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ABSTRACT

Infrastructure-as-a-Service (IaaS) clouds such as OpenStack
consist of two kinds of nodes in their infrastructure: con-
trol nodes and compute nodes. While control nodes run
all critical services, compute nodes host virtual machines of
customers. Given the large number of compute nodes, and
the fact that they are hosting VMs of (possibly malicious)
customers, it is possible that some of the compute nodes
may be compromised. This paper examines the impact of
such a compromise.

We focus on OpenStack, a popular open-source cloud plat-
form that is widely adopted. We show that attackers com-
promising a single compute node can extend their controls
over the entire cloud infrastructure. They can then gain
free access to resources that they have not paid for, or even
bring down the whole cloud to affect all customers. This
startling result stems from the cloud platform’s misplaced
trust, which does not match today’s threats.

To overcome the weakness, we propose a new system,
called SOS , for hardening OpenStack. SOS limits trust
on compute nodes. SOS consists of a framework that can
enforce a wide range of security policies. Specifically, we
applied mandatory access control and capabilities to con-
fine interactions among different components. Effective con-
finement policies are generated automatically. Furthermore,
SOS requires no modifications to the OpenStack. This has
allowed us to deploy SOS on multiple versions of OpenStack.
Our experimental results demonstrate that SOS is scalable,
incurs negligible overheads and offers strong protection.

CCS Concepts

•Security and privacy → Intrusion detection systems;
Distributed systems security;

1. Introduction
Cloud platforms such as OpenStack [17] manage infras-

tructures that consist of two main types of nodes — control
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nodes and compute nodes. Control nodes manage resources
for cloud providers and customers using well defined inter-
faces. Compute nodes run virtual machines (VMs) of cus-
tomers, and constitute the bulk of the cloud infrastructure.
Compute nodes host VMs prepared by cloud customers that
cloud providers have no control over. These VMs can be
controlled by attackers, and they in turn can exploit vulner-
abilities in hypervisors. While hypervisor-breakout vulnera-
bilities are rare, they are being discovered almost every year
since 2007 [11]. Indeed, hypervisor-escape vulnerability has
been a major concern to the OpenStack security group [1],
and has affected their OpenStack design [30].

In a cloud platform such as OpenStack, it is clear that
the whole cloud infrastructure is compromised if attackers
have control over control nodes. Since control nodes are
small in quantity, cloud providers can harden their security
by employing heavy protection mechanisms (such as taint-
tracking approaches [22, 9]) at the cost of deploying a few
more control nodes. On the other hand, the number of com-
pute nodes can be several orders of magnitude larger, and
hence securing all of them can be a challenge. We therefore
posed the following question: What is the extent of damage
that attackers can cause when they have gained control over
a single compute node? We found that attackers can easily
expand their control to the entire infrastructure. We present
several attacks that enable attackers to control and access
any VMs on any compute node, create or destroy resources
of arbitrary cloud customers, or disable the entire cloud.

Attacks are possible because compute nodes are part of
the TCB (Trusted Computing Base) in the OpenStack’s de-
sign, which trusts compute nodes entirely. Attackers con-
trolling a compute node can therefore exploit this trust. To
address this weakness, we propose SOS (Secure OpenStack),
a system to limit trust on compute nodes. SOS consists
of a framework that can enforce a wide range of policies.
Specifically, we applied mandatory access control (MAC)
and capabilities to regulate interactions between compute
nodes and controller nodes. This limits the damage that a
compromised compute node can inflict.

One of the main challenges with security policies (such as
SELinux [10]) is to develop effective policies against attacks
while reducing false-positives. This is particularly challeng-
ing for OpenStack as it is an active project. Its modular
design allows it to be deployed with different optional com-
ponents. All of these factors make hand-crafting policies
impractical. We have therefore developed an approach to
generate policies automatically based on training and static
analysis. Our goal is to minimize the false positives while
remain effective against attacks.

Access control policies alone do not solve the confused
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deputy problem [8], where an intermediary is fooled by an
attacker into misusing its authority. In particular, compute
nodes in OpenStack have a legitimate need to access cus-
tomers’ secret-tokens in order to manage resources on their
behalves. Attackers controlling compute nodes can hence
sniff the tokens and impersonate the customers. SOS pre-
vents tokens from being abused by limiting privileges, form-
ing a hierarchical structure similar to the capabilities in op-
erating systems. Instead of giving the customer tokens to
compute nodes, SOS gives compute nodes tokens with re-
duced privileges to limit what operations the compute nodes
can perform. A major challenge is to identify what capa-
bilities are needed for each request. SOS cannot rely on
customers because they do not have details about the cloud
infrastructures. Without specifying these details in capa-
bilities, attackers can easily replay the tokens. SOS solves
this problem by identifying and reducing token privileges
progressively within the infrastructure. By the time tokens
reach compute nodes, token privileges are limited to the
point that they can only be used for their intended purpose.

To show the efficacy and generality of SOS , we have de-
ployed it to protect three different releases of OpenStack:
Havana [13], IceHouse [14], and Juno [15]. SOS incurs only
a small overhead during resource provisioning, and no over-
head at all when VMs are running.

1.1 Contributions

This paper makes the following contributions:

• Investigation of possible attacks from compute nodes.
We present several classes of attack from a compromised
compute node that enable an attacker to create VMs at
the expense of other cloud customers, control, destroy, or
inject backdoors into their VMs, or bring down the entire
infrastructure.

• Policy enforcement framework for OpenStack.
We propose a policy enforcement framework for Open-
Stack. The framework supports a wide range of policies,
including capability-like policy, mandatory access con-
trol, isolation or information flow policies (e.g., Chinese-
Wall, Bell and LaPadula, or Biba). The framework can
also transparently alter OpenStack behaviors such as con-
trolling how VMs are scheduled.

• Capabilities for limiting trust on compute nodes.
SOS uses capability to confine interactions between com-
pute nodes and control nodes. SOS also applies capabil-
ities to reduce token privileges such that compute nodes
cannot abuse stolen tokens.

• Transparent and efficient design and implementation.
SOS requires no modifications to OpenStack, and hence
is readily deployable to multiple OpenStack versions. SOS
incurs negligible overhead and protects against all attacks
presented in this work.

1.2 Paper organization

We begin with some background on OpenStack in Sec-
tion 2. This lays the foundation for the attacks described
in Section 3. Following this, we present the design of our
policy enforcement framework in Section 4. The framework
supports a wide range of policies. Specifically, we focus on
security by illustrating how the framework can enforce a
capability-like policy to protect intra-module communica-
tion. In Sections 5, we extend the framework to protect

inter-module communication. Experimental evaluation is
presented in Section 6 . Related work is discussed in Sec-
tion 7, followed by concluding remarks in Section 8.

2. Background
OpenStack embraces a modular design, allowing different

modules to plug-and-play. The most important OpenStack
modules include Keystone for user authentication, Nova for
managing compute resources, Glance for managing (disk)
images, and Neutron for managing networking. Other mod-
ules like Cinder for block storage and Ceilometer for teleme-
try can also be installed to provide additional functional-
ity. Figure 1 illustrates an OpenStack deployment that uses
three modules — Keystone, Nova, and Cinder.

Figure 1: Intra-module interactions between services
(RPC/Message Queue) and Inter-module interactions be-
tween modules (REST/HTTP)

2.1 Interactions between modules

Each OpenStack module provides one or more services.
Services can either be exposed to customers and other mod-
ules, or internal to a module. Exposed services handle REST
(REpresentational State Transfer) APIs (inter-module com-
munication). Internal services communicate using RPCs
(Remote Procedure Calls) (intra-module communication).

Inter-module communication.
Modules expose REST APIs for other modules or cus-

tomers. Therefore, each module authenticates requests inde-
pendently. Authentication relies on customer secrets, called
tokens, presented along with the REST requests. A token
is nothing but a string returned to customers by Keystone

upon successful authentication. It can be some shared secret
or information signed with public keys of Keystone. Anyone
presenting a token will have all the privileges of the token
owner.

Customers and services from different modules interacts
with a module using exposed services, called API-services.
API-services translate REST requests into requests to inter-
nal services. They serve as entry points of modules. Au-
thentications are therefore performed by these API-services.
Upon authenticated by API-services, internal services will
not perform additional authentication.

Ideally, tokens can be distracted after authenticated with
API-services. But this is not possible in general when a
request involves multiple modules: Consider a create-VM
request. This request will first reach nova-api, the API-
service in Nova. Upon successful authentication, nova-api
will invoke RPCs within the Nova module to create VMs.
Following this, it may be necessary to interact with the Cin-



der and Neutron modules to provision storage and network-
ing respectively. To access these services, Nova needs to store
the token it received from the customer, and forward it to
Cinder and Neutron.

Intra-module communication.
Services within a module communicate through RPCs over

Advanced Message Queuing Protocol (AMQP). Each ser-
vice has a set of procedures that other services can invoke.
AMQP is a publisher/subscriber communication model: pub-
lishers send messages to a message-queue server. Based on
the routing-keys specified on the messages, messages are
routed, and copied if necessary, to different queues. Sub-
scribers can create or listen to existing queues by specifying
the messages that they are interested in, based on routing-
keys.

A key advantage of using AMQP for RPC is scalability:
publishers can invoke RPCs by specifying just the services
they need without identifying a particular receiver. Multiple
receivers can listen to the same queue to handle requests.
This allows automatic load balancing, fault-tolerance and
seamless scaling.

The flexibility of message-queue (MQ) comes at the cost
of security. By using MQ as a RPC mechanism, services
need to be able to send and receive messages to and from
other services. AMQP does not support fine-grained access-
control primitives: Once services are granted permissions to
access a MQ server, they can send and receive any messages.
This means any service can invoke any arbitrary RPC or
sniff messages intended for others. We present in Section 3.2
some of the attacks based on this property.

3. Threat Model, Attacks, and Overview

3.1 Threat model for attacks

We consider software and services running in control nodes
to be secure. Services such as Keystone, Nova-conductor,
Nova-scheduler1, and other API-services (e.g., Nova-api,
Cinder-api) are all secure as they run inside control nodes.

In contrast, we assume that compute nodes are vulnerable.
These vulnerabilities may be present in compute services
and/or hypervisors. By exploiting these vulnerabilities, an
attacker can compromise the compute node hosting his/her
VM. The attacks presented in this section rely on the ability
to compromise just one of the compute nodes. We assume
that once a compute node is compromised, the attacker has
complete control over the node: he/she can access (a) all
credentials stored on the node, (b) all messages intended for
the node, etc.

We assume that cloud providers configure their infrastruc-
tures according to the recommended security-practices [18],
including encrypting network-traffic and applying SSL on
message-queues so that compromised nodes cannot sniff or
tamper with network packets intended for other nodes.

We also assume that compute nodes are configured with
least privileges, i.e., they contain only the information that
is strictly necessary for them to function. For example,
database credentials are not stored in the compute nodes.

1Nova-conductor is a RPC service for compute node to up-
date the database entries. It is introduced since the Open-
Stack Grizzly release to prevent compute nodes from directly
accessing the database. Nova-scheduler is a service for de-
ciding which compute nodes to run what VMs.

3.2 Attacks on OpenStack

Attack setup.
We deployed OpenStack on 4 machines using the 3-node

architecture in [16], with a controller, a network, and
two compute nodes: compute1 and compute2. (See Fig-
ure 6). We configured OpenStack with Keystone, Nova,
Glance, Neutron, and Cinder. We used QEMU as the hyper-
visor. The testbed has two customers: tenant1 and tenant2.

With the above threat model, we launched several attacks
from a compromised compute node, compute1. Our attacks
have been successful on multiple OpenStack versions: Ha-
vana, IceHouse, and Juno.

Sniffing tokens from message-queue.
In this attack, we sniffed tokens from the MQ-server to

invoke REST requests. Each compute node stores its MQ
credentials inside its OpenStack configuration files. With
these credentials, we created a new queue inside the MQ-
server with a wildcard routing-key “#”. All messages were
then copied to compute1. We then extracted customer cre-
dentials from the messages— tokens and customer-ids were
located in message fields named _context_auth_token and
_context_tenant.

With tenant1’s tokens, we constructed REST requests to
list, create, delete, and modify tenant1’s resources (includ-
ing VMs, volumes, networking, etc.). Note that we had
only compromised compute1, but we were able to control re-
sources managed by non-compromised nodes and non-Nova
resources.

With this attack, attackers can procure resources that
would get billed to another customer (tenant1). More alarm-
ing, we were also able to capture the cloud administrator to-
kens. This had allowed us to create another cloud adminis-
trator account, control and access resources of all customers.

Invoking arbitrary RPCs.
OpenStack realizes RPC using message-queue. Messages

are self-describing key-value pairs represented using JSON
(JavaScript Object Notation) format. The key method in-
dicates the procedure to invoke. The message itself also
contains the parameters for the procedure.

Anyone with the MQ credentials can send arbitrary mes-
sages. We crafted a message on compute1 with routing-

key=compute.compute2 and method=reboot_instance, con-
taining parameters referring to a VM on compute2. Without
specifying any token in the message, we had successfully re-
booted the VM.

Recall that tokens are authenticated only at API entry-
points— There is no authentication beyond API-services.
Hence, these crafted messages were considered as legit. Fur-
thermore, internal services do not use tokens. We were
therefore able to perform actions like stop, pause, resume
or rebuild on any VMs. Furthermore, we had invoked the
set_admin_password method to change the root-password
of the VMs.

More interestingly, we were also able to invoke cloud ad-
ministrator APIs such as those for migrating-VMs after sim-
ply setting the key _context_is_admin to true. This has
allowed us to invoke admin-only methods without knowing
an administrator token.

Manipulating RPC parameters.
Apart from invoking arbitrary RPCs, we also manipulated

RPC parameters. This had allowed us to deny resources, as



well as hijack an ongoing operation.
Compute nodes update the status of VMs that they host

and report resource utilization using instance_update and
compute_node_update procedures. Nova-conductor handle
these RPCs to update databases that track resource status.
The databases serve as a directory service: Nova-scheduler
uses the database to decide where to schedule new VMs.

We launched an attack to falsify VM status and resource
utilization of any VMs or any compute nodes. Without spec-
ifying any tokens, we had successfully invoked instance_

update from compute1 to update status of tenant1’s VM
running on compute2. Nova-conductor accepted the RPC
and updated the database accordingly. The status of the
VM was then marked as “deleting.” Similarly, we invoked
compute_node_update to claim that compute1 has 100 VC-
PUs and 1000GB memory. As a result, Nova-scheduler

scheduled most VMs to run on compute1.

3.3 SOS overview and threat model

The above attacks highlight the fact that in OpenStack,
it is straightforward for attackers to expand their footprint
once they control one compute node. Through these attacks,
attackers can acquire additional resources at the expense of
other tenants, launch denial-of-service attacks, cause billing-
havoc, and possibly bring down the whole infrastructure.

The goal of SOS is to prevent attackers from expand-
ing their footprint, and limit the scope of damage they can
cause. However, SOS does not attempt to stop activities
that take place entirely within the compromised compute
node, e.g., creating new VMs on that node, destroying exist-
ing running VMs, mounting and unmounting volumes, and
so on. These activities affect customers having resources on
that node. In addition, SOS does not focus on protecting
compute nodes from getting compromised. SOS also does
not protect VMs from attacking another VMs within the
same compute node. These are important but orthogonal
problems to the ones addressed by SOS . Existing solutions
such as SELinux and its extension SVirt [24] address these
problems specifically. SOS focuses on protecting the infras-
tructure when these existing mechanisms are not deployed
or failed (e.g., due to configuration errors).

In the rest of the paper, we present SOS to stop all these
attacks. SOS consists of a policy enforcement framework
that can enforce a wide range of policies. We present a
capability-based solution to limit compute nodes’ RPC in-
teractions. We also proposed embedding privileges in tokens
to confine computes’ REST interactions. SOS mediates all
interactions to and from compute nodes.

We assume that SOS runs inside control nodes. In order
for SOS to function properly, we assume a benign cloud
platform to begin with, and remains attack-free until the end
of the training-phase. This allows SOS to generate policies
for enforcement. Any cloud platform is thoroughly tested
prior to deployment. We rely on this period to generate
policies, thus avoiding the need to rely on well-behaved cloud
tenants.

4. Policy Enforcement on Message-
Queue

In this section, we describe the first component of SOS
, a policy enforcement framework to limit trust on com-
pute nodes. It can enforce policies to protect against the
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Figure 2: Secured Message Queue Design for confining com-
pute nodes

intra-module attacks described in Section 3.2. However, the
framework can also enforce a wide range of policies.

4.1 Secure MQ architecture

Intra-module communication happens through RPC over
AMQP. However, AMQP does not support fine-grained access-
control to enforce useful policies at the RPC level. Any one
with access to the message-queue (MQ) can send and re-
ceive any message, impersonate other nodes, and invoke any
RPCs with arbitrary parameters.

The very first step of SOS is to identify publishers and
perform filtering on messages. Since AMQP neither distin-
guishes publishers nor discriminates subscribers, SOS intro-
duces a MQ-proxy for each compute node. MQ-proxy is a
MQ-server with filtering capability. It consists of a private
MQ-server and a policy enforcer. In this Secure MQ archi-
tecture (Figure 2), each compute node interacts with its own
dedicated MQ-server, but not with the original MQ-server.
SOS ensures this by replacing the original MQ credentials
stored on the compute nodes with MQ-proxy credentials.
Since the security of SOS does not depend upon the MQ-
proxies, they can be located on any machine, including the
compute nodes.

Messages in private MQ-server are isolated from other
MQ-servers. SOS bridges the MQ-server and private MQ-
servers with policy enforcers. These enforcers retrieve mes-
sages from private MQ-servers, examine the messages, and
forward the messages to the original MQ-server only if the
messages do not violate the enforcement policy. Policy en-
forcers also examine messages from the other direction to
enforce stateful policies. Enforcers can run on dedicated
machines or along with existing control nodes. Enforcers
are designed to be scalable: SOS can introduce additional
policy enforcers dynamically to scale up with message-queue
traffic.

Policy enforcers retrieve messages from the MQ-server us-
ing routing-keys specific to a compute node. They subscribe
to messages that a legitimate compute node would subscribe
to. This ensures that only messages intended for the com-
pute node will reach its own MQ-proxy. Although attackers
can still create wildcard queues inside the private MQ-server,
messages not intended for the compute node will never be
accessible. Therefore, SOS is effective in preventing at-
tackers from sniffing tokens that were not intended for the
compute node.

This architecture acts as a framework to enforce RPC poli-
cies. It can enforce different type of policies transparently
by altering and dropping RPC messages. For instance, it
can enforce capability-like policy, mandatory access control
(by controlling what nodes can send), isolation or informa-
tion flow policies (e.g., Chinese-Wall, Bell and LaPadula,
or Biba) to restrict communications between nodes. This
framework can also transparently alter the OpenStack be-
haviors such as controlling how VMs are scheduled (e.g.,
running all VMs with same security labels on same com-



pute nodes). We focus our discussion on developing security
policies to stop the attacks described in Section 3.2.

4.2 Security policies

SOS enforces multiple policies to limit trust on compute
nodes and block the attacks. Each level aims to address a
specific class of attack:

RPC procedure policy.
SOS classifies each RPC procedure into callable and non-

callable by compute nodes. Callability of a procedure in-
dicates whether compute nodes can legitimately invoke it.
Policy enforcers only forward messages invoking callable pro-
cedures. Messages that invoke non-callable procedures are
dropped and flagged as attacks.

SOS classifies all RPC procedures from both control and
compute services. This ensures that compromised compute
nodes cannot invoke arbitrary RPC procedures on any ser-
vices. We have developed a tool to analyze OpenStack
source code to extract the set of callable procedures. Ta-
ble 1 shows a subset of the callable and non-callable pro-
cedures. Identifying compute procedures such as termi-

nate_instance as non-callable has the effect of enforcing
high-level policy such as “a compute node should not termi-
nate VM on another compute node”.

RPC parameter policy.
Blocking compute nodes from invoking non-callable pro-

cedures does not stop all attacks. Indeed, attackers can still
launch attacks by simply modifying parameters in callable
procedures. For example, compute nodes legitimately need
to invoke reporting RPCs on control nodes to report their
resource utilization and update VM status. Instead of faith-
fully reporting its own status, a malicious compute node can
impersonate other compute nodes and/or falsify status.

SOS addresses this with RPC parameter policy. There
are two types of parameters: static and dynamic. Static pa-
rameters do not change their values across RPC invocations.
The main purpose of static parameters is for callee to iden-
tify callers. Recall messages in AMQP do not carry pub-
lisher information. This information is therefore encoded
as a RPC parameter and hence subjected to manipulation.
The impersonation attacks described above involve modify-
ing static parameters. To detect these attacks, SOS gener-
ates policies based on training. SOS infers parameters as
static if their values do not change during the training phase.
In the enforcement phase, SOS makes sure static parame-
ters have the same values as observed during the training.

Unlike static parameters, dynamic parameters can have
different values across invocations. Callers use dynamic pa-
rameters to either (1) report values to callee (e.g., amount
of free RAM or number of free VCPU) or (2) reference to
resources (e.g., instance-uuid). For parameters that report
values, SOS builds a data model to detect abnormal val-
ues. Currently, our prototype simply applies a simple range
based approach to detect abnormalities. This works well
in our testbed. Parameters that refer to existing resources
raise more concerns: they appear to be random across RPC
invocations. Attackers can replace them to manipulate re-
sources owned by other compute nodes. RPC message itself
does not contain sufficient information for SOS to decide if a
referencing-resource parameter has been manipulated. SOS
addresses these attacks with a higher-level policy described
below.

Transactional policy.
Majority of the RPCs are triggered from API-services

when handling requests from customers or other OpenStack
modules. SOS considers all RPCs serving the same request
as a transaction. RPCs belonging to the same transaction
carry the same request-id.

Transactions are not random: They start with API-services
or other control services invoking RPCs on compute nodes.
SOS calls these RPCs triggering RPCs. With these trig-
gering RPCs, compute nodes then invoke a subset of RPCs
on control services to serve the requests. Instead of allowing
compute nodes to invoke any callable procedures at any-
time, SOS restricts compute nodes to invoke only a subset
of callable procedures based on triggering RPCs. For exam-
ple, a terminate_instance transaction would allow a differ-
ent set of callable procedures than a run_instance transac-
tion. Conceptually, the start of a transaction (a triggering
RPC) grants compute nodes capabilities to invoke a sub-
set of callable procedures. When the transaction ends, the
capabilities will be revoked.

Similarly, RPC parameters within a transaction are not
random: They concern with the same resource. As such,
SOS considers the use of resource-referencing parameters
as capabilities. When control nodes invoke triggering RPCs
with references to a resource, the policy enforcer would up-
date its internal state to allow compute nodes to invoke
RPCs with these parameters inside the transaction.

Reducing the set of callable procedures alone works only
when compute nodes serve one transaction at a time. When
a compute node serves multiple concurrent transactions, it
can easily aggregate the capabilities to invoke a superset of
callable procedures and compromise the transactions. SOS
maintains a one-to-one correspondence between resource-
referencing parameters and transactions: compute nodes
can only invoke callable procedures on specific resource-
referencing parameters within a transaction. Similarly, a
transaction can only reference to a set of resource-referencing
parameters. Deviating from a transaction provides no addi-
tional access.

This policy requires transaction modeling. There are sev-
eral techniques to model transactions. We can statically de-
rive a set of callable procedures for each transaction. This
is an over-approximation of the actual set because some
callable RPCs would not be exercised due to different Open-
Stack deployment options. Alternatively, we can rely on
training to get an under-approximation of the set. Our pro-
totype relies on both training and static analysis to reduce
noises in training data and provide higher confidence in flag-
ging attacks. We evaluate in Section 9 the false positive rate
of the approach.

4.3 MQ-proxy design and policy enforcer

Instead of modifying OpenStack to incorporate MQ-proxy,
we reuse the existing message queue interfaces that Open-
Stack is already using. As such, configuring OpenStack with
SOS simply involves replacing the original MQ-server cre-
dentials with the MQ-proxy credentials.

In our prototype, MQ-proxy is implemented using a ded-
icated MQ-server. Instead of creating a MQ-server for each
compute node, SOS uses virtual hosts. Virtual hosts pro-
vide strong namespace isolation as if running multiple MQ-
servers but with less resource overhead.



Callability RPC Procedure

Callable compute node update, get by compute host, get by host, get by host and node, get by id, get by uuid, instance update,
ping, report state, service get all by, service update, ...

Non-Callable backup instance, change instance metadata, check can live migrate destination, external instance event,
get console output, get host uptime, get vnc console, inject network info, pause instance, prep resize, reboot instance,

rebuild instance, reserve block device name, reset network, resume instance, run instance, shelve instance,
snapshot instance, start instance, stop instance, suspend instance, terminate instance, unpause instance,

unshelve instance, unshelve instance, validate console port, ...

Table 1: Callable and Non-Callable RPC Procedures

Parameter Type Policy Examples

Static Remain constant Node id/ name,
Hypervisor type,
Node IP address

Dynamic (Value
reporting)

Modeling data
values

Number of free
CPUs, Amount of

free RAM, ...
Dynamic

(Resource-
Referencing)

Capability based
on triggering RPCs

Instance-uuid,
Volume-uuid,
Image-uuid, ...

Table 2: Callable and Non-Callable RPC Procedures

5. Policy Enforcement on REST
In OpenStack, tokens authenticate cloud customers. Pre-

senting tokens is sufficient to obtain full-access to resources
in all modules. It is therefore important to protect the
secrecy of tokens. However, OpenStack circulates tokens
among all services, including services running on compute
nodes.

The message-queue architecture described in Section 4 is
effective in confining what RPCs compute nodes can invoke,
and hence can stop compute nodes from launching attacks
within a module. However, the architecture does not prevent
compute nodes from abusing customer tokens through the
REST interfaces (inter-module communication). MQ-proxy
only reduces token-exposure to need-to-know compute-nodes.
If these compute-nodes are compromised, attackers can steal
the tokens and abuse privileges of the token owners.

This problem is challenging because compute nodes rely
on tokens for inter-module-authentication. Without sending
tokens to compute nodes, compute nodes cannot manage
resources on behalf of customers.

Instead of removing tokens from compute nodes, SOS
tackles this problem by constraining what tokens sent to
compute nodes can do. SOS embraces the principle of least
privilege to grant just enough privileges to compute nodes
to complete customer requests, and nothing more.

5.1 Finer granularity token privileges

Tokens in OpenStack are designed for authentication. They
do not carry any authorization information about what op-
erations a request can perform. Anyone presenting a to-
ken will have full-privilege of the token owner to invoke any
REST APIs. SOS introduces authorization to tokens by
overloading them with privilege information. SOS breaks
token privileges into finer-granularity such that SOS can
give tokens with less privileges to less-trusted nodes. To-
kens in SOS form a hierarchy as in Figure 3.

Token generation follows the standard rule: A token can
only create equal or less-privileged token. As illustrated in
Figure 3, a full-privileged customer token can create tokens
concerning only volume operations, or specifically attach
volume operation. SOS supports tokens at fine-grained lev-
els down to specific resources.

Figure 3: Hierarchical Token design in SOS , illustrating a
token with specific privilege to attach volume.

5.2 Supporting fine-grained tokens in OpenStack

One of the challenge in applying fine-grained tokens in
OpenStack is to identify what privileges a request needs.
One approach is to let customers generate less-privileged
tokens directly. This makes sense because customers know
what requests they want to make. Unfortunately, cloud
providers do not expose details about the cloud infrastruc-
ture for customers to generate least-privilege tokens. Con-
sider a VM creation request. Customers know only the VM
specification, but neither the new VM-uuid nor which com-
pute node the new VM will run on. As a result, attackers
stealing the token can replay the tokens to create additional
VMs with the same specification.

Instead of identifying all privileges needed when making
a request, SOS solves the challenge by generating less-
privileged tokens progressively within the OpenStack. The
key observation is that all resource assignment and alloca-
tion decisions are made by control nodes. Compute nodes
do not make any decision. When control nodes invoke com-
pute node RPCs to handle requests, RPC parameters al-
ready have all the information required to fulfill the request,
including what resources the compute nodes need.

In Section 4.2 we discussed how SOS uses triggering RPCs
(requests originating from control nodes) for granting capa-
bilities for compute nodes to invoke callable procedures and
reference to resources. The same idea can be used here. SOS
considers the triggering RPCs as granting capabilities to in-
voke a certain set of REST APIs with specific parameters.
Unlike in the secure MQ architecture where policy enforcers
keep state information and mediate RPC requests from com-
pute nodes, REST requests do not use message queue and
hence capabilities have to be granted to compute nodes ex-
plicitly. Upon receiving a REST request, API-services will
verify if the capability presented in the request matches with
the request. Figure 4 illustrates how different components
in SOS interact to protect REST interfaces.



Figure 4: Generation of privilege-specific token from MQ to confine REST requests

5.3 REST API and parameter policy

There are two questions need to be solved in order to
use capabilities to protect REST interfaces: (1) How to en-
code capabilities? (2) How to correlate triggering RPCs with
REST requests?

Recall that triggering messages dictate what resources
compute nodes need in order to fulfill the requests. Specif-
ically, they encode the set of inter-project resources that
compute nodes need access to. Naturally, SOS encodes
triggering messages as fine-grained tokens. These tokens
become the capabilities for API-services authorization.

To correlate triggering RPCs with REST requests, our
prototype relies on both static and dynamic analysis. SOS
statically identifies the sets of REST APIs (callable REST
APIs) that each of the triggering RPC can lead to. This en-
sures that compute nodes can invoke REST APIs only when
instructed by control nodes. However, attackers can still in-
voke callable REST APIs with arbitrary parameters. To pro-
tect against manipulating REST parameters, SOS checks if
the REST parameters are authorized by the triggering RPC
parameters. SOS relies on finding correlations between pa-
rameters. API-service will handle a REST request only if
the request is a callable REST API and there exists a corre-
lation between the REST parameters and the RPC parame-
ters. These parameters are mainly resource uuid and hence
SOS uses a string matching to correlate parameters. This
works well in our experiments.

SOS can further optimize the process by avoiding encod-
ing the entire triggering message. The purpose of encoding
the triggering messages is to allow API-services to check for
correlations between RPC messages and REST requests. If
SOS can know what RPC parameters would be used in
REST requests, SOS can simply encode these values. This
knowledge can be derived based on training using (Algo-
rithm 1). API-services receiving these “stripped” capabili-
ties can first check if the REST parameters are authorized
in the capabilities (Algorithm 2) (Fast Path). If not, SOS
falls back to the original approach by performing correlation
checking with the entire triggering message stored in a least
recently used buffer (Slow Path).

5.4 Implementation

Instead of modifying the token generation mechanism in
OpenStack to support hierarchy and encode privileges, SOS
borrowed the idea of fat pointer to embed privilege informa-
tion into the original customer tokens. Since both privilege
information and original tokens are encoded inside fat to-
kens, SOS applies authenticated encryption to protect the

Algorithm 1: Identifying correlation between triggering
RPC message and REST request

Input : REST Request R, Message M that triggered R
Result: Key-value pairs PR for policy enforcement
PR ← {};
foreach field fR specifying resource in R do

foreach field fM specifying resource in M do
if R[fR] == M [fM ] then

PR[fR] = fM

Algorithm 2: REST API authorization checking (Fast
Path)

Input : REST Request R, Message M that triggered
R, Policy PR for R

foreach field f ∈ PR do
if R[f ] 6= M [PR[f ]] then

goto SlowPathChecking;

secrecy of the original token and integrity of the privilege in-
formation. This design is stateless and avoided the need to
modify OpenStack. Fat tokens contain all the authorization
information. This allows efficient token authorization with-
out referencing to databases to retrieve either the original
tokens or the privilege information.

SOS uses the secure MQ-architecture in Section 4 to in-
tercept triggering RPC messages. Policy enforcers replace
original tokens with fat tokens. As tokens are not used once
authenticated by API-services, fat tokens do not affect com-
pute node operations. When compute nodes make REST
requests, these fat tokens are sent along with the requests
automatically for authorization in addition to authentica-
tion.

When handling REST requests, SOS needs to decrypt
fat tokens and performs authorization. Instead of modify-
ing API-services, SOS inserts additional components (paste-
filters) into the REST request-handling pipeline by modify-
ing the configuration files. API-services are already using
these paste-filters to provide features like authentication,
DoS prevention and supporting for multiple API versions.
SOS inserts a paste-filter to decrypt fat tokens before au-
thentication, and another paste-filter for authorization be-
fore the API-services serving the requests. Figure 5 illus-
trates the paste-filter pipeline in SOS . Note that customer



tokens are not fat tokens. Therefore, customer tokens will
fail at the decryption. SOS will simply continue with the
pipeline for authentication. For tokens failed to decrypt but
successfully authenticated by OpenStack, SOS will not en-
force any policy.

Figure 5: Pipeline arrangement in API-services

6. Evaluation
We deployed SOS on OpenStack Juno on 4 Dell Pow-

erEdge 1750 servers. Each server has 4 Physical Intel(R)
Xeon(TM) CPU 2.80GHz and 3 GB Ram. The testbed con-
sists of a controller node, a network node, and two com-

pute nodes. We deployed Keystone, Nova, Neutron, Glance,
and Cinder. Figure 6 shows the services configured on each
node. MQ-policy enforcers can be at any control nodes or
dedicated machines. We deployed them at the network. For
larger deployment, we can deploy it across multiple dedi-
cated machines. The SOS -paste-filters are deployed along
with the API-services at the controller.

SOS incurs overheads when examining messages and REST
requests. This overhead is independent of the testbed size.
Policy enforcers examine each message to and from com-
pute nodes exactly once. SOS does not create new mes-
sages. Therefore, SOS adds a constant overhead per mes-
sage. Similarly, SOS -paste-filters add a constant overhead
for per REST request. In OpenStack, the number of RPC
messages and REST requests is dominated by the number
of provisioning operations, which depends on concurrency
rather than the number of compute nodes in the testbed.
We evaluate the performance impact of SOS on OpenStack
by considering different concurrency level. These overhead
measurements are expected to remain constant on different
testbed size. Furthermore, SOS is designed to scale with
OpenStack. Like many OpenStack services, cloud providers
can always increase the number of policy enforcers and API-
services to compensate for the overhead.

To run as many VMs as possible, we use Cirros OS as VM-
image. Each VM has 1 VCPU and 32 MB memory. Other
VM-images show similar results except they take longer time
to spawn due to larger image size. Since the number of RPC
messages and REST requests are independent of VM image,
the overhead becomes less significant for larger VM-images.
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Figure 6: Experiment Setup

6.1 MicroBenchmarks

SOS uses paste-filters to validate token authorization
at API-services. Nova, Cinder, Glance and Neutron API-
services handle both fat tokens from compute nodes, as well
as normal requests from cloud customers. In this bench-
mark, we study the overheads on REST requests. We used
the OpenStack benchmarking tool Rally [6] to benchmark
the time required to validate Cinder tokens using 1 Cinder

API-service. We configured Rally with different number of
concurrent token validation operations: 1, 5, 10, 20 and
40— each experiment lasted for 3600 seconds, with more
than 10000 token validation operations completed in each
experiment.

Table 3 shows the time required in SOS (Protected) com-
pared to native OpenStack (Unprotected). SOS does not
change the API-service latency characteristics of OpenStack
across different concurrency levels.

Concurrency 1 5 10 20 40
Unprotected (s) 0.065 0.173 0.423 0.795 1.011

Protected (s) 0.071 0.176 0.430 0.802 1.013

Table 3: API-service token validation overhead

6.2 MacroBenchmarks

We also used Rally to evaluate the end-to-end overhead of
SOS . We specifically looked at two predefined Rally scenar-
ios: NovaServers.snapshot_sever and CinderVolumes.create_

and_attach_volume. Each scenario consists of multiple oper-
ations. For example, NovaServers.snapshot_sever consists of
(a) booting a VM, (b) creating a snapshot, (c) destroying the
VM, (d) booting a new VM from the snapshot, (e) destroy
the new VM, and (f) deleting the snapshot. We picked these
two scenarios because they involve multiple resources (nova,
neutron, cinder and glance) and common VM operations
such as booting VM, attaching volume to VM or snapshot-
ting VM. This can provide a good understanding about the
performance impact of SOS at both message queue and
REST request level.

We tested each scenario with concurrency level 1, 2, 4,
8, and 16. Concurrency corresponds to the number of si-
multaneous requests for performing the operations. Each
experiment lasted 3600 seconds. Figure 7 and 8 show the
results under concurrency level 1, 4, and 8 respectively. The
bars cover the 25-percentile to 75-percentile of the measure-
ments. The lines in the bar represent medians. The two
ends of the bars covers the rest of the measurements. Dots
represent outliers.

Again, SOS does not modify the latency behavior of
OpenStack across different workloads or operations. Note
that Rally focuses on VM-provisioning operations. Once an
operation is completed, the subsequent operation will start
immediately— The results do not consider the time to boot
the guest-OS or the time to run tasks inside VMs. In real-
ity, VM running times are significantly longer than the VM
provisioning times. We can therefore consider the results
presented here as the worst case performance for SOS .

While the graphs look similar across different concurrency
levels, the actual time for performing the operations differ
a lot— operations that took 10 seconds at no-concurrency
could take 50 seconds to complete when concurrency is 8.
As SOS scales linearly with the number of compute nodes,
performance of SOS at a concurrency level 8 with 2 compute
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Figure 7: Latency overhead of SOS for Rally NovaServers.snapshot_sever scenario
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Figure 8: Latency overhead of SOS for Rally CinderVolumes.create_and_attach_volume scenario

nodes is equivalent to concurrency level 64 with 16 compute
nodes.

Table 5 shows the number of scenarios completed in an
hour. The system reached its maximum throughput at around
4 concurrent operations, with the controller being the bot-
tleneck. Again, these are purely VM-provisioning opera-
tions.

6.3 Security analysis

We tested the attacks described in Section 3.2 on a SOS
-protected deployment. SOS detected and stopped all at-
tacks. Table 4 summarizes how SOS defeated the attacks.
We generalize the attacks and discuss them below.

6.3.1 Defending against attacks

Sniffing tokens from message-queue.
SOS does not prevent compute nodes from declaring

queues in private MQ-server. However, SOS ensures that
compute nodes cannot sniff messages. The policy enforcers
ensure that only messages intended for the compute node
will reach its private MQ-server. As a result, attackers can
learn nothing more than what the compute node already has
access to by sniffing message-queue.

Invoking arbitrary RPCs.
OpenStack does not identify RPC callers. Attackers can

therefore invoke RPCs that compute nodes are not supposed
to invoke. SOS ’s secure MQ architecture identifies RPC
callers and enforce policies to constrain messages that com-
pute nodes can send/receive. With the RPC Procedure Pol-
icy, SOS restricts compute nodes to only invoke RPCs that

compute nodes can legitimately invoke. Non-callable RPCs
such as reboot_instance are blocked.

Manipulating RPC parameters.
Attacks that modified node name and resources such as

total number of CPUs on other compute nodes were de-
feated using static parameters. SOS makes sure that one
compute node cannot call compute_node_update to update
other compute nodes by ensuring that the compute node id
specified in the message matches with the node’s id. Attacks
that reported falsified resource updates such as having 100
free VCPUs are also detected by SOS ’s simple range based
policy.

We also launched an attack which hijacked a transaction
by replacing the VM-uuid to other VMs. SOS ’s trans-
actional policy and its resource-referencing parameters de-
tected that the transaction referenced to parameters not au-
thorized and reported as an attack.

SOS uses triggering RPCs to grant compute nodes capa-
bilities to reference to resources. Without first obtaining a
capability, attackers cannot reference to any resources. At-
tackers may trick control nodes to invoke triggering RPCs
as to grant them capabilities, but triggering RPCs are al-
ways originated from control nodes and are not callable by
compute nodes. Furthermore, attackers do not have the ca-
pabilities to reference to the resources in the first place.

Abusing tokens to invoke REST requests.
Compromised compute nodes can abuse tokens to perform

operations not intended by cloud customers. SOS restricts
the set of REST requests that compute nodes can invoke
based on triggering RPCs parameters. This greatly reduces



Attacks Protected by component Policy

Sniffing RPC-messages private MQ-server Message-Queue Server Isolation (Need-to-know messages)
Invoking arbitrary RPCs MQ Policy Enforcer Callable RPCs (within transaction)
Manipulating RPC parameters MQ Policy Enforcer RPC Parameter Policy + Parameter-referencing Capability
Invoke arbitrary REST requests REST authorization-validation Callable REST + Parameter-referencing capability

Table 4: SOS defenses for attacks discussed in Section 3.2

Concurrency 1 2 4 8 16

NovaServers.snapshot_sever

Unprotected 150 253 330 300 255
Protected 148 244 332 307 253

CinderVolumes.create_and_attach_volume

Unprotected 77 129 178 191 169
Protected 73 111 147 167 150

Table 5: Number of scenarios completed in 1 hour

privileges of tokens that compute node can access. Any
attempts to invoke different REST requests or with differ-
ent parameters will result in inconsistency in the capability.
API-services can therefore detect such attacks.

However, SOS does not protect tokens from being re-
played to invoke the same REST requests with the same pa-
rameters. Attackers can continuously invoke the same REST
requests with the same tokens until the tokens expire. As
a result, attackers having a token for detaching a specific
volume for a VM can prevents the VM from attaching the
volume by keep invoking the detach volume REST request.
SOS can address the problem by limiting the tracking token
usage. Alternatively, SOS can also shorten the lifetime of
OpenStack tokens.

6.3.2 False-positives and false-negatives
SOS uses static analysis or training to generate RPC

transactional and REST request callable policies. Static
analysis has the advantage of covering all possible code paths.
It can model all potential RPC messages and REST requests
that a legitimate deployment may occur. Therefore, it has
low false-positive. However, not all code paths derived in
static analysis can be exercised. So, it can lead high false-
negatives. On the other hand, SOS can use training to
generate deployment specific policies. It achieve good se-
curity by allowing only known benign messages and REST
requests. However, the quality of the policies depend highly
on the training data. It can lead to false-positives (due to
insufficient coverage) or false-negatives (if attacks exist in
the training data).

SOS can combine both approaches to generate policies.
Static analysis can improve quality of training data by iden-
tify attacks in training data. Combining both approaches
can also yield better confidence in identifying attacks: If a
message is flagged as an attack by static analysis, it is very
likely to be an attack. Similarly, a message accepted by
training approach is likely to be legit. On the other hand,
messages flagged as attack by the training approach but not
by the static analysis could either be legit or real attacks.
Cloud providers can decide on how to balance between false
positives and false negatives.

Figure 9 shows the number of new policy violations ob-
served in SOS based on training. We ran OpenStack Tem-
pest [19], a test suite for OpenStack, to simulate legitimate
usage behaviors. We do not consider static analysis here
because it detected no violation. Based on the traces, most
policy violations have been identified in the first 5 rounds

of Tempest executions. If we generate policies using first
25 rounds of Tempest traces, we would have identified 950
policies and expected to see less than 10 violations in the
following 20 rounds of Tempest traces. The number of new
policy violations decreased substantially as more training
data is used.
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Figure 9: False Positive Rate when SOS applies only dy-
namic analysis (Based on Tempest [19] traces)

As SOS detected all attacks described in Section 3.2, SOS
has no observed false-negative.

7. Related Work

7.1 Defenses in OpenStack

Although OpenStack includes nova-compute in the TCB,
the OpenStack community has started developing several
measures to limit the trust placed on its services. We sum-
marize these measures below and identify their limitations.

Encrypting/Signing messages.
There is an OpenStack blueprint [12] that proposes to

sign and encrypt RPC messages, preventing spoofing and
sniffing of messages. Existing AMQPs already support using
SSL to encrypt connections between services and message-
queue servers. This blueprint requires two communicating
services, say nova-compute and nova-conductor to share a
key for signing and encrypting the communication between
them. By doing so, attackers controlling one compute node
cannot sniff messages meant for another compute node.

This blueprint yields the same effect as our MQ-proxy,
which ensures compute nodes can only access to messages
intended to them. As we demonstrated, attackers can send
messages to update databases falsify their resources. This
can increase the likelihood of becoming the intended message-
recipients. By claiming they have tons of resources available,
nova-scheduler is more likely to select the compromised
compute node more often to run VMs, and thus receive the
token information.



The second part of the proposal is to authenticate and pro-
tect message integrity with signing. At first glance, signing
identifies request-origins to protect against spoofing. How-
ever, note that a compromised compute node does not have
to spoof another compute node. Instead, all it wants to do
is to make requests related to VMs on other compute nodes,
or make resource requests on behalf of customers that did
not initiate those requests. Signing alone does not prevent
these attacks. What is needed is a more fine-grained policy
to limit the requests and parameters that can be made by
any given compute node.

Scoping tokens.
The basic management unit in OpenStack is a project.

Any cloud customer of a project can control all resources
(cinder, nova, neutron, etc) within that project. A cloud
customer can be in multiple projects. Upon successful au-
thentication of a customer, keystone returns a token that
can access any resource in any project owned by that cus-
tomer. As a result, leaking of the token can lead to compro-
mise of resources across all the projects.

Scoped token is a simple extension that reduces the scope
of tokens: instead of exposing the “master tokens” in every
REST request, customers can scope tokens down to a single
project by explicitly specifying the project. Leakage of a
scoped token can therefore only compromise resources in
that particular project.

Compromising a scoped token can still compromise all re-
sources in a single project. One may further reduce the priv-
ileges associated with the token down to particular resources
or OpenStack modules. However, this is hard to achieve be-
cause of the complex interactions between different Open-
Stack modules. It is not always possible to know in advance
what modules will be involved to fulfill a given request. Fur-
thermore, some tokens inherently cannot be scoped when
they need to control resources across multiple projects.

SOS took the idea of scoped tokens to the extreme. SOS
scopes tokens not only to a particular OpenStack module,
but down to specific operations on specific resources. Instead
of predicting what operations will be involved, SOS scopes
down tokens within the OpenStack infrastructures. It sup-
ports much finer granularity privilege control and can sup-
port tokens that access resources across multiple projects.

7.2 Cloud security

Prior work in cloud security have focused providing secu-
rity and privacy to cloud customers to protect their code,
data, and computation [25, 2, 3]. Some focused on protect-
ing secrecy or integrity of VMs against other VMs running
on the same compute node, or against the cloud provider
who have complete control over the underlying hypervisor
and hardware [32, 20, 31]. Self-service cloud [4] proposes an
architecture to redesign hypervisor, giving more controls to
cloud customers to manage their VMs. Cloud Verifier [21]
(CV) focuses on integrity of VMs. Users can specify in-
tegrity criteria that a communicating VM must satisfy. CV
will then continuously monitor the integrity of the VM on
behalf of the users. Communication to the VM is interrupted
immediately when a violation of the criteria is detected. Sri-
vastava et al. [26] created a service that generates trusted
VM snapshot in the cloud, assisting cloud customers to check
for the presence of malware.

While there has been some work done showing the prob-
lems with cloud infrastructures and how attackers can take

advantage of it [5, 28], there is not much work done on pro-
tecting the cloud infrastructure. SCOS [27] addresses the
problem that services are vulnerable. They studied various
MAC mechanisms to confine cloud services at node level
and local system level. They also designed an architecture
to enforce MAC policies to protect services. However, de-
tails about SCOS has not been developed yet. While both
our work and SCOS aim to protect the cloud infrastructure,
we have a different threat model. We assumed controller ser-
vices are trusted and focused on restricting compute nodes
to prevent damages.

7.3 Host based security

Our secure MQ architecture provides a framework for en-
forcing various types of policy. It can enforce mandatory ac-
cess control to confine compromised nodes. MAC has been
well studied on end host systems. SELinux [10] can enforce
sophisticated policies to confine applications running inside
a machine. Instead of focusing on end hosts, our framework
confines interactions between cloud services. We studied
how various services interact and proposed an enforcement
framework to confine compute nodes.

A majority of the service interactions happen through
RPCs over message queues. RPCs are similar to function
calls and a lot of work has been done on system-call based
confinement [7, 23]. Many techniques from the system-call
defenses are applicable to our system, too. Our system can
rely on automaton to detect anomalous behavior as in [23].
With a framework to enforce polices, the question is what
policies to enforce? Our system does share the same problem
as system-call based defenses on generating effective policy
against attacks. To solve the problem, we both exploit in-
variants in not only the set of methods/system calls that
can be invoked, but also the parameters. Effective policies
against mimicry attacks [29] are generated by correlating
RPC messages and REST requests with triggering RPCs.

7.4 Distributed system security

Our hierarchical privilege for tokens shares some spirits
with Kerberos. In Kerberos, users successfully authenti-
cated with an Authentication Server (AS) will receive a
ticket. Users can then present the ticket to a Ticket-Granting
Server (TGS) to get another ticket which is good for a
service. Users can then present the ticket to the server
and get services. In our design, Keystone serves as the
AS which generates a full-privileged token for authenticated
users. Users can then present the token to API services (sim-
ilar to TGS), which then generates another tokens that are
good for specific API requests. However, there is an impor-
tant difference: The goal of Kerberos is scalability. Users do
not need to request for another ticket as long as all requests
are in the same service session. On the other hand, our goal
is to achieve fine grained access control, granting only the
accesses a compute node needs to fulfill a customer request.
Hence, our goal is to prevent reusing a token. These two are
conflicting goals. The more fine-grained control it is, the less
likely a ticket/token can be reused.

8. Conclusion
In this paper, we challenge the trust assumptions that

OpenStack placed on compute nodes. We show that attack-
ers compromising a single compute node can spread their
footprints to bring down the entire infrastructure, or abuse



the resources in the infrastructure. To solve this problem, we
proposed SOS . SOS consists of a secure message-queue ar-
chitecture that can enforce a wide range of policy. We devel-
oped capability-based policies to confine trusts on compute
nodes at both intra-project and inter-project communica-
tion. SOS enforces policies without requiring any changes
to OpenStack. It supports multiple OpenStack version, pro-
tects against all the attacks discussed in the paper with little
overhead.
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