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Abstract. We present a new, on-the-fly algorithm that given a push-down model
representing a sequential program with (recursive) procedure calls and an extended
finite-state automaton representing (the negation of) a safety property, produces a
succinct, symbolic representation of all counter-examples; i.e., traces of system
behaviors that violate the property. The class of what we call minimum-recursion
loop-free counter-examples can then be generated from this representation on an
as-needed basis and presented to the user. Our algorithm is also applicable, without
modification, to finite-state system models. Simultaneous consideration of multi-
ple counter-examples can minimize the number of model-checking runs needed to
recognize common root causes of property violations. We illustrate the use of our
techniques via application to a Java-Tar utility and an FTP-server program, and dis-
cuss a prototype tool implementation which offers several abstraction techniques
for easy-viewing of generated counter-examples.

1 Introduction

Model checking [5, 18] is a widely used technique for verifying whether a system speci-
fication possesses a correctness property expressed in temporal logic. If the specification
fails to satisfy the property, a counter-example, in the form of a sequence of events lead-
ing to the violation of the property, is produced. The sequence can then be analyzed to
determine if it is a valid counter-example, or is due to an imprecise/erroneous specifi-
cation of the system or property. Such an event sequence is sometimes referred to as an
error trace.

Counter-examples play a prominent role in the recently developed technique of
abstraction refinement [1, 6, 7, 11, 12, 16, 17, 19]. In this setting, the model-checking
process uses abstract models of system specifications, as concrete models tend to be
intractably large or even infinite. The counter-examples generated, however, may be
infeasible in the concrete model, and hence the need for refinement of the abstract
model.

Counter-examples also play an important role in ensuring the security of mobile
code in the Model-Carrying Code (MCC) framework of [21]. In this approach, generic
security policies, specified as correctness properties, can be too restrictive for certain
mobile-code applications, resulting in security violations that could otherwise be avoided
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if the mobile-code consumer were willing to live with more lenient properties that would
allow the mobile code to carry out its intended function. In the MCC approach, a piece
of mobile code comes equipped with an abstract model of the code’s security-relevant
behavior. Counter-example generation can thus be used to reveal the extent by which
the consumer’s generic policies are violated; subsequent refinement of the policies by
the consumer enables the execution of the application to proceed normally. Note that the
refinement here is on the policy, rather than on the model as in traditional abstraction
refinement.

In both abstraction and policy refinement, the refinement is typically performed
iteratively by considering one counter-example at a time. We argue, however, that such
an approach may be overly simplified and the refinement process can be accelerated
by accounting for all counter-examples at once. In particular, it is often the case that
a shared sub-sequence of multiple counter-examples reveals a common root cause for
refinement.

To illustrate this point, consider the policy-refinement example of Figure 1. Model
checking the code fragment of Figure 1(a) against policy 1 of Figure 1(b), which disal-
lows any read or write operations, reveals that the policy is violated and two traces are
generated: 1 → 2 → 3 and 1 → 2 → 4. Examination of these counter-examples reveals
a common pattern—program point 1 is visited in both traces—and by refining the policy
to allow reading and writing only when preceded by a seteuid(root) system call
(policy 2 in Figure 1(b)), the desired policy is attained and no further counter-examples
are produced.

Note that it was the simultaneous consideration of all counter-examples that made
it possible to carry out the requisite policy refinement in one step. If counter-examples
were considered one at a time, multiple steps (two in this case) would have been needed
to reach the desired refinement. The intermediate policies in such an iterative process,
policies 3 or 4, are given in Figure 1(b).

Most of the proposed approaches to abstraction refinement are targeted to finite-
state system models. A natural question that arises then is: How are counter-examples
generated in the case of push-down systems (PDSs) and what form should these counter-
examples take? Since push-down models are a natural representation of sequential pro-
grams and play a crucial role in the treatment of potentially infinite state spaces that
arise in validating recursive programs, the importance of this question becomes appar-
ent. Although model checking of PDSs is an active area of research [4, 8–10], the topic
of counter-example generation for push-down models has gone largely uninvestigated
till now.

main() {
. . .
1. seteuid(root);
2. if (. . .)
3. read;

else
4. write;
. . .
}

Policies

1. ¬(read ∨ write)
2. read ∧ write with preceding seteuid(root)
3. read with preceding seteuid(root) ∧ ¬write
4. write with preceding seteuid(root) ∧ ¬read

Fig. 1. (a) Example program. (b) Policies to verify.
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In this paper, we address the issues highlighted above by virtue of a new algorithm
for the automatic generation of all counter-examples in a push-down system. Our main
contributions can be summarized as follows.

1. We introduce the notion of minimum-recursion loop-free (MRLF) counter-examples
for the reachability analysis of PDSs (Section 3). An MRLF counter-example con-
stitutes a finite representation of a potentially infinite sequence of state transitions in
a PDS and assumes the form of a sequence of control-location/stack-contents pairs.
The minimum-recursion loop-free aspect assures that these counter-examples do
not reflect any “unnecessary” recursive procedure calls, and are thus as “succinct”
as possible in a very precise sense of the word. To the best of our knowledge, this is
the first proposal for PDS counter-examples to appear in the literature.

2. We present a new two-phase algorithm that given a PDS and an extended finite-state
automaton (EFSA) representing the negation of a safety property, automatically
generates all relevant counter-examples of the property (Section 4). The first phase
of the algorithm operates in an on-the-fly, property-driven fashion to generate a
succinct, directed-graph representation of all possible error paths in the PDS-EFSA
product, while the second phase deploys a simple stack-content-guided backward
reachability analysis to construct actual MRLF counter-examples as needed.

3. The algorithm utilizes a mixture of symbolic and concrete representations. In par-
ticular, the graph representation produced by phase 1 uses regular expressions to
symbolically encode potentially infinite sets of PDS-EFSA state-pairs. Moreover,
the calculation of MRLF paths in phase 2 of the algorithm uses a symbolic encoding
of the PDS transition relation to determine the set of states the EFSA can end up in as
a result of a recursive procedure call. Phase 2 generates MRLF counter examples by
projecting abstract traces in the symbolic representation of the PDS-EFSA product
onto the concrete PDS model.

4. The algorithm also utilizes a notion of a frontier of final states in the PDS-EFSA
product: the execution paths leading to the set of final states reachable from an
initial state without visiting any other final states. Constraining the generated MRLF
counter-examples to fall within this frontier minimizes the number of violating paths
presented to the user while still providing enough information for the comprehension
of common patterns among counter-examples.

5. The algorithm has been carefully designed and implemented so that it is applicable
to finite-state system models as well as PDS models. Finite-state models are treated
by the algorithm as degenerate PDS models in which the stack depth is always equal
to one.

6. Our algorithm is applicable to properties augmented with state variables. State vari-
ables are needed, for example, to identify security-critical system behaviors, specif-
ically those related to system- and/or method-call arguments. Extended finite-state
automata are used to represent properties augmented with state variables.

7. We have developed a prototype implementation of our counter-example-generation
algorithm and a sophisticated graphical user interface that utilizes several abstrac-
tion techniques to render the counter-examples more comprehensible to the user
(Section 5). These include selective counter-example generation, folding and un-
folding of counter-examples based on a notion of “interesting event”, and selective
viewing of counter-example traces.
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8. We have applied our techniques to a number of real-life systems including a Java-
Tar utility and an FTP-server program (Section 6). A push-down model was used in
the former application and a finite-state model in the latter, thereby illustrating our
techniques on both kinds of system models.

2 Preliminaries

Push-Down System (PDS). A PDS is a triple P = (P, Γ, ∆) where P is a finite set of
control locations, Γ is a finite set of stack alphabets and ∆ ⊆ (P × Γ )× (P × Γ ∗) is a
finite set of transition rules. We shall use γ, γ′, . . . to denote elements of Γ and u, v, w, . . .
to denote elements of Γ ∗. We write 〈p, γ〉 ↪→ 〈p′, w〉 to mean that ((p, γ), (p′, w)) ∈ ∆.
We restrict our attention to PDSs where for every rule 〈p, γ〉 ↪→ 〈p′, w〉, |w| ≤ 2; any
PDS can be put into this form with at most a linear increase in size.

A state of P is a pair 〈p, w〉 where p ∈ P is a control location and w ∈ Γ ∗ is a stack
content. If 〈p, γ〉 ↪→ 〈p′, w〉, then ∀v ∈ Γ ∗ the state 〈p′, wv〉 is an immediate successor
of 〈p, γv〉. We say that 〈p, γv〉 has a transition to 〈p′, wv〉 and denote it by 〈p, γv〉 →
〈p′, wv〉. A run of P is a sequence of the form 〈p0, w0〉, 〈p1, w1〉, . . . , 〈pn, wn〉, . . .
where 〈pi, wi〉 → 〈pi+1, wi+1〉 for all i ≥ 0. A run can be finite or infinite.

In modeling the execution of a program, the stack content can be used to encode
execution snapshots, whereas the control location captures valuations of global variables.
The top of the stack points to the current program position, and the rest of the stack records
the return positions of all unfinished procedure calls. Each transition rule thus specifies
a change at the top of the stack. The set of control locations degenerates into a singleton
set {.} when procedures do not share variables. Henceforth, we shall consider PDSs
with P a singleton set. Figure 2(a) depicts one such PDS; since there is only one control
location, it is omitted from the transition rules. This PDS shall be used as a running
example in the paper. Note that procedure P of this PDS has multiple paths between s0
and s4. Among these, one has a loop between s5 and s6, and another can make multiple
recursive calls before reaching s3.

Extended Finite State Automata (EFSA). An EFSA is an 8-tuple E= (Q, Q0, F, X, E,
G, A, T ), where Q is a finite set of states augmented with variables in X , Q0 ⊆ Q
is the set of start states, F ⊆ Q is the set of final states, E is the set of events, G is
a set of boolean conditions defining equality or dis-equality constraints over elements
in X , A is a set of assignments which are of the form x := y with x, y ∈ X , and
T ⊆ Q×(E ×G×A)×Q is a set of transitions. A transition (q, (e, g, a), q′) is enabled
if in state q the event e ∈ E is present and the boolean condition g ∈ G is satisfied.
The EFSA then executes a ∈ A and moves from state q to state q′. We write q

e,g,a−→ q′

to denote that (q, (e, g, a), q′) ∈ T . A sequence of events is accepted by an EFSA if it
corresponds to a sequence of transitions from a start state to a final state.

To illustrate the definition, Figure 2(b) depicts the EFSA corresponding to the 8-tuple

({q0,q1}, {q0}, {q1}, {}, {e1,any}, {tt}, {}, {q0
any,tt,.−→ q0, q0

e1,tt,.−→ q1, q1
any,tt,.−→ q1}),

where the event any is the “wildcard event” (matches any event). This EFSA accepts the
sequence consisting of the event e1.
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Proc Main

Proc P

m0

m1

call(P)

s0

s1

s3

s5

s2

s4

s6

call(P)

P = {.}
Γ = {m0, m1, s0, s1,

s2, s3, s4, s5, s6}
∆ = {〈m0〉 ↪→ 〈s0m1〉,

〈m1〉 ↪→ 〈m1〉,
〈s0〉 ↪→ 〈s1〉,
〈s1〉 ↪→ 〈s0s3〉,
〈s3〉 ↪→ 〈s4〉,
〈s4〉 ↪→ 〈ε〉,
〈s0〉 ↪→ 〈s5〉,
〈s5〉 ↪→ 〈s6〉,
〈s6〉 ↪→ 〈s5〉,
〈s6〉 ↪→ 〈s4〉,
〈s0〉 ↪→ 〈s2〉,
〈s2〉 ↪→ 〈s4〉}

q0 q1

any

e1

any

(a) (b)

Fig. 2. (a) Control-flow graph and corresponding PDS. (b) EFSA.

Reachability Analysis. Given a PDS P and a reachability property expressed as EFSA
E , let λ ⊆ P × Γ × E be a relation that identifies an event in E of EFSA E based on
the control location and the top stack element of the PDS P . Reachability analysis is
performed by computing the product of P and E and then checking for an accepting path
in the product. We require that, for all p ∈ P and γ ∈ Γ , (p, γ, any) ∈ λ. The product
is a push-down automaton (PDA) PE = (PPE , P0, ΓPE , ∆PE , GPE) where

1. PPE ⊆ (P × Q) is the set of control locations.

2. P0 ⊆ PPE is the set of initial control locations (P0 ⊆ (P × Q0)).
3. ΓPE = Γ

4. ∆PE = {〈(p, q), γ〉, 〈(p′, q′), w〉 | 〈p, γ〉 ↪→ 〈p′, w〉, q e,g,a−→ q′, (p, γ, e) ∈ λ, and

g evaluates to true in q}
5. GPE = {(p, q) | q ∈ F}

As we are only considering PDSs with a singleton set P of control locations, by con-
trol locations in the product PE , we mean states in EFSA E . It follows that a state of PE
is a pair 〈q, w〉, where q ∈ PPE(= Q) is a control location and w ∈ Γ ∗

PE is a stack con-
tent. Moreover, a run of PE is a sequence of states 〈q0, w0〉, 〈q1, w1〉, . . . , 〈qn, wn〉, . . .
such that for all i ≥ 0, 〈qi+1, wi+1〉 is an immediate successor of 〈qi, wi〉 in the tran-
sition relation. Let IPE ⊆ {〈q, w〉 | q ∈ P0, w ∈ Γ ∗

PE} be the set of initial states and
FPE = {〈q, w〉 | q ∈ GPE , w ∈ Γ ∗

PE} be the set of final states of PE . An accepting
path in PE is a run of PE along which a final state is visited.

To illustrate the definition, Figure 3(a) presents the PDA corresponding to the product
of the PDS of Figure 2(a) and the EFSA of Figure 2(b), where (., s3, e1) ∈ λ. The only
initial state is 〈q0, m0〉. Any state with q1 as its control location is a final state.
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(a)

PPE = {q0, q1}, P0 = {q0}
ΓPE = {m0, m1, s0, s1, s2, s3, s4, s5, s6}, GPE = {q1}
∆PE = {〈q0, m0〉 ↪→ 〈q0, s0m1〉, 〈q1, m0〉 ↪→ 〈q1, s0m1〉, 〈q0, m1〉 ↪→ 〈q0, m1〉,

〈q1, m1〉 ↪→ 〈q1, m1〉, 〈q0, s0〉 ↪→ 〈q0, s1〉, 〈q0, s0〉 ↪→ 〈q0, s2〉,
〈q1, s0〉 ↪→ 〈q1, s1〉, 〈q1, s0〉 ↪→ 〈q1, s2〉, 〈q0, s1〉 ↪→ 〈q0, s0s3〉,
〈q1, s1〉 ↪→ 〈q1, s0s3〉, 〈q0, s3〉 ↪→ 〈q1, s4〉, 〈q0, s3〉 ↪→ 〈q0, s4〉,
〈q1, s3〉 ↪→ 〈q1, s4〉, 〈q0, s2〉 ↪→ 〈q0, s4〉, 〈q1, s2〉 ↪→ 〈q1, s4〉,
〈q0, s4〉 ↪→ 〈q0, ε〉, 〈q1, s4〉 ↪→ 〈q1, ε〉, 〈q0, s0〉 ↪→ 〈q0, s5〉, 〈q0, s5〉 ↪→ 〈q0, s6〉,
〈q0, s6〉 ↪→ 〈q0, s5〉, 〈q0, s6〉 ↪→ 〈q0, s4〉, 〈q1, s0〉 ↪→ 〈q1, s5〉,
〈q1, s5〉 ↪→ 〈q1, s6〉, 〈q1, s6〉 ↪→ 〈q1, s5〉, 〈q1, s6〉 ↪→ 〈q1, s4〉}

IPE = {〈q0, m0〉}
FPE = {〈q1, w〉 | w ∈ Γ ∗

PE}

(b)
{(q0, s0, q0), (q0, s0, q1), (q1, s0, q1), (q1, s0, q1), (q0, s2, q0), (q1, s2, q1), (q0, s1, q0),
(q0, s1, q1), (q1, s1, q1), (q0, s3, q0), (q0, s3, q1), (q1, s3, q1), (q0, s4, q0), (q1, s4, q1)
(q0, s5, q0), (q0, s6, q0), (q1, s5, q1), (q1, s6, q1)}

Fig. 3. (a) Product automaton. (b) Corresponding erase relation.

3 Minimum-Recursion Loop-Free (MRLF) Counter-Examples

Given a PDS P and an EFSA E representing the negation of an invariant property ϕ,
the existence of an accepting path in the product PE implies that P does not satisfy the
invariant. A run in PE from an initial state to a final state is referred to as a witness trace.
Counter-examples are obtained by projecting witness traces to the PDS as follows. Given
a witness trace 〈q1, w1〉, 〈q2, w2〉, . . . 〈qn, wn〉, the corresponding counter-example is
〈w1〉, 〈w2〉, . . . 〈wn〉.

Note that, due to unbounded recursion, there can be an infinite number of final states
in PE corresponding to an infinite number of stack configurations. Hence, there can also
be an infinite number of witness traces. The notion of minimum-recursion can be used to
identify the finite subset of witness traces that do not contain any unnecessary recursive
procedure calls. Our definition of minimum-recursion loop-free (MRLF) witness traces
is based on an Erase relation and an Effect (of the Erase relation) function.

Definition 1 (Erase relation). A tuple (qi, w, qj) ∈ Erase if there exists a run in PE
from 〈qi, w〉 to 〈qj , ε〉.

Computing the Erase Relation. Given an EFSA state q1 and a program point γ1 of a
procedure, we would like to compute the state q2 the EFSA will end up in when the
procedure exits. This is achieved by the least-model computation of the relation erase
defined as follows [3]:

1. (q1, γ1, q2) ∈ erase if 〈q1, γ1〉 ↪→ 〈q2, ε〉
2. (q1, γ1, q2) ∈ erase if 〈q1, γ1〉 ↪→ 〈q, γ〉 and (q, γ, q2) ∈ erase
3. (q1, γ1, q2) ∈ erase if 〈q1, γ1〉 ↪→ 〈q, γγ2〉, (q, γ, q′) ∈ erase and

(q′, γ2, q2) ∈ erase
The three rules apply respectively to the cases where PE makes a transition exiting,
within, and entering a procedure from the state 〈q1, γ1〉. Figure 3(b) gives the erase
relation corresponding to the product automaton of Figure 3(a).
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Predicate Erase lifts erase from ΓPE to Γ ∗
PE as follows:

(q1, γw, q2) ∈ Erase if (q1, γ, q) ∈ erase ∧ (q, w, q2) ∈ Erase

Tuple (q1, w, q2) ∈ Erase implies that there exists a run from 〈q1, w〉 to 〈q2, ε〉. Refer-
ring back to the example in Figure 3(b), tuples (q0, s3, q0), (q0, s3, q1), (q1, s3, q1) and
(q0, s3s3, q0), (q0, s3s3, q1), (q1, s3s3, q1) are in Erase.

Definition 2 (Effect of Erase). The Effect of the Erase relation on control location qi

with respect to w ∈ Γ ∗
PE (“the effect of erasing w on qi”) is

Effect(qi, w) = {qj |(qi, w, qj) ∈ Erase}.

The essence of deciding whether a recursive call to a procedure is necessary depends
on the effect of erasing the stack content accumulated since the first call to the procedure.
Let 〈q1, w1〉, 〈q2, w2〉, . . ., 〈qn, wn〉 be a run in PE . The consecutive states 〈qi, wi〉 =
〈q, γw〉 and 〈qi+1, wi+1〉 = 〈q′, γ′γ′′w〉 represent a call from the program point γ to a
procedure started at point γ′, with γ′′ being the continuation point upon return from the
called procedure. Note that the γ′′ in wi+1 = γ′γ′′w refers to the latest occurrence of
γ′′ in wi+1. Alternatively, we can expand wi+1 as γ′u1γ

′′u2, γ
′′ 
∈ u2, with γ′′ being

its earliest occurrence in the stack and states 〈qk, γu2〉 and 〈qk+1, γ
′γ′′u2〉 being two

consecutive states in the run such that k ≤ i. Hence, w represents the stack content
accumulated before the recursive call at state i, and u2 (a suffix of w) is the accumulated
content before the first such call at the state indexed byk. It follows thatwD = γ′′(w−u2)
denotes the increase in the stack due to recursive calls. Note that wD is just γ′′ if the call
at state i is the first such call.

Assume conservatively that each recursive call can move the PE to any control
location qi ∈ PPE before exiting the call, i.e., when γ′′ is at the top of the stack. For
each such qi, the effect of erasing the stack increase due to recursions is Effect(qi, wD).
Therefore, if, between two consecutive recursive calls, the effect of such erasing is the
same for every possible control location, the latter recursive call is unnecessary.

Definition 3 (Minimum-recursion loop-free witness trace). A witness trace in PE is
minimum-recursion loop-free if the following conditions hold:

1. Each state appears exactly once.
2. If w and v are the stack increases due to recursion for two consecutive recursive

calls of a procedure, then ∃q such that Effect(q, w) 
= Effect(q, v).

Condition 1 ensures that the witness trace is cycle-free. Condition 2 states that if the
effects of two consecutive recursions of a procedure are identical, then the second recur-
sion is unnecessary. In fact, because we have considered all possible control locations in
comparing the effects of the current set of consecutive recursive calls, any subsequent
recursions upon exiting will reach one of those control locations and produce the same
effect. Therefore, no more recursions are necessary.

To illustrate the definition of minimum-recursion, consider the example of Fig-
ure 2, the corresponding product in Figure 3(a), and the witness trace W = 〈q0,m0〉,
〈q0,s0m1〉, 〈q0,s1m1〉, 〈q0,s0s3m1〉, 〈q0,s1s3m1〉, 〈q0,s0s3s3m1〉, 〈q0,s2s3s3m1〉,
〈q0,s4s3s3m1〉, 〈q0,s3s3m1〉, 〈q1,s4s3m1〉. W contains consecutive recursive calls
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to procedure P from states 〈q0, s1m1〉 and 〈q0, s1s3m1〉. Since ∀i, Effect(qi, s3) =
Effect(qi, s3s3) based on the Erase relation computed above, W is not a minimum-
recursion witness trace.

Notion of Frontier Set. The frontier of PE final states is defined to be the set of witness
traces leading to final states reachable from an initial state without visiting any other
final states. By considering only minimum-recursion witness paths that fall within this
frontier, we can further constrain the collection of counter-examples that should be
presented to the user.

4 Algorithm for Counter-Example Generation

Our algorithm for counter-example generation proceeds in two phases. The first phase
constructs an abstract graph representation, the B-graph, of all possible witness traces.
Each node in the graph is a pair consisting of a control location and the top element of
the stack, annotated by a regular expression defining the rest of the stack content. That
is, a B-graph node symbolically encodes the set of concrete states of the PDS-EFSA
product that share the same control location and top element of the stack. B-graphs are
constructed in a goal-directed fashion where exploration ceases upon visiting all final
states of the PDS-EFSA product. In phase 2, the B-graph is traversed starting from
the nodes encoding the final states and minimum-recursion loop-free witness traces are
constructed.

B-graph construction proceeds in two steps. In the first step, the transition rules of
PE are used to generate an intermediate graph called the rule-graph. Each node in the
rule-graph is a tuple of the form (q, γ) where q ∈ PPE and γ ∈ ΓPE . The transition
relation � of the rule-graph reflects changes of control locations and stack contents
when PE moves between states: the source and destination nodes of an edge in the rule-
graph signify changes in the control location and the top element of the stack, whereas
the edge label captures the change in the rest-of-stack content. An edge labeled by ε
indicates no change to the rest of the stack. An edge labeled by a stack-alphabet symbol
γ indicates that γ is pushed onto the rest of the stack in the destination state when the
transition is taken. Finally, an edge labeled by “−γ” indicates that the rest of stack of the
destination state can be obtained by removing a leading γ from the rest of the stack of the
source state. For illustrative purposes, the rule-graph corresponding to the push-down
automaton of Figure 3(a) is presented in Figure 4(a).

Step 2 of the B-graph-construction procedure annotates each node of the rule-graph
with a regular expression defining the corresponding rest-of-stack content. Consider a
node 〈q, γ〉 in the B-graph. If we view the rule graph as a finite-state automaton with
final state 〈q, γ〉, then the regular expression we seek is the one that denotes the set of
strings accepted by this automaton. Special consideration, however, must be paid to the
interpretation of the concatenation operator on symbols of the form −γ. In particular,
we have: γ.(−γ) = ε, (−γ).γ = ε, ε.(−γ) = −γ and (−γ).ε = −γ. For all other cases,
concatenation involving −γ is undefined. Figure 4(b) depicts the B-graph corresponding
to the rule-graph of Figure 4(a).

Figure 5 contains the pseudo-code of our algorithm. Phase 1 of the algorithm invokes
procedure constructB-graphwhich first generates the rule-graph from the product



Generation of All Counter-Examples for Push-Down Systems 87

q0, m0

m1

q0, s0
s3

q0, s1

ε

q0, s2

q0, s4

q0, s3

q1, s4

-m1

ε

q0, m1

q0, s6

ε

q0, s5

-s3

ε

ε

ε

ε

ε

ε

q0, m0

m1

q0, s0 (s∗
3m1)

s3

ε

q0, s1 (s∗
3m1)

ε

q0, s2 (s∗
3m1)

q0, s5 (s∗
3m1)

εε

ε q0, s4 (s∗
3m1)

ε

ε

q0, s3 (s∗
3m1)

-m1

q0, m1

ε

q1, s4 (s∗
3m1)

-s3
q0, s6 (s∗

3m1)

ε

(a) (b)
W1 :: 〈q0, m0〉, 〈q0, s0m1〉, 〈q0, s1m1〉, 〈q0, s0s3m1〉, 〈q0, s5s3m1〉, 〈q0, s6s3m1〉,

〈q0, s4s3m1〉, 〈q0, s3m1〉, 〈q1, s4m1〉
W2 :: 〈q0, m0〉, 〈q0, s0m1〉, 〈q0, s1m1〉, 〈q0, s0s3m1〉, 〈q0, s2s3m1〉, 〈q0, s4s3m1〉,

〈q0, s3m1〉, 〈q1, s4m1〉
(c)

Fig. 4. (a) Rule-graph. (b) B-graph. (c) Witness traces.

transition rules. Each node is identified by a unique index from 1 to n where n is the total
number of nodes in the rule-graph. Next, the B-graph is generated from the rule-graph
by annotating each node of the rule-graph with the corresponding regular expression.
Note that the edge labels for the rule-graph and the B-graph are the same. Generation
of regular expressions is performed by function regExp [14, Chapter 2]: the result of
the function call regExp(i, j, k) is a regular expression representing the set of strings
defined by the sequences of transitions from node i to node j such that the indices of the
intermediate nodes are less than or equal to k.

Phase 2 of the algorithm runs procedure constructPaths, which generates all
minimum-recursion loop-free witness traces via a backward-reachability analysis of the
B-graph. Starting from each node 〈q, γ〉, q ∈ GPE in the B-graph, let r be the regular
expression annotating the node, Sr the set of strings accepted by r, and Sk

r = {s | s ∈
Sr, |s| = k}. The procedure concretizes the stack content of each PE state represented
by the node, those with minimum stack depth first, and validates their reachability from
the initial state by traversing backward through the edges. That is, it starts with the set
of stack contents {γw | w ∈ S

min(k)
r }, exhaustively validates all the corresponding

states before moving on to the next set of stack contents, {γw′ | w′ ∈ S
min(k)+1
r }.

For example, referring to node 〈q1, s4〉 in Figure 4(b), the procedure first analyzes state
〈q1, s4m1〉, then the state 〈q1, s4s3m1〉, and so on.

Backward reachability proceeds as follows. Given an edge from node 〈q, γ〉 to node
〈q′, γ′〉 with label l, a concrete state 〈q′, γ′w〉 at node 〈q′, γ′〉, we compute the corre-
sponding concrete state at node 〈q, γ〉 as:
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contructB-graph {
/* create Rule-graph:

nodes and transition relation */
i=1;
make-node(q0, γ0); setId(q0, γ0, i);
/* q0, γ0 is an initial state of PE */
foreach 〈q, γ〉∈PPE ×ΓPE {

i++; make-node(q, γ);
setId(q, γ, i);

}
n= i; /* number of nodes */
foreach 〈q, γ〉 ↪→〈q′, γ′〉 && q /∈ GPE

add transition 〈q, γ〉 ε
�〈q′, γ′〉;

foreach〈q, γ〉 ↪→〈q′, γ′γ′′〉 && q /∈ GPE

add transition 〈q, γ〉γ′′
� 〈q′, γ′〉;

foreach 〈q, γ〉 ↪→〈q′, ε〉 && q /∈ GPE {
foreach 〈q1, γ1〉 ↪→〈q2, γ′γ′′〉

add transition 〈q, γ〉−γ′′
� 〈q′, γ′′〉;

}

/* create B-graph: annotate nodes with
the associated regular expressions */

foreach 〈q, γ〉 {
i= getId(q, γ);
setRegExp(q, γ, regExp(1, i, n));
/* regExp returns the regular expression

associated with node i, i.e. 〈q, γ〉
*/

}
}

regExp(i, j, k) {
if exp(i, j, k, e) ∈ store then return(e);
else {
if (k=0) then {
getNode(i, q, γ); getNode(j, q′, γ′);

if 〈q, γ〉 e
�〈q′, γ′〉 then {

insertStore(exp(i, j, k, e)); return(e);
}
else { /* unreachable */
insertStore(exp(i, j, k, ⊥)); return(⊥);

}
}
else {
e1 = regExp(k, k, k−1);
e= regExp(i, j, k−1) ∪

regExp(i, k, k−1).e∗
1 .regExp(i, k, k−1);

insertStore(exp(i, j, k, e));
return(e);

}
}

}
constructPaths(B-graph) {

len=0;
foreach 〈q, γ〉 ∈ B-graph && q∈GPE {
getExp(q, γ, r);
foreach s∈Sr && length(s)= len {
if there is no such string s then len++;
else {
N =findAllPaths((q, γ s), init-state);
/* generate all minimum-recursion loop-free paths

and return number of such paths as N */
if N !=0 then len++; else break;

}
}

}
}

Fig. 5. Pseudo-code for construction of B-graph and counter-example traces.

1. 〈q, γw〉 if l = ε
2. 〈q, γv〉 if l = γ′′ and w = γ′′v
3. 〈q, γγ′w〉 if l = −γ′

A trace of concrete states is constructed by depth-first traversal starting from a concrete fi-
nal state leading to the initial state following the above-mentioned backward-reachability
process.

A newly constructed trace may not be minimum-recursion loop-free. Whenever
we construct a trace, we check whether the minimum-recursion loop-free condition is
satisfied. Procedure constructPaths terminates when, for a particular set of strings
Sn

r , n > min(k), it fails to generate any minimum-recursion loop-free traces. From
Condition 2 of Definition 3 it follows that for all m ≥ n, there exists no MRLF trace for
the strings Sm

r .
Because the B-graph encodes all transition rules starting from a control location

q 
∈ GPE and ending at all possible control locations, any counter-example in the frontier
set will have a matching trace in the B-graph that reaches a final state. The procedure
constructPaths ensures that all MRLF witness traces are exhausted.
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Figure 4(c) lists the minimum-recursion loop-free witness traces W1 and W2 gen-
erated from the B-graph of Figure 4(b). Projecting these traces onto the program model
yields the following counter-examples: 〈m0〉, 〈s0m1〉, 〈s1m1〉, 〈s0s3m1〉, 〈s5s3m1〉,
〈s6s3m1〉, 〈s4s3m1〉, 〈s3m1〉, 〈s4m1〉 and 〈m0〉, 〈s0m1〉, 〈s1m1〉, 〈s0s3m1〉, 〈s2s3m1〉,
〈s4s3m1〉, 〈s3m1〉, 〈s4m1〉, respectively.

Note that both counter-examples contain the intermediate state 〈s1m1〉, a common-
ality that would not be evident if counter-examples were presented one at a time. Upon
examination of both counter-examples, the user may decide to introduce another event
e2, (., s1, e2) ∈ λ, and refine the property so that EFSA E only accepts sequences along
which event e1 is observed without any preceding e2 event. Subsequent model checking
will reveal that no such sequence is present in the PDS.

Complexity. B-graph construction amounts to the computation of regular expressions
for each of the nodes. This can be performed in O((|PPE | × |ΓPE |)3) time, where
|PPE | × |ΓPE | is the number of nodes in the B-graph. The process of generating all
witness traces from the B-graph requires time exponential in the number of nodes in
the graph. The number of possible final states (determined by the stack content) is
exponential in the number of stack alphabets (|ΓPE |). For each such state, we consider
all possible paths (2|PPE |×|ΓPE |) from the initial state making the overall complexity
exponential in |ΓPE | + (|PPE | × |ΓPE |).

Counter-Example Generation for Finite-State Models. The above discussions on reach-
ability and counter-example generation for push-down systems are directly applicable
to finite-state system models. A finite-state model can be viewed as a push-down system
where the stack depth is always one: the top-of-stack alphabet is always replaced by
a new stack alphabet leading to no change in the stack depth. The product of a finite-
state model and an EFSA can be computed in exactly the same way as described above.
Likewise, the rule-graph and B-graph construction procedures do not change.

Counter-example generation becomes simpler as we do not need to consider mini-
mum-recursion paths: there are no recursive procedure calls in finite-state systems.
Therefore the only condition imposed on witness traces is that they should be loop-
free.

5 Prototype Implementation

A prototype implementation of our counter-example generation algorithm along with a
sophisticated graphical user interface has been carried out in XSB Prolog [22], a tabled
logic-programming environment built at SUNY, Stony Brook. XSB extends Prolog-style
SLD resolution with tabled resolution. The principal merits of this extension are that XSB
terminates more often than Prolog (e.g. for all datalog programs), avoids redundant sub-
computations, and computes the well-founded model of normal logic programs. These
capabilities allowed us to effectively encode the transition relations of the given PDS and
EFSA as logical relations, as well compute the least relation Erase defined in Section 3
and the function regExp(i, j, k) of Figure 5.

For displaying counter-example traces to the user, we use XVCG [20], a graph-
viewing utility for displaying call-graphs, flow diagrams, and the like. Counter-examples
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are presented with annotations on both states and transitions. Each state is identified
by the entire stack content at that particular program point; the user can also select a
simplified view where only the top-of-stack content is shown. Transitions are labeled
by call/direct/exit depending on whether they represent a procedure call, direct
transfer, or procedure exit, respectively.

Our implementation provides several facilities that aid the user in counter-example
visualization and comprehension. One basic one is to allow the user to pre-select any
number of counter-examples to be generated, particularly useful when there are large
numbers of counter-example traces to the same final state. The implementation will
also identify the shortest such counter-example. Further, the user is given the option of
viewing any subset of generated traces.

Another feature is counter-example abstraction. This is performed by hiding all
uninteresting method or system calls, thus folding sequences of states into a single
abstract state. By uninteresting method/system calls we mean actions for which there
is no state-change in the property automaton. For example, in Figure 4(b), the only
interesting transition is the return from the procedure call to P; i.e., the transition from
configuration (q0, s3(s∗

3m1)) to (q1, s4(s∗
3m1)), with concomitant state-change from q0

to q1 in the property automaton. Abstracted counter-examples help the user focus on
the most critical aspects of violating traces. Users can also unfold abstracted counter-
examples to view the individual steps in the trace.

Frontier sets are computed by the implementation to eliminate redundant counter-
examples. Minimizing the number of counter-examples presented to the user can signif-
icantly aid overall comprehension of system behavior.

6 Case Studies

We describe two applications of our counter-example-generation techniques. Both in-
volve the Model-Carry Code (MCC) framework of [21] for ensuring the security of
mobile code, a brief discussion of which was given in Section 1. The first application is
a publicly available tar-utility package written in Java that allows users to read and write
tar archives using Java input and output streams. One important feature of the program
is that if a directory is specified in the input stream, it recursively descends down the
specified directory hierarchy and presents the archived files in the output stream. Such
recursive behavior cannot be adequately represented by finite-state automata because of
the presence of a stack. Hence, we used a push-down model to represent the behavior of
the tar-utility program.

For security purposes, the code consumer requires that the utility does not read from
or write to files not specified as input arguments. The negation of this policy is specified
as the EFSA given in Figure 6(a). It records in state p2 the input arguments of the tar-
utility, with Archive the output file and To-Tar the file/directory to be archived. The
final state p3 is reached via transitions labeled by actions on input or output streams with
arguments that do not match To-Tar or Archive.

Model checking our push-down model of the utility reveals that the policy is vio-
lated; all counter-examples are presented in a convenient tree-like layout as illustrated
in Figure 7. The counter-examples indicate that the program reads files not specified as
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(a)

any

any

com.ice.tar.tar.createTar(archive,To-Tar)

java.io.FileInputStream.〈init〉(name)
prefix(name) 
= To-Tar

name 
= archive
java.io.FileOutputStream.〈init〉(name, )

p1 anyp2(archive, To-Tar) p3

(b)

setresuid open(etc/passwd)

any

any

p3 p1 p2

any

Fig. 6. (a) Tar Policy. (b) Ftp Policy.

G2

G3

G4

s(main.com.ice.tar.tat.createTar, [archivename, file], 206110)

s(main.sun.misc.URLClassPath$FileLoader.getResource, [],780641)

s(main.misc.URLClassPath$FileLoader.getResource, [],780642)

s(main.java.io.FileInputStream.<init>, [name],5810)

Fig. 7. Snapshot of vcg output for Tar-utility example.

an input argument; in particular, it requires access to dynamically loaded class files. Pre-
sentation of all counter-examples expedites recognition of this root cause of all violating
paths in the system. After refining the policy to allow reading of class files, the model
checker reports that the PDS model satisfies the refined policy.

The second example is an ftp-server program for Linux, available from
ftp.openbsd.org. Among other things, this program allows a remote user to ex-
ecute commands such as ls and cd at the ftp server-site. Before doing so, however,
the ftp-daemon must check that the user is authorized to issue these commands. This
is accomplished by password-validation for which the ftp-daemon has to read from the
/etc/passwd file. Once the user is successfully authenticated the ftp daemon estab-
lishes the uid for running such commands with setresuid. An interesting property
to check therefore is: before issuing the system call setresuid there should be a call
to open(/etc/passwd).

We encoded the negation of this policy using the EFSA of Figure 6(b). The final
state (p3) is reachable only when there is no open(etc/passwd) system call pre-
ceding setresuid. Model checking a finite-state model of the ftp program against
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this policy produced numerous counter-examples, closer inspection of which revealed
that the violations occurred due to abstraction performed during model generation. The
abstraction in question introduced non-deterministic branch points into the model; this
resulted in infeasible paths which were the source of the counter-examples.

7 Related Work

Related work in the areas of abstraction refinement and model checking of push-down
systems has been discussed previously in Section 1. In other related work, [11] presents
a technique where multiple counter-examples are used iteratively (one at a time) for
refining an abstract system model. In [2, 13], the generation of counter-examples from
the model checking of sequential-program models (control-flow graphs and labeled
transition systems, respectively) is considered. The goal is to identify the root cause of
error traces resulting from multiple executions of the model checker.

In contrast to these approaches, our algorithm produces a succinct symbolic represen-
tation of all possible witness traces of a push-down system, and subsequently generates
all minimum-recursion loop-free counter-examples from this data structure. Collective
analysis of these counter examples may then be used to identify the common root cause
of security-policy violations and to refine policies where appropriate. As emphasized in
[15], the presentation of all possible counter-examples minimizes the number of model-
checking runs required.

8 Discussion

In this paper, we presented an algorithm that given a push-down model representing a
sequential program with (recursive) procedure calls and an extended finite-state automa-
ton representing (the negation of) a safety property, generates all minimum-recursion
loop-free counter-examples. Our algorithm is also applicable, without modification, to
finite-state system models. The utility of our techniques was illustrated via application to
a Java-Tar utility and an FTP-server program, and a prototype tool implementation offer-
ing a number of abstraction techniques for easy-viewing of generated counter-examples
was discussed.

As future work, we are exploring the use of machine-learning techniques to automat-
ically identify commonality between counter-examples; the main idea is to recognize
the longest common subsequence of action sequences on multiple counter-examples.
Such pattern recognition enhances the usability of the tool. Another important avenue
of research is to extend our techniques to the model checking of push-down systems for
liveness properties. The major issue here is to define a finite representation for counter-
examples and to extract such violating traces from model-checking results.
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