and word processors that are exposed to a wide range
of inputs. One way to use them safely is to run them as benign
or untrusted process, based on the integrity of the input files. This
works well for applications such as editors or document viewers.

Shared Ubuntu PCBSD
Require no instrumentation 118 170 205

Benign Sandbox 49 6 29
Untrusted Sandbox 55 7 40

Figure 4: Number of system calls

However, some applications need to simultaneously process mes-
sages from benign and untrusted sources, e.g., browsers and file
utilities. We have experimented with two approaches for such ap-
plications: (a) expect the application to protect its integrity from
certain untrusted inputs, thus allowing it to have unrestricted inter-
actions on those specific interfaces, and (b) use separate instances
of the application when interacting with untrusted or benign data.
We experimented with both choices for Firefox and Thunderbird.
Many file utilities (mv, cp, tar, find, grep, and rm) represent ma-
ture programs, so we used option (a).

A key requirement for using option (a) is that applications need
to label their outputs accordingly, instead of always labeling them
as benign. For most file utilities, this is done by using appropriate
flags. For Firefox and Thunderbird, we developed add-ons for
this purpose.

Installation of untrusted software represents another key chal-
lenge, as administrative privileges are needed during installation,
yet many components executed at install time are from untrusted
sources. To address this challenge, we have developed an approach
based on SSI [24] to secure this phase.

We also limited the privileges of untrusted X-clients with X-
security extensions or nested X-server to protect other benign clients.

5.1 Portability and Complexity
To further establish the simplicity and practicality of our ap-

proach, we ported our system to PCBSD (version 8.2), one of the
best known desktop versions of BSD. Similar to the implementa-
tion on Ubuntu, we modified the library by inserting assembly in-
structions at each system call invocation site.

Figure 4 shows the number of system calls we instrumented to
enforce policies. On i386 Linux, some calls are multiplexed using a
single system call number (e.g., socketcall). We demultiplexed
them so that the results are comparable to BSD. Most of the system
calls require no instrumentation. A large number of system calls
that require instrumentation are shared between the OSes. Note that
some calls, e.g., open, need to be instrumented in both sandboxes.

A large portion of the PCBSD specific system calls are never in-
voked: e.g., NFS, access control list, and mandatory access control
related calls. Of those 59 (10 overlaps in both sandboxes) sys-
tem calls that require instrumentation, 29 are in the benign sand-
box. However, only 4 (nmount, kldload, fexecve, eaccess)
out of the 29 calls are actually used in our system. Hence, we
only handle these 4 calls. For the rest of the calls, we warn about
the missing implementation if there is any invocation. The other
40 calls in untrusted sandbox are for providing transparency. We
found that implementing only a subset of them (futimes, lchmod,
lutimes) is sufficient for the OS and applications like Firefox

and OpenOffice to run. Note that incomplete implementation in
the transparency library UL does not compromise security.

Figure 5 shows the code size for different components for sup-
porting Ubuntu, and the additional code for PCBSD. The overall
size of code is not very large. Moreover, a significant fraction of the
code is targeted at application transparency. We estimate that the
code that is truly relevant for security is less than half of that shown,
and hence the additions introduced to the TCB size are modest. At
the same time, our system reduces the size of the TCB by a much

LOC
C header Other

Ubuntu +PCBSD Ubuntu +PCBSD Both
Shared 2208 130 737 27 39

helper UH 703 16 106
uudo 68 52

BL ∩ UL 811 15 492 30 74
BL only 451 67
UL only 944 81

Total 5185 361 1335 57 113

Figure 5: Code complexity on Ubuntu and PCBSD

Document
Readers

Adobe Reader, dhelp, dissy, dwdiff, evince, F-spot,
FoxitReader, Geegle-gps, jparse, naturaldocs, nfoview,

pdf2ps, webmagick
Games asc, gbrainy, Kiki-the-nano-bot, luola, OpenTTD,

SimuTrans, SuperTux, supertuxkart, Tumiki-fighters,
wesnoth, xdemineur, xtux

Editor/
Office/

Document
Processor

Audacity, Abiword, cdcover, eclipse, ewipe, gambas2,
gedit, GIMP, Gnumeric, gwyddion, Inkscape, labplot, lyx,

OpenOffice, Pitivi, pyroom, R Studio, scidavis, Scite,
texmaker, tkgate, wxmaxima

Internet cbm, evolution, dailystrips, Firefox, flickcurl, gnome-rdp,
httrack, jdresolve, kadu, lynx, Opera, rdiff, scp,

SeaMonkey, subdownloader, Thunderbird, Transmission,
wbox, xchat

Media aqualung, banshee, mplayer, rhythmbox, totem, vlc
Shell-like bochs, csh, gnu-smalltalk, regina, swipl

Other apoo, arbtt, cassbeam, clustalx, dvdrip, expect, gdpc,
glaurung, googleearth, gpscorrelate-gui, grass, gscan2pdf,

jpilot, kiki, otp, qmtest, symlinks, tar, tkdesk, treil,
VisualBoyAdvance, w2do, wmmon, xeji, xtrkcad, z88

Figure 6: Software tested

larger amount, because many programs that needed to be trusted to
be free of vulnerabilities don’t have to be trusted any more.

5.2 Preserving Functionality of Code
We performed compatibility testing with about 100 applications

shown in Figure 6. 70 of them were chosen randomly, the rest were
hand-picked to include some widely used applications.

5.2.1 Benign mode
First, we installed all 100 packages as benign software. As ex-

pected, all of them worked perfectly when given benign inputs.
To use these applications with untrusted inputs, we first ran them

with an explicit uudo command. In this mode, they all worked
as expected. When used in this mode, most applications modified
their preference files, and our approach for redirecting them worked
as expected.

We then used these applications with untrusted inputs, but with-
out an explicit uudo. In this case, our uudo inference procedure
was used, and it worked without a hitch when benign applications
were started using a double-click or a “open-with” dialog on the
file manager nautilus. The inference procedure also worked well
with simple command-lines without pipelines and redirection. Fur-
ther refinements to this procedure to handle pipelines and more
complex commands is a topic of ongoing work.

5.2.2 Untrusted mode
We then configured the software installer to install these applica-

tions as untrusted. Remarkably, all of the packages shown in Fig-
ure 6 worked without any problems or perceptible differences. We
discuss our experience further for each category shown in Figure 6.

Document Readers.
All of the document readers behave the same when they are used

to view benign files. In addition, they can open untrusted files with-

out any issues. They can perform “save as” operations to create new
files with untrusted label.

Games.
By default, we connect untrusted applications as untrusted X-

clients, which are restricted from accessing some advanced features
of the X-server such as the OpenGL GLX extensions. As a result,
only 8 out of 12 games worked correctly in this mode. However,
all 12 applications worked correctly when we used (the some what
slower) approach of using a nested X-server (Xephyr).

Editors/Office/Document Processors.
These applications typically open files in read/write mode. How-

ever, since our system does not permit untrusted processes to mod-
ify benign files, attempts to open benign files would be denied.
Most applications handle this denial gracefully: they open the file
in read-only mode, with an appropriate message to the user, or
prompt the user to create a writable copy before editing it.

Internet.
This category includes web browsers, email clients, instant mes-

sengers, file transfer tools, remote desktop clients, and information
retrieval applications. All these applications worked well when run
as untrusted processes. Files downloaded by applications are cor-
rectly labeled as untrusted. Any application opening these down-
loaded files will hence be run in untrusted mode, ensuring that they
cannot damage system integrity.

Media Player.
These are music or video players. Their functions are similar

to document readers, i.e., they open their input files in read-only
mode. Hence, they do not experience any security violations.

Shell-like application.
This category includes shells or program interpreters that can

be executed interactively like a shell. Once started in untrusted
mode, all the subsequent program executions will automatically be
performed in untrusted mode.

Other Programs.
We tested a system resource monitor (wmmon), file manager

(tkdesk), some personal assistant applications (jpilot, w2do,
arbtt), googleearth and some other applications. We also tested
a number of specialized applications: molecular dynamic simula-
tion (gdpc), DNA sequence alignment (clustalx), antenna ray
tracing (cassbeam), program testing (qmtest, expect), computer-
aided design (xtrkcad) and an x86 emulator (bochs). While we
are not confident that we have fully explored all the features of
these applications, we did observe the same behavior in our tests
in benign as well as untrusted modes. The only problem expe-
rienced was with the application gpscorrelate-gui, which did
not handle permission denial (to write a benign file) gracefully, and
crashed.

5.3 Experience with Malicious Software
Here we illustrate scenarios involving stealthy attacks that are

stopped by our system.

Real world malware.
Malware can enter systems during installation of untrusted soft-

ware or via data downloads. As secure installation is not our focus,
we assumed that attacks during installation are prevented by sys-
tems like [24] and untrusted files are labeled properly.

We tested our system with malware available on [1]. These mal-
ware were mainly rootkits: patched system utilities like ps and ls,
kernel modules, and LD_PRELOAD based libraries. Specific pack-
ages tested include: JynxKit, ark, BalaurRootkit, Dica, and

Flea. All of them tried to overwrite benign (indeed, root-owned)
files, and were hence stopped.
KBeast (Kernel Beast) requires tricking root process to load a

kernel module. The benign sandbox prevents root processes from
loading the kernel module since the module is labeled as untrusted.

Real world exploit.
We tested an Adobe Flash Player exploit (CVE-2008-5499) which

allows remote attackers to execute arbitrary code via a crafted SWF
file. If the browser is simply trusted to be free of vulnerabilities,
then this attacks would obviously succeed. Our approach was based
on treating the web-site as untrusted, and opening it using an un-
trusted instance of the browser. In this case, the payload may ex-
ecute, but its actions are contained by the untrusted sandbox. In
particular, it cannot damage system integrity.

Simulated Targeted Attacks.
We also simulated a targeted attack via compromising a docu-

ment viewer. A user received a targeted attack email from an at-
tacker, which contained a PDF that can compromise the viewer.
When the user downloaded the file, the email client labeled the
attachment as untrusted automatically since the sender cannot be
verified. Our system, however, did not prevent the user from using
the document. User could still save the file along with other files.

When she opened the file, the document viewer got compro-
mised. On an unprotected system, the attacker controlled viewer
then dumped a hidden malicious library and modified the .bashrc
file to setup environment variable LD_PRELOAD such that the ma-
licious library would be injected into all processes the user invoked
from shell. Worse, if the user has administrative privileges, the
viewer can also create an alias on sudo, such that a rootkit would
be installed silently when user performs an administrative action.

Although the viewer still got compromised on our system, the
user was not inconvenienced: while she could view the document,
modification attempts on .bashrc were denied, and hence malware
attempts to subvert and/or infect the system were thwarted.

5.4 Performance

Benign Untrusted
Overhead σ Overhead σ

openssl 0.01% 1.43% -0.06% 0.70%
Firefox 2.61% 4.57% 4.42% 5.14%

Figure 7: Runtime overhead for Firefox and OpenSSL.

Figure 7 shows the overhead of openssl and Firefox when
compared with unprotected systems. We obtained the statistics us-
ing speed option in openssl. As for Firefox, we used pageloader
addon to measure the page load time. Pages from top 1200 Alexa
sites were fetched locally such that overheads due to networking
is eliminated. The overhead on openssl benchmark is negligible.
The average overhead for Firefox is less than 5%.

Figure 8 shows the SPEC2006 benchmark with the highest over-
heads. The overhead is less than 1% for CPU intensive operations.

Figure 9 shows the latency for some GUI programs. We mea-

Unprotected Benign Untrusted
Time (s) Overhead Overhead

403.gcc 541.2 -1.99% 0.82%
456.hmmer 982.7 0.36% -0.13%
458.sjeng 933.8 0.49% 0.51%

462.libquantum 995.4 -0.17% 0.33%
433.milc 882.5 0.85% -2.66%
Average -0.10% -0.28%

Figure 8: Highest 5 overhead in SPEC2006, ref input size

Unprotected Benign Untrusted
Time (s) Overhead Overhead

eclipse 6.16 1.99% 10.23%
evolution 2.44 2.44% 5.04%

F-spot 1.61 2.11% 6.80%
Firefox 1.32 3.24% 10.08%
gedit 0.82 5.02% 6.09%
gimp 3.63 1.90% 4.32%

soffice 1.56 0.33% 7.08%

Figure 9: Latency for starting and closing GUI programs

sured the time between starting and closing the applications with-
out using them.

6. Related Work
System-call interposition and sandboxing.

Two of the most popular mechanisms for secure policy enforce-
ment are Linux Security Modules (LSM) [27] and ptrace [19]. The
drawbacks of kernel-based approaches (e.g., LSM) have been elo-
quently argued [12, 10]: kernel programming is more difficult,
leads to less portable code, and creates deployment challenges. Ap-
proaches such as ptrace avoid these drawbacks by enabling pol-
icy enforcement to be performed in a user-level monitoring pro-
cess. However, it poses performance problems due to the frequent
context switches between the monitored and monitoring processes.
More importantly, TOCTTOU attacks are difficult to prevent [9].

Ostia [10] avoided most of these drawbacks by developing a del-
egating architecture for system-call interposition. It used a small
kernel module that permits a subset of “safe” system calls (such as
read and write) for monitored processes, and forwards the remain-
ing calls to a user-level process. Our system’s use of a user-level
helper process was inspired by Ostia. While their approach still re-
quires kernel modifications, our design is implemented entirely at
user-level by repurposing user access control mechanisms.

While many techniques have been focused on the mechanisms
for confinement, the problem of developing effective policies has
not received as much attention. Some works such as SELinux [17],
Systrace [20] and AppArmor [6] were focused on protecting be-
nign code, and typically rely on a training phase to create a policy.
Such training-based approach is inappropriate for untrusted code.
So Mapbox [3] develops policies based on expected functionality
by dividing applications into various classes. Model-carrying code
[22] provides a framework in which code producers and code con-
sumers can effectively collaborate to come up with good policies.
While it represents a significant advance over purely manual de-
velopment of policies, it still does not scale to large numbers of
applications. Supporting entire OS distributions, such as the work
presented in this paper, would require a very large amount of effort.

Both our system and Plash [2] confine untrusted programs by ex-
ecuting them with a userid that has limited accesses in the system.
Additional accesses are granted by a helper process. However, our
focus is on providing compatibility with a wide range of software,
while protecting the integrity of benign processes. We achieve this
goal by systematically sandboxing all code, whereas Plash sand-
boxes only untrusted code with least privilege policies.

Isolation-based Approaches.
Applying two-way isolation for desktop OSes is particularly chal-

lenging because of how applications interact. Fragmented names-
pace, and excessive efforts needed to maintain multiple working
environments make two-way isolation less attractive.

In contrast, two-way isolation is particularly popular for app
model (e.g., Windows 8, Mac OS X, iOS, and Android) because

apps only require limited interactions. Android relies on user per-
mission to achieve two-way isolation, and this has some similarity
with our reliance on user permissions to realize the inner sandbox.
A difference is that the Android model introduces a new user for
each application, whereas we introduce a new (untrusted) user for
each existing user. Another important difference between the app
model and our approaches is that in the apps world, composition of
applications is the exception, whereas in our system, it is the norm.
While the app models protect malicious code from subverting other
apps directly, they do not protect against malicious data. Once data
sharing takes place, there is no more security guarantees. We al-
low safe interactions to take place by running benign applications
inside untrusted sandbox.

One-way isolation techniques, exemplified by Alcatraz [15], en-
forces a single, simple policy on all applications: they are permit-
ted to read any thing on the system, but their effects are contained
within an isolated environment. This simplifies the maintenance of
the isolated environment. However, the approach has two signifi-
cant drawbacks. First, if the results of isolated execution need to be
used, it needs to be brought out of isolation, at which the system is
potentially exposed to malware attacks. Second, almost none of the
actions of untrusted code are denied by Alcatraz. This can be ex-
ploited by malware to quickly compromise all applications running
in isolation, thus making the environment less than useful.

Information flow techniques.
Our approach can be regarded as an instance of classical infor-

mation flow [8, 5], with group ownership standing for integrity la-
bels. The closest to our work is PPI [25]: Our formulation of in-
tegrity is similar, both approaches are designed to provide integrity
by design, and both approaches focus on automating policies. But
there are several important advances we make in this work over
PPI. First, we provide a portable implementation that has no kernel
component, whereas the bulk of PPI resides in the kernel. Second,
PPI approach for policy inference requires exhaustive training, the
absence of which can lead to failures of benign processes. Specif-
ically, incomplete training can lead to a situation where a critical
benign process is unable to execute because some of its inputs have
become untrusted. The approach presented in this paper avoids this
problem by preventing any benign file from being overwritten with
untrusted content. On the other hand, PPI provides some features
that we don’t: the ability to run untrusted applications with root
privilege and dynamic context switch from high to low integrity.
We do not provide these features because they do significantly com-
plicate system design and implementation.

UMIP [14] focuses on protecting against network attackers. Un-
like UMIP, which uses the sticky bit to encode untrusted data, our
approach repurposes DAC permission to allow us to track untrusted
data. Furthermore, in the desktop context, compromise of user files
is an important avenue for malware propagation, but UMIP does
not attempt to protect the integrity of user files. IFEDAC [18] ex-
tends UMIP to protect against untrusted users as well. Both UMIP
and IFEDAC require additional code in kernel to enforce policy.
Our approach avoids the need for kernel code. Another difference
is that we sandox both benign and untrusted processes while they
do not constrain benign processes. Specifically, it is possible in
IFEDAC for a benign process to be accidentally downgraded due to
the consumption of untrusted input, and this can cause all its future
accesses to be denied, including writes to files that were opened
before consuming untrusted input. Our approach avoids this self-
revocation problem [8].

Another set of works focus on Decentralized Information Flow
Control (DIFC) [13, 28, 7]. Instead of centrally specifying what
is high integrity, DIFC allows applications to create their own in-

tegrity levels. As compared to our approach, DIFC approaches
enable the enforcement of more expressive and flexible policies.
Their downside is that they require nontrivial changes to the OS
and/or applications to achieve security benefits, whereas our em-
phasis is on avoiding any changes to the OS and application code,
while still achieving robust defense from malware.

7. Summary and Conclusions
We presented a new approach that provides principled protec-

tion from malware attacks: as long as untrusted content isn’t mis-
labeled as benign, malware attacks are stopped, regardless of mal-
ware sophistication or the skills of its developers. Through exper-
imental results, we showed that our approach achieves strong pro-
tection without significantly impacting the usability of benign and
untrusted applications. To achieve this, we developed a novel dual
sandboxing architecture that decomposes policies into two parts,
one that is enforced on untrusted processes, and another on benign
processes. A minimal policy is used to confine untrusted processes,
making untrusted processes more usable. This policy is comple-
mented by the policy enforced on benign applications. The two
policies work together to provide strong separation between benign
and untrusted contexts.

We also presented detailed policies that are enforced by each
sandbox, and an inference procedure that serves to automate the
identification of which policies are to be applied to which files.
Our implementation has been greatly simplified by a design that
achieves most enforcement in a cooperative setting with the pro-
cesses on which the policies are being enforced. This enabled our
our implementation to be compact, as well as portable. Our system
introduces low performance overheads. An open-source software
implementation of our system is available on the web [26].

8. References
[1] Packet storm, http://packetstormsecurity.com.
[2] Plash, http://plash.beasts.org/contents.html.
[3] Anurag Acharya, Mandar Raje, and Ar Raje. MAPbox:

Using Parameterized Behavior Classes to Confine
Applications. In USENIX Security, 2000.

[4] Alfred V. Aho and Margaret J. Corasick. Efficient String
Matching: An Aid to Bibliographic Search. In Commun.
ACM 18(6), 1975.

[5] K. J. Biba. Integrity Considerations for Secure Computer
Systems. In Technical Report ESD-TR-76-372, USAF
Electronic Systems Division, Hanscom Air Force Base,
Bedford, Massachusetts, 1977.

[6] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton
Pu, Perry Wagle, and Virgil Gligor. SubDomain:
Parsimonious Server Security. In LISA, 2000.

[7] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart,
Cliff Frey, David Ziegler, Eddie Kohler, David Mazières,
Frans Kaashoek, and Robert Morris. Labels and Event
Processes in the Asbestos Operating System. In SOSP, 2005.

[8] Timothy Fraser. LOMAC: Low Water-Mark Integrity
Protection for COTS Environments. In S&P, 2000.

[9] Tal Garfinkel. Traps and Pitfalls: Practical Problems in
System Call Interposition Based Security Tools. In NDSS,
2003.

[10] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. Ostia: A
Delegating Architecture for Secure System Call Interposition.
In NDSS, 2004.

[11] Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A Secure Environment for Untrusted Helper

Applications (Confining the Wily Hacker). In USENIX
Security, 1996.

[12] K. Jain and R. Sekar. User-Level Infrastructure for System
Call Interposition: A Platform for Intrusion Detection and
Confinement. In NDSS, 2000.

[13] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan
Cliffer, M. Frans Kaashoek, Eddie Kohler, and Robert
Morris. Information Flow Control for Standard OS
Abstractions. In SOSP, 2007.

[14] Ninghui Li, Ziqing Mao, and Hong Chen. Usable Mandatory
Integrity Protection for Operating Systems . In S&P, 2007.

[15] Zhenkai Liang, Weiqing Sun, V. N. Venkatakrishnan, and
R. Sekar. Alcatraz: An Isolated Environment for
Experimenting with Untrusted Software. In TISSEC 12(3),
2009.

[16] Peter Loscocco and Stephen Smalley. Integrating Flexible
Support for Security Policies into the Linux Operating
System. In USENIX ATC, 2001.

[17] Peter Loscocco and Stephen Smalley. Meeting Critical
Security Objectives with Security-Enhanced Linux. In
Ottawa Linux symposium, 2001.

[18] Ziqing Mao, Ninghui Li, Hong Chen, and Xuxian Jiang.
Combining Discretionary Policy with Mandatory Information
Flow in Operating Systems. In TISSEC 14(3), 2011.

[19] Pradeep Padala. Playing with ptrace, Part I,
www.linuxjournal.com/article/6100.

[20] Niels Provos. Improving Host Security with System Call
Policies. In USENIX Security, 2003.

[21] R. Sekar. An Efficient Black-box Technique for Defeating
Web Application Attacks. In NDSS, 2009.

[22] R. Sekar, V.N. Venkatakrishnan, Samik Basu, Sandeep
Bhatkar, and Daniel C. DuVarney. Model-Carrying Code: A
Practical Approach for Safe Execution of Untrusted
Applications. In SOSP, 2003.

[23] Weiqing Sun, Zhenkai Liang, V. N. Venkatakrishnan, and
R. Sekar. One-Way Isolation: An Effective Approach for
Realizing Safe Execution Environments. In NDSS, 2005.

[24] Weiqing Sun, R. Sekar, Zhenkai Liang, and V. N.
Venkatakrishnan. Expanding Malware Defense by Securing
Software Installations. In DIMVA, 2008.

[25] Weiqing Sun, R. Sekar, Gaurav Poothia, and Tejas
Karandikar. Practical Proactive Integrity Preservation: A
Basis for Malware Defense. In S&P, 2008.

[26] Wai Kit Sze. Portable Integrity Protection System (PIP).
http://www.seclab.cs.sunysb.edu/seclab/pip.

[27] Chris Wright, Crispin Cowan, Stephen Smalley, James
Morris, and Greg Kroah-Hartman. Linux Security Modules:
General Security Support for the Linux Kernel. In USENIX
Security, 2002.

[28] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and
David Mazières. Making Information Flow Explicit in
HiStar. In OSDI, 2006.

http://packetstormsecurity.com
http://plash.beasts.org/contents.html
www.linuxjournal.com/article/6100
http://www.seclab.cs.sunysb.edu/seclab/pip

	1 Introduction
	1.1 Approach Overview and Salient Features
	1.1.1 Secure enforcement and tracking without OS changes
	1.1.2 Preserving user experience
	1.1.3 Automating policy development

	1.2 Paper Organization

	2 Containing Untrusted Processes
	2.1 Inner Sandbox UI
	2.2 Transparency Library UL
	2.3 Helper Process UH

	3 Protecting Benign Processes
	3.1 Benign Sandboxing Library
	3.2 Secure Context Switching

	4 Policy Inference
	4.1 Untrusted Code Policy
	4.2 Benign Code Policy

	5 Implementation and Evaluation
	5.1 Portability and Complexity
	5.2 Preserving Functionality of Code
	5.2.1 Benign mode
	5.2.2 Untrusted mode

	5.3 Experience with Malicious Software
	5.4 Performance

	6 Related Work
	7 Summary and Conclusions
	8 References

