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Abstract
To support C++ exception handling, compilers generate metadata

that is a rich source of information about the code layout. On

Linux, this metadata is also used to support stack tracing, thread

cleanup and other functions. For this reason, Linux binaries contain

code-layout-revealing metadata for C-code as well. Even hand-

written assembly in low-level system libraries is covered by such

metadata. We investigate the implications of this metadata in this

paper, and show that it can be used to (a) improve accuracy of

disassembly, (b) achieve significantly better accuracy at function

boundary identification as compared to previous research, and (c)

as a rich source of information for defeating fine-grained code

randomization.

ACM Reference Format:
Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. 2020. On the Im-

pact of Exception Handling Compatibility on Binary Instrumentation[2]. In

2020 Workshop on Forming an Ecosystem Around Software Transformation
(FEAST’20), November 13, 2020, Virtual Event, USA. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3411502.3418428

1 Introduction
Binary instrumentation [6, 11, 21, 34, 39, 41, 45] is a well-established

technique for security hardening, application monitoring and de-

bugging, profiling, and so on. Binary instrumentation is more de-

sirable than source-code instrumentation because the vast major-

ity of today’s software, including most open-source software, is

distributed in binary form. Furthermore, the use of binary-only

third-party libraries and hand-written assembly in large software

packagesmake source-based approaches incomplete. Instrumenting

all parts of code is critical for many applications, especially those in

security, such as CFI [1, 43, 46], SFI [22, 36, 42], program hardening

[9, 18, 26, 31, 47], code randomization [5, 14, 25, 29, 38, 40, 44], etc.

Binary instrumentation techniques fall into two broad categories:

dynamic [6, 21] and static [20]. Dynamic instrumentation tools have

proved to be robust, but they incur high performance overheads

for many applications. Static instrumentation incurs much lower

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FEAST’20, November 13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8089-8/20/11. . . $15.00

https://doi.org/10.1145/3411502.3418428

overheads, but has been held back by challenges in accurate dis-

assembly and code pointer identification. With the emergence of

position-independent (or relocatable) binaries as the dominant for-

mat in recent years, researchers have been able to address these

challenges, e.g., in Egalito [41], RetroWrite [11] and SBR [28, 29]

systems.

Despite recent advances, deployability of binary instrumentation

continues to face significant challenges. One of the major concerns

is compatibility. In particular, existing static binary instrumentation

tools tend to break stack tracing (for C and C++) as well as C++

exception handling. While compatibility with these features may

not be important for proof-of-concept instrumentations, it is hardly

a viable option for any software meant for wide deployment.

Although there have been a few research efforts in exception-

compatible binary instrumentation (e.g., Zipr++ [15]), most con-

temporary works [11, 40, 41] tend to dismiss off these compatibility

issues as engineering problems. However, we show in this paper
that the impact of stack-tracing and exception compatibility is much
more fundamental. This is because the metadata required to support

these features is a rich source of information about the binaries.

This information can significantly simplify some aspects of instru-

mentation (e.g., disassembly and function identification), while

introducing new challenges in other aspects (e.g., fine-grained code

randomization). We analyze these impacts in this paper, and make

the following contributions:

• We show how disassembly can be a challenge for some complex

binaries, and discuss how exception handling metadata can help.

• There have beenmany recent papers on accurate function bound-

ary identification [2, 3, 30, 32]. Many of them rely on complex

machine learning or static analysis techniques, yet suffer from

significant error rates. In contrast, we show how exception-

handling metadata can provide a simple yet far more accurate

solution. In particular we can achieve an F1-score of 0.96 by

just using the EH metadata, and improve it further to 1.0 with a

simple analysis.

• We point out how code randomization techniques can be signifi-

cantly degraded by exception-handling metadata since it reveals

information such as function boundaries, as well as the location

of some key instructions that are often targeted in ROP attacks.

Our study is focused on the Linux/x86 platform, with implementa-

tion results obtained on 64-bit (x86_64) binaries.
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2 C++ Exception Handling and Stack Tracing
In C++, exception handling is implemented using try/catch blocks.

Catch blocks immediately follow a try block and contain handlers

for one or more exceptions that may arise within the try block. If

an exception arises outside of a try-block (or if that exception is

not handled in the catch blocks associated with the current try-

block) then the C++ runtime looks for a try-block in the caller of

the current function, or its caller, and so on. Thus, the C++ runtime

needs to “walk up the stack” from a callee function to its callers.

The C++ compiler generates exception-handling (EH) metadata

[24] that is used to perform this stack unwinding step.
Stack unwinding may also be needed for generating stack traces

when programs crash or experience unrecoverable errors, or when

threads exit. On Linux, the same EH-metadata is used to support

these features as well. For this reason, EH-metadata is present

in Linux for all code
1
, not just C++. In fact, most hand-written

assembly code in low-level libraries such as glibc include stack

unwinding information, put in place using the GNU assembler’s

.cfi directive (which stands for call frame information).

On Linux, EH metadata is stored in the sections eh_frame,
eh_frame_hdr and gcc_except_table. Only the first two are needed

for stack-unwinding, so the third table is present only for C++ func-

tions. Unlike debugging information that may be present in a binary

but not loaded into a process memory, all these sections must be

loaded into readable regions of process memory.

The eh_frame_hdr section is a binary search table that maps a

function to its FDE (Frame description entry), a descriptor for its

stack frame. These FDE records are present in eh_frame section. FDE
records contain special instructions describing how to restore callee

saved registers and the stack pointer. These instructions effectively

partition the function body into smaller blocks called unwinding
blocks. Each unwinding block comprises of a set of contiguous

instructions that share the same state of the callee-saved registers

and the stack pointer.

Consider an instruction that pushes a callee-saved register on

the stack. It requires a corresponding restoration operation that will

load that register from the stack and then restore the original stack

pointer value. Clearly, this is an additional restoration operation

that would not have been needed for the preceding instruction.

Hence any instruction that changes the stack pointer, including all

pushes and pops, results in a new unwinding block. If an instruction

saves a callee-saved register to another register ormemory, thatmay

also create a new unwinding block. As a result, many unwinding

blocks are short, e.g., a push or a pop instruction. This leads to

their proliferation, with a typical function containing about a dozen
unwinding blocks on Linux.

The gcc_except_table contains locations of try/catch blocks for

every function. Additionally it holds pointers to destructor routines

for any object that is created on stack.

In summary, EH metadata contains the following information:

• Function boundary information,

• Pointers to catch routines,

1
The compiler option -funwind-tables is enabled by default on Linux/x86. Some

projects (e.g., Chromium) override this default option, typically to reduce the space over-

head of EH metadata, but naturally, this requires foregoing the use of C++ exceptions.

Application Library with data Library

within code size

Firefox libxul.so 126 MB

Chromium, gedit libffi.so 31 KB

LibreOffice, gedit libgnutls.so 1.4 MB

libgcrypt.so 2.3 MB

gimp, vlc, ssh, libgcrypt.so 2.3 MB

evince, apt-get

Table 1: A few packages with data in the midst of code

• Pointers to destructor routines of objects created on stack,

• Start address of each unwinding block, and
• Arithmetic or load/store operations needed to restore callee

saved registers and stack pointers.

3 Disassembly
Accurate disassembly of stripped binaries is a challenging problem

for variable-length instruction sets such as those of the Intel x86

architecture. There are two basic techniques for disassembly: linear

disassembly and recursive disassembly. Linear disassembly is in

general unsound, i.e., it can misclassify data as code. Recursive

disassembly can be sound, but is incomplete: it tends to miss code

that is only reached via indirect transfers. A number of researchers

have proposed heuristics to overcome these drawbacks, but these

heuristics are not always successful, and cannot guarantee accurate

disassembly in general. Another alternative is exhaustive disassem-

bly that treats every possible offset as an instruction. Multiverse

[4] develops such an approach, and has been further improved by

Miller et al [23]. However, there is significant overhead in terms of

code size as well as runtime overhead, about 60% on SPEC CPU
2
.

Unsoundness of linear disassembly stems from the presence of

data or padding in the midst of code. Modern compilers such as

GCC and Clang have come to avoid inclusion of data in the midst

of code, and to use NOPs for padding. This enabled recent binary

instrumentation efforts [11, 29, 41] to rely on linear disassembly

in their systems. Unfortunately, the assumption about separation

of data and code does not always hold, as shown in Table 1. Even

without a systematic search, we were able to identify several bi-

naries with embedded data by simply examining a few complex

applications such as Firefox and LibreOffice on Linux. Most binary

instrumentation tools will fail on these binaries due to incorrect

disassembly, or because they transform (and hence corrupt) the

data in the midst of code.

In our Secret [44] work, we suggested the use of EH infor-

mation for recognizing embedded data. But the focus wasn’t on

disassembly since Secret uses the error-correcting disassembly

technique [46] provided by our PSI [45] 32-bit x86 binary instru-

mentation platform. More importantly, no systematic analysis was

undertaken in that work to assess the coverage of EH metadata

across a large number of binaries. In this work, we performed such

an analysis. We examined each binary in /bin and /lib on a default

64-bit Ubuntu 18.04 Desktop Linux distribution to determine the

2
This overhead results from the inability to identify and transform all code pointers at

instrumentation time. Instead, code pointers require additional processing at runtime.
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percentage of the code that is covered by EH metadata. The aver-

age of these percentages across these binaries was 94.7%, showing

high coverage. Moreover, as we discuss in the next section, the

remaining 5% consists mainly of a few functions that are inserted

into every binary by the compiler, which means that almost all of

the application-specific code is covered by EH metadata. Thus, EH

metadata is a promising source for identifying and marking off data

in the midst of code, and designing simple yet robust disassembly

techniques that avoid these gaps.

4 Function Identification
Function identification is an essential component of many binary

analysis and reverse-engineering tools. It serves as a starting point

for recovering other high level program elements such as function

parameters and local variables. Many security policy enforcement

techniques also operate at function granularity. Other applications

of function identification include binary code search [12], binary

analysis [33, 37], vulnerability detection [35], and so on.

Recovering functions from stripped COTS binaries is difficult, as

much of the symbol and debugging information is lost. In binaries,

functions can be defined as a contiguous block of code with one

or more entry points and one or more exit points. Function entry

points are usually reached by call instructions, except special cases

such as a tail call
3
. For direct calls, the target of the call is present

in the call instruction itself. The start of functions reached by direct

calls can hence be identified by traversing the call graph of a pro-

gram. However, indirectly reached functions cannot be identified

this way.

State-of-the-art approaches for function identification rely on

pattern matching, machine learning or static analysis. None of these

approaches are 100% accurate and typically result in both misiden-

tifications (false positive) and missed functions (false negatives).

Missed functions can affect the coverage of a binary instrumenta-

tion tool. Misidentified functions or false positives are often more

problematic, and can break the instrumented application, lead to

crashes or malfunction. Thus, for robust instrumentation, it is de-

sirable to achieve as close to a zero false positive rate as possible.

4.1 Previous Work on Function Identification

Pattern matching based approaches. Many tools combine call

graph traversal with function prologue matching [7, 13, 16, 33] to

identify function starts. However, pattern matching in general is

not a robust approach and can result in high error rate in terms of

both false positives and false negatives. This is because, function

prologues/signatures can vary across compilers. Moreover, compiler

optimizations may split or reorder the prologue code sequences,

thereby degrading the effectiveness of this technique.

Machine learning based approaches. ByteWeight [3] and Shin

et al. [32] employ machine learning to identify function starts. By

training a model using a large enough set of binaries compiled with

multiple compilers, it is possible to improve accuracy across compil-

ers. However, machine learning techniques are never 100% accurate

and result in false positives and false negatives. No matter how

3
Tail calls result from a compiler optimization that replaces a call instruction by a

jump instruction in the special case where the call instruction just precedes a return.

small the number of misidentifications are, they can affect the us-

ability of any instrumentation tool. Shin et al. achieved a precision

of 95%. However, a 5% false positive is too high for practical pur-

poses. Moreover, datasets can be skewed to increase the accuracy

rate. Nucleus [2] did an independent validation of datasets used by

ByteWeight and found out that many functions were duplicated

across training and test datasets, thereby resulting in a better score.

When evaluated with a different dataset, ByteWeight’s accuracy

dropped to 60%.

Static analysis based approaches. Nucleus [2] and our previous
work FIA [30] rely on static analysis to identify functions. Nucleus
relies on control-flow analysis to infer indirectly reached functions.

It can achieve an accuracy (i.e., F1-score) slightly over 90% across

a set of benchmarks. FIA treats any unidentified code region be-

tween directly reached functions as a potential function body. It

then uses a novel static analysis called function interface analysis

to discard most false positives. This improved analysis enables FIA

to achieve about 99% accuracy. While this is significantly higher

than other approaches mentioned above, a 1% error rate can trans-

late to many false positives and false negatives on large binaries.

In combination with the complexity of function interface analy-

sis, this non-negligible error rate prompts researchers to continue

to seek techniques that offer a better trade-off between accuracy,

complexity and performance.

4.2 Exploiting EH metadata to Identify Functions

Function boundary information is included in EH metadata by de-

fault. In particular, function start and size is stored in FDE records

in eh_frame sections. As pointed out in the previous section, this

metadata must cover all functions of a binary and must be present

in stripped binaries to support exception handling and stack un-

winding at the runtime. Of course, it is possible that real-world

binaries may exclude some functions from EH metadata. We have

therefore carried out an experimental evaluation that uses EH meta-

data and compared the results with the previous works described

above. In the subsequent sections, we will use the term EMFI to
refer to function identification using EH metadata.

4.3 Experimental Evaluation

Datasets. We reused the same datasets used in previous works,

except that we limited ourselves to 64-bit x86 binaries, as our

prototype is currently limited to this architecture. Specifically,

ByteWeight and Shin et al. were evaluated on coreutils, binu-

tils and findutils (Dataset 1). FIA uses SPEC CPU 2006 benchmarks

(Dataset 2) and GLIBC (Dataset 3) in addition to dataset 1. Note that

we did not use the exact same versions of these datasets. Specifically,

we used coreutils-8.32, binutils-2.29.1, findutils-4.6.0, SPEC CPU

2017 benchmarks and GLIBC-2.27. We don’t expect these version

differences to change our results, but they can have a modest impact

on some of the previous works, especially those based on machine

learning.

Dataset 1 consists of 131 programs written in C and C++. SPEC

CPU 2017 consists of 23 programs written C, C++ and Fortran.

These programs and glibc were compiled using GCC compiler suite

(gcc, g++ and gfortran) on Ubuntu 18.04 (64-bit) operating system,
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Recall Precision F1-score

EMFI EMFI+ EMFI & EMFI+ EMFI EMFI+
SPEC 0.9379 1 1 0.9654 1

GLIBC 0.9993 1 1 0.9996 1

Coreutils 0.9371 1 1 0.9669 1

Binutils 0.9897 1 1 0.9941 1

Findutils 0.9407 1 1 0.9692 1

Table 2: Function identification results obtained by exploiting EH metadata

and the resulting binaries used in our analysis. While our experi-

ments were performed on stripped binaries, symbol tables present

in unstripped binaries were used for ground truth determination.

Metrics. We use the same recall, precision and F1-score metrics as

previous works to measure accuracy. Recall represents the fraction

of correctly identified functions and is given by:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Here TP stands for true positives and FN stands for false nega-

tives. Precision represents the conditional probability that a func-

tion is identified correctly. It is given by:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
Here FP stands for false positives. F1-score is the harmonic mean

of recall and precision and is given by:

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Results summary Table 2 shows the accuracy measurement for

EMFI (i.e., using function boundaries present in EH metadata). By

using EH metadata, we are able to achieve zero false positive rates

on these datasets. Hence, we achieve a precision of 100%. The recall

value shows that on an average we miss 5% of functions.

On closer examination, we realized that the misses were all due

to 6 default initialization and clean-up functions inserted into every

binary by the compiler. Moreover, pointers to these functions are

present in the binary. So, we extended our technique so as to follow

function pointers contained in sections of the binaries, specifically,

dynamic symbol table and other sections that contain definite code

pointers
4
. We follow direct calls recursively from these function

bodies. We add any new function found in this manner to our list of

identified functions. Note that a new function is added this way only

if it is not already covered by EH metadata. We call this enhanced

technique as EMFI+.
We note that our base EMFI technique achieves 100% precision,

which is better than all previous approaches. EMFI’s F1-score is
better than ByteWeight, Shin et al. and Nucleus, but lags FIA on

most benchmarks. Our EMFI+ technique achieves an F1-score of

100% on all datasets, and hence outperforms all previous techniques.

Table 3 compares the function identification scores on Dataset 1

(coreutils, binutils and findutils), which is common to all previous

methods. Note that we are simply quoting the numbers from the

respective papers [3, 30, 32]. Version differences in the benchmark

programs, and especially the compiler, can impact these numbers

4
.init_array and .fini_array contain pointers to initialization and clean up functions of

ELF executables

Recall Precision F1-score

ByteWeight 0.9252 0.9322 0.9287

Shin et al. 0.8991 0.9485 0.9232

FIA 0.9900 0.9912 0.9906

EMFI 0.944 1 0.9706

EMFI+ 1 1 1

Table 3: Function identification between different approaches - Dataset 1

Recall Precision F1-score

FIA 0.9861 0.9927 0.9905

Nucleus 0.90 0.97 0.9905

EMFI 0.9379 1 0.9654

EMFI+ 1 1 1

Table 4: Function identification comparison with Nucleus and FIA for SPEC

to some extent. To evaluate the effect of compiler versions on our

EMFI and EMFI+, we repeated our experiments with two versions of

gcc (gcc-7.5.0 and gcc-4.8.4) as well as llvm-6.0.0. For llvm, we only

evaluated coreutils and findutils as binutils is not compatible with

this compiler. For EMFI we obtained 0 false positives and thereby

a precision of 1 across all these compilers. We also observed the

same functions (6 in total) missing from the EH metadata across

all the compilers. This means that the F1-score of 1.0 achieved by

EMFI+ will be unchanged across these compilers.

5 Code Randomization
Modern Linux distributions apply ASLR to all binaries that are

loaded into a process image, including the executable and all li-

braries. This means that attackers can no longer apriori predict

the locations of gadgets they wish to use in a code reuse attack.

However, ASLR is considered a relatively weak defense, as a single

leaked code pointer can reveal the entire layout of a binary. In

response to information leakage, fine-grained code randomization

techniques have been proposed [5, 8, 10, 14, 17, 19, 25, 38, 40]. Even

if attackers are able to use leaked pointers to determine the base

address of a binary, fine-grained code randomization makes it very

difficult to predict the locations of the gadgets of interest to them.

However, we show that the presence of EH metadata significantly

degrades the effectiveness of most of these techniques.

In the rest of this section, we discuss categories of code ran-

domization techniques and how EH metadata degrades their ef-

fectiveness. We then suggest some mitigation techniques aimed at

restoring their effectiveness. This section assumes that EH meta-

data is correctly updated after code randomization to ensure stack

unwinding compatibility.
5

Function Reordering. Function reordering is a popular tech-

nique used in almost every previous code randomization method.

This technique involves permuting the order of functions in a bi-

nary. Even with a small binary containing 50 functions, there are

50! possible permutations, yielding a randomization entropy of

log
2
(50!) ≈ 214 bits. Moderate to large binaries yield thousands of

bits of entropy, which seems secure against even strong adversaries.

5
Some code randomization techniques break some of the assumptions underlying

stack unwinding, e.g., that function bodies are contiguous. Such techniques need

modifications before they can achieve exception compatibility, but a discussion of the

specifics is beyond the scope of this paper.
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1 attempt 2 attempts 3 or more attempts

SPEC 47% 19% 34%

Coreutils 58% 31% 11%

Binutils 28% 23% 49%

Findutils 49% 37% 14%

Table 5: Percentage of functions identified by function size in EH metadata

Some of the earlier techniques [5, 17] rely entirely on function

reordering. Many of themore recent techniques [10, 19, 40] combine

function reordering with fine-grained code randomization within

each function. Even so, many of them derive significant entropy

from function reordering.

As we noted before, EH metadata contains (a) the starting lo-

cation and (b) the size of every function in a Linux/x86 binary. It

should also be noted that EH metadata is present in readable mem-

ory or else stack unwinding will break. If the attacker targets and

leaks this metadata, then they can largely defeat function reordering

on its own. This is because function sizes tend to vary considerably,

so an attacker can often identify a function just by its size. Table 5

shows the percentage of functions that can be correctly identified

within 1, 2 or more attempts using function size information. Iden-

tification in one attempt means that the size uniquely identifies a

function. Identification in two attempts means that there are just

two functions of a given size.

Across these benchmarks, an average of 45% of functions can

be uniquely identified from their size. If the attacker focuses his

gadget search to this 45% of functions, then, they can carry out

their attack as if no function reordering had been done. This is

because they can look up the base of address of each of these

functions in the EH metadata from their size. Moreover, with just

function reordering, the location of every instruction in a function

is uniquely determined from its base address. Thus the attacker

can determine the location of every gadget of their interest that is

located in these 45% of functions.

A simple work-around against this attack is to add random-

size gaps within functions so that each function size cannot be

related to its original size. This technique introduces a memory

overhead in terms of increased code space. This increased code

size footprint usually translates into a modest runtime overhead as

well, but this increase is unlikely to deter the use of this mitigation.

At the same time, it should be noted that this mitigation offers

only incomplete protection: for performance reasons, padding size

needs to be limited, e.g., it may be limited to less than 100% of

code size. While this introduces considerable uncertainty, the size

information will still allow an attacker to considerably narrow

down the functions that may be located at each of the function base

addresses mentioned in EH metadata.

Unfortunately, function sizes, which are present in eh_frame,
represent the tip of the iceberg in terms of the information an

attacker can use to compromise a code randomization technique.

Using information in eh_frames, it is possible to defeat more fine-

grained randomization techniques, as we discuss below.

Fine-grained Code Randomization. Even if EHmetadata is not

leaked, function reordering is vulnerable to pointer disclosure at-

tacks. These attacks involve leaking pointer values, e.g., return

unwinding blocks unwinding block

with 1 or 2 instructions as pop; ret;
SPEC 77% 23%

Coreutils 73% 24%

Binutils 76% 29%

Findutils 72% 22%

Table 6: Percentage of small unwinding blocks and simple gadgets

addresses on the stack. Attackers can then compute gadget lo-

cations in the same function as the return address by using the

distances between these gadgets and the return address. To thwart

such attacks, researchers have proposed many fine-grained code

randomizations that involve permuting code blocks (sequences of

instructions)[10, 38, 40] or introducing gaps between them [27].

Effectiveness of such fine-grained code randomization is coun-

tered by the availability of finer-grained information about code

blocks in eh_frames. Specifically, this data identifies the start and
size of every unwinding block within a function. Moreover, most of

these unwinding blocks are very small. As shown in Table 6, more

than 70% of unwinding blocks that have no more than 2 instruc-

tions. Moreover, the associated unwinding information specifies

key aspects of the semantics of these blocks such as (a) the amount

of change to the stack pointer, and (b) the register that is being

modified. From this information, the attacker can correctly retrieve

location of specific gadgets, e.g., pop; ret; or push; ret;. The exact
locations of such gadgets can be identified regardless of how much
randomization has been done.

We found that nearly 25% of unwinding blocks are pop; ret;
gadgets. Thus, an attacker can readily find such gadgets without

any search, once she leaks EH metadata.

Another important point to note is that stack pivoting instruc-

tions can often be identified from their metadata. Such instructions

are often used to corrupt the stack pointer and change it to point to

attacker-controlled region of memory. The change happens from

loading the stack pointer from memory or another register. Being

an instruction that changes the stack pointer, it will be identified

as an unwinding block with unwinding information that unmasks

its semantics. Although not necessarily mandatory, stack pivoting

instructions are very important in practice to launch code reuse

attacks, thus often desired by attackers.

In addition to revealing the location of useful instructions and

gadgets mentioned above, attackers can also find other gadgets that

are very close to these gadgets. Chances are that the randomization

technique did not randomize the locations that were just one or

two bytes from these instructions. The attacker can hence access

such very close-by gadgets to these revealed unwinding blocks.

One way to mitigate such attacks is to introduce gaps in code,

together with fake unwinding blocks for these gaps. This technique

will confuse the attacker. However, this may not be enough to

thwart the attack completely. We recently developed an alternative

approach that combines a new exception-compatible high-entropy

code randomization technique with optimized EH metadata that

exposes much less information [29]. Additional research is needed

to systematically explore the full range of options for mitigating

the security impact of exception compatibility.
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6 Conclusions
To be widely deployable, static binary instrumentation techniques

must be compatible with error-handling and reporting mechanisms,

such as stack tracing and C++ exceptions. Previous research has

tended to dismiss off these compatibility concerns as “engineer-

ing.” In contrast, we showed that these error-handling features

have a much more fundamental impact on binary instrumentation

techniques and tools. Specifically, stack-unwinding metadata that

underpins these features can provide the basis for improving dis-

assembly accuracy in complex binaries. We also showed that this

metadata enables a simple function boundary identification method

that is far more accurate than previous methods. On the negative

side, we showed that stack unwinding metadata introduces a ma-

jor point of weakness in fine-grained code randomization. This

weakness is most pronounced on the Linux/x86 platform, where

stack unwinding information is present for almost every function

in every binary. Its impact may be lesser on other platforms, as they

may limit unwinding information to just C++ code.
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