
An Efficient and Backwards-Compatible Transformation
to Ensure Memory Safety of C Programs∗

Wei Xu, Daniel C. DuVarney, and R. Sekar
Department of Computer Science, Stony Brook University

Stony Brook, NY 11794-4400

{weixu,dand,sekar}@cs.sunysb.edu

ABSTRACT
Memory-related errors, such as buffer overflows and dangling point-
ers, remain one of the principal reasons for failures of C programs.
As a result, a number of recent research efforts have focused on the
problem of dynamic detection of memory errors in C programs.
However, existing approaches suffer from one or more of the fol-
lowing problems: inability to detect all memory errors (e.g., Pu-
rify), requiring non-trivial modifications to existing C programs
(e.g., Cyclone), changing the memory management model of C to
use garbage collection (e.g., CCured), and excessive performance
overheads. In this paper, we present a new approach that addresses
these problems. Our approach operates via source code transforma-
tion and combines efficient data-structures with simple, localized
optimizations to obtain good performance.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering;
D.2.4 [Software Engineering]: Software/Program Verification

General Terms
Reliability, Security, Languages

Keywords
Memory Safety, C, Program Transformation

1. INTRODUCTION
The C programming language is commonly used for systems

programming because of its speed and the precise control it pro-
vides over memory allocation. Unfortunately, this control is more
than most programmers can fully manage, as evidenced by the prof-
ligate frequency of bugs such as memory leaks, dangling point-
ers, and buffer overruns in commercial C programs. Such mem-
ory errors are one of the most common reasons for software fail-
ures. Moreover, these errors are hard to track down, and hence
contribute significantly to the effort needed for testing and debug-
ging C programs. Even worse, memory errors are the culprit behind
most of today’s security vulnerabilities in software. Consequently,
a number of research efforts have focused on the problem of detec-
tion/elimination of this class of errors.
∗This research is supported in part byNSF grants CCR-0098154
and CCR-0208877, and an ONR grant N000140110967.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12,Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

Intuitively, a memory error occurs in C programs when the object
accessed via a pointer expression is different from the one intended
by the programmer. The intended object is called the referentof the
pointer. Memory errors can be broadly classified into spatial errors
and temporal errors, as described below.

A spatial error occurs when dereferencing a pointer that is out-
side the bounds of its referent. Common spatial errors include ar-
ray bounds errors, dereferencing of uninitialized or NULL pointers,
and dereferencing pointers obtained by invalid pointer arithmetic.

A temporal error occurs when dereferencing a pointer whose ref-
erent no longer exists (i.e., it has been freed previously). Of par-
ticular significance are temporal errors involving a pointer whose
referent has been freed and subsequently reallocated to a different,
unrelated object. In this case, an access of this pointer can change
the unrelated object. Moreover, the change will go undetected until
the other object is accessed, which may happen much later in the
program’s lifetime. This means that the symptom of the error will
be spatially and temporally removed from the underlying erroneous
pointer operation, making debugging very difficult.

The distinction between spatial and temporal errors is important
because much prior work [22, 33] has addressed spatial errors, but
only provided limited support for the detection of temporal errors.
An easy way to avoid temporal errors is to ignore free operations,
and rely on garbage collection to free unused memory. In addi-
tion, local variables accessed via pointers may need to be moved
from the stack to the heap to ensure that they are not freed. This is
the approach taken in many recent works such as CCured [26] and
Cyclone [19], and has played a significant role in reducing their
overheads to an acceptable level. In contrast, approaches that han-
dle temporal errors, such as [20, 2, 17] have suffered high perfor-
mance penalties, typically ranging from a few hundred percent to a
thousand percent. Even among these approaches, it is common to
handle just the first class of temporal errors mentioned above, but
not the second class (i.e., dangling pointer to reallocated memory).
Techniques such as [20] fall in this category.

Based on the above discussion, the problem of developing an ef-
ficient approachfor detecting temporalas well as spatialmemory
errors in C programs has remained open. We address this prob-
lem in this paper, and present a solution based on source-to-source
transformation.

1.1 Benefits of the Approach
The approach described in this paper has the following benefits:
• It can handle most C programs, with almost no source code

changes. For instance, our current prototype successfully trans-
formed eighteen benchmark programs ranging in size from a
few hundred to 29,000 lines of code. The source code changes
needed were due to the use of customized memory management
functions, which are not supported in our prototype.

• All spatial and temporal errors are detected.

• No changes are made to the memory allocation model. Freed
memory is immediately returned to the heap for reuse.

• As compared to previous techniques that handle temporal er-
rors, our approach is faster by at least a factor of two.

The approach described in this paper handles all C programs that do
not perform the following operations: (a) make use of customized
memory management functions, (b) cast integers to pointers, or (c)
cast a pointer to a structure of one type into a pointer to structure
of an unrelated type. By (c) we mean that the casting of structures
must follow an upcast/downcast paradigm. An upcast of a struc-
ture is a cast to another structure which is shorter in length, while
downcast denotes the inverse operation. An upcast (or downcast) is
permitted by our transformation, provided the larger structure con-
tains pointer fields at all and only the offsets where pointers are
present in the shorter structure. C programs typically do not vio-
late these restrictions, as shown by the fact that all the benchmark
programs described in Section 5 were successfully handled while
requiring almost no source code modifications. Even so, it is pos-
sible to relax these restrictions, as discussed in Section 7.

A key feature of our approach is that for programs which obey
the casting restrictions, all spatial and temporal errors are promptly
detected, without changing the memory allocation model. This has
some important benefits over the approaches used by CCured [26]
and Cyclone [19], which rely on a garbage collector (specifically,
the Boehm-Demers-Weiser conservative garbage collector [6]) to
ensure temporal memory safety. Garbage collection makes the run-
time overhead of a program unpredictable, negating one of the pri-
mary benefits of C, namely, the fact that the performance charac-
teristics of a C program are directly manifest in the source code.
Moreover, the nature of the C language requires the garbage collec-
tor to use a conservative approach, which means that some memory
may not be reclaimed, resulting in memory leaks. These factors
make it impractical to switch to a garbage collection model for sev-
eral classes of applications, such as OS kernel or applications with
strict response-time constraints. For these classes of applications,
the approach presented in this paper will be more appropriate.

1.2 Organization of the Paper
Section 2 provides an overview of our basic transformation. An

extension of this technique to handle casts is presented in Section 3.
Simple, local optimizations to reduce performance overheads are
discussed in Section 4, followed by experimental results in Sec-
tion 5. Related work is discussed in Section 6. Section 7 discusses
extensions to the approach, and summarizes the results of the paper.

2. BASIC TRANSFORMATION
Our basic transformation is conceptually similar to that of Patil

and Fischer [28], which in turn is closely related to the Safe-C ap-
proach [2]. However, the specific details in the description below
are based on our implementation.

The Safe-C approach maintains extra information (henceforth
called metadata) with each pointer variable to detect spatial and
temporal errors at runtime. Safe-C uses fat pointers, which store
metadata together with the pointer. Unfortunately, this changes the
space requirements for a pointer, thereby changing structure lay-
outs. This creates a number of compatibility problems:
• Breaks many programs.Systems programs often make assump-

tions regarding the size of pointers and the layouts of structures.
For instance, they may assume that the size of integers and
pointers will be the same. Another typical assumption is that,
in a union consisting of an integer and pointer, a value stored as
a pointer may be read as an integer. These assumptions are no

longer valid when normal pointers are replaced by fat pointers,
and hence such programs need to be modified before they will
work correctly with the transformation.

• Compatibility with libraries. Since fat pointers change struc-
ture layouts, compatibility with precompiled libraries is lost.
(Such libraries will access fields in structures using offsets based
on untransformed layout of structs, and hence will access incor-
rect fields or maybe the metadata stored within the fat pointers.)

For these reasons, we separate metadata from the pointer. Our
approach for maintaining this metadata is described below.

2.1 Metadata Representation and Maintenance
Our technique detects memory access errors at the level of mem-

ory blocks, which correspond to the least units of memory alloca-
tion, such as a global or local variable, or memory returned by a
single invocation of malloc. It flags memory errors only at a point
where a pointer is dereferenced. Other operations, e.g., the assign-
ment of a pointer from an arbitrary expression, won’t cause errors.

For a pointer p, the following metadata fields associated are main-
tained in a variable named p info.
• base: the base address of the memory block pointed by p.
• size: the size (in bytes) of the memory block.
• cap ptr, cap index: used to detect temporal errors.
• link: a pointer to a structure that contains metadata for point-

ers that are stored within *p. (See Section 2.3 for further infor-
mation on this field.)

A spatial error is reported when dereferencing a pointer if its
value falls outside the interval [base, base + size). To detect
temporal errors, we first associate a unique capability with each
memory block. A capability is created when a block is allocated
(on stack or heap), and stored in a global capability store (GCS).
When a pointer to a block B is assigned to a variable p, a pointer
to B’s capability is stored in p info.cap ptr. When the memory
block is freed, the associated capability (in the GCS) is marked in-
valid. Thus, to check for temporal errors, we simply need to check
if cap ptr points to a valid capability.

The above approach has the benefit that each capability requires
just one bit of storage, but suffers from the drawback that this stor-
age cannot be reused. As a result, a program performing a large
number of memory allocations will eventually run out of memory.
To support reuse of capabilities, the above technique is modified
as follows. Each capability is given a non-zero 32-bit integer in-
dex value. (A value of zero denotes an invalid capability.) This
value is also stored in a second metadata field cap index. A ca-
pability is considered valid for a pointer p if (p info.cap index

== p info.cap ptr->index). Now, a capability slot in the GCS
can be reused as long as the capability value is changed before each
reuse. With a 32-bit capability index, this approach allows capabil-
ities to be reused 232 times before they become unusable. Alterna-
tively, we may allow the index to wrap around (skipping over zero),
treating the probability of temporal errors being missed due to such
wrap-around as negligible.

2.2 Capability Store Management
Note that global variables are always temporally valid, so they

all share a single capability that is stored in a global variable. For
heap and stack allocated objects, their capabilities are held in the
heap and stack capability stores (HCS and SCS) respectively. The
GCS consists of all the above three components.

HCS is an expandable array. Each slot in the array may store
a valid capability, or it may be free. Unused slots in the HCS are
organized into a linked list called the free list. This means that a

used HCS slot contains a capability index, whereas an unused slot
contains a pointer to next available slot in the HCS free list. To
distinguish between the two types of information, we ensure that
the least significant bit (LSB) of valid capability indices is always
one, whereas the LSB of pointers in the HCS free list is always
zero. (This is because the pointers are aligned on a 32-bit bound-
ary.) This means that there are 231 possible capability values.

When a memory block is allocated on the heap, a capability for
this block is allocated from the head of the HCS free list. When a
memory block is freed, its capability is inserted at the beginning of
the HCS free list. Since valid capability index values are different
from pointers in the free list, the insertion of a capability into the
free list immediately causes it to become invalid.

The SCS is allocated separately from HCS since capabilities on
the SCS are allocated in a LIFO manner. Note that all of the local
variables for a function are allocated and freed together. Hence, we
can use a single capability for all of the local variables (as opposed
to one per variable). This stack frame capabilityis pushed on the
SCS on a function entry, and popped off on exit.

2.3 Source Code Transformation

2.3.1 Declarations
For each type and pointer variable declared in the original pro-

gram, additional declarations are introduced in the transformed pro-
gram for holding metadata, as illustrated below.

Original Additional

struct stu {
int id;
char *name;

};

struct stu s;

struct ptr_info {
void *base;
unsigned long size;
capability *cap_ptr;
unsigned long cap_index;
struct ptr_info *link;

};
struct stu_info {

struct ptr_info name_info;
};
struct stu_info s_info;

struct stu *p;

struct {
void *base;
unsigned long size;
capability *cap_ptr;
unsigned long cap_index;
struct stu_info *link;

} p_info;

For each structure s which contains pointer fields, a corresponding
structure s info is introduced to hold metadata pertaining to the
pointer fields of s. For array variables, a corresponding array is
introduced to hold metadata pertaining to the elements of the array.
For each pointer p, the corresponding metadata variable p info

is initialized so as to ensure that any access to p (before its first
assignment) will raise spatial and temporal errors.

2.3.2 Pointer assignments
Pointer assignments fall into three categories: (a) assignment of

one pointer value to another, (b) creation of a pointer value through
pointer arithmetic, (c) creation of a pointer value through the & op-
erator or malloc. Transformation for pointer assignments is very
simple: when q is assigned to p, an assignment p info = q info
is introduced in the transformed program. For pointer arithmetics
such as p++, the link field of p info is also increased accordingly
(more precisely, p info.link++) in the transformation. Just like
invalid pointers are permitted in C programs as long as they are

not dereferenced, the link fields are permitted to contain invalid
addresses, but are checked before accesses.

For pointer creation, the following transformation is used for a
statement that assigns a malloc-returned block to a pointer p. The
size and base fields of p info are initialized from the argument
and return values of malloc. In addition, a new capability is allo-
cated for this block on the HCS. A pointer to this capability is stored
in p info.cap ptr, and its index stored in p info.cap index.
In addition, the malloc call is modified to allocate additional stor-
age to hold metadata pertaining to pointers that are to be stored
within the block. The type of p indicates what fields within the
block will contain pointers. This metadata is initialized to indicate
that none of the pointers within the malloc’d block are valid.

Note that malloc may be used to allocate storage for an array
rather than a single object. The size argument of malloc is used to
determine whether the allocation is for a single object or array. In
the latter case, p info refers to an array rather than a single struct.
Code must be generated to initialize all of the elements of p info.
In addition, the metadata pertaining to pointers within each of the
array elements needs to be initialized.

When pointers are created using the & operator, the situation is
very similar. In particular, consider the assignment p = &q. The
base and size fields are initialized from the location and size in-
formation pertaining to q, which is available from the symbol table.
If q is a global variable, then the capability fields of p info are ini-
tialized from the capability shared by all global variables. If q is
local, then the capability fields are initialized to a pointer to the
top of SCS (i.e. the current frame’s capability). If q contains em-
bedded pointers, then a variable q info would already have been
introduced by the transformation. In this case, the link field is
initialized using the assignment p info.link = & q info. Note
that this statement has the effect of sharing p info.link rather
than copying it. This is not an optimization, but is a necessary step
to ensure that the transformation handles aliasing effects correctly.

2.3.3 Pointer dereferencing
The transformation inserts checks, implemented using macros

CHECK SPATIAL and CHECK TEMPORAL, before pointer dereferences.
Original Transformed

x = * q;

CHECK_TEMPORAL(q_info);
CHECK_SPATIAL(

q, sizeof(*q), q_info);
x = * q;

y = p->a->b;

CHECK_TEMPORAL(p_info);
CHECK_SPATIAL(&(p->a),

sizeof(p->a), p_info);
CHECK_TEMPORAL(

p_info.link->a_info);
CHECK_SPATIAL(&(p->a->b),

sizeof(p->a->b),
p_info.link->a_info);

y = p->a->b;

2.3.4 Function calls
Functions that take pointer parameters are transformed so as to

accept additional parameters that hold metadata pertaining to these
parameters. In addition, the return value of a function that returns
a pointer (or a structure containing a pointer) is modified so as to
return the associated metadata.

Note that the introduction of additional parameters affects com-
patibility with external functions. Unlike fat pointers, this incom-
patibility can be easily fixed in most cases. In particular, if an ex-

ternal function takes objects containing pointer values but does not
modify them (or return pointers), then calls to this function are left
untransformed. If the function modifies pointer values or returns
them, then wrapper functions will need to be created. Or alterna-
tively we can just assume these pointers are always valid. The only
drawback is that memory errors caused by these pointers will not
be detected. In our experience, we have found that at least among
the standard libraries used by our benchmark programs, it is rare for
programs to use external functions that require wrapper functions.

3. HANDLING TYPE CASTS AND UNIONS
The C language allows programs to perform arbitrary casts. How-

ever, almost all casts in typical C programs involve types that have
some sort of subtype—supertype relationship [32]. Such casts can
be classified into upcasts (cast from subtype to supertype) and down-
casts (casting from a supertype into a subtype). As in object-oriented
languages, upcasts are always safe. But downcasts are not safe, and
need to be checked at runtime by maintaining runtime type infor-
mation (RTTI)with each object.

The following changes are made to the basic transformation tech-
nique to support casting between subtypes and supertypes:
• Declarations: The type and pointer variable declarations are

modified to incorporate an additional metadata field called tid
that identifies the actual type of data stored in the referent.

• Casts:Note that the info variables for all pointers have the same
structure: they have the same layout and the same interpreta-
tion of the fields of this structure. Thus casts between any two
pointer types are allowable, as long as the runtime type asso-
ciated with the pointer is checked prior to the use of the link
field of its info variable.

• Dereferencing: For p->a, the transformation is as before if
p->a is a non-pointer. But if it is a pointer, then the info as-
sociated with p->a will be invalid if p info.tid is NOT a
subtype of the static type of *p.

• Assignments:For assignments between pointers, the tid field
must also be copied on pointer assignments. When pointers are
created using malloc or & operator, the tid field needs to be
populated. For malloc, the type of the pointer is used for this
purpose. For the & operator, the statically declared type of the
object (whose address is being taken) is used.

Pointer arithmetic operations need some care. Consider a pointer
arithmetic statement such as p+=k. Let elem sz and info sz be
the element sizes of runtime type and info type of the object pointed
by p respectively. (We maintain these sizes information in trans-
formed programs.) Then the link field of p info is also incre-
mented, using p info.link=(void*)p info.link+k’, where k’
equals (k*sizeof(*p)/elem sz)*info sz). This statement in-
crements link to point to the info variable for the new value of *p,
if any. Note that this transformation supports programs which ad-
vance structure pointers by first casting them into char* or void*,
then adding carefully calculated offsets to them and casting them
back to pointers of desired types. To ensure that this will result
in a correct link field value, we must ensure that the product of
k*sizeof(*p) be a multiple of elem sz. If this condition is not
satisfied, the link field is marked invalid (by setting p info.tid to
a special value) and hence cannot be used. It is worth mentioning
that our transformation still allows dereferencing of p, but causes
problems if pointers contained within *p are accessed. Thus, it will
be possible to write a program that takes a pointer to an array of
structures, casts it into a char*, and sequentially accesses the en-
tire array as a sequence of characters. However, problems do arise
if pointer arithmetic is used to advance through an array that is em-

bedded within a structure when the array elements contain pointers
that are dereferenced. Although we have not encountered such sit-
uations in our experiments, we have begun developing an improved
treatment of pointer arithmetic that overcomes this limitation.

3.1 Notion of Subtyping
When a type T1 is laid out in memory exactly as a prefix of an-

other type T2, type T2 is called a physical subtypeof type T1.
Physical subtyping has been studied for understanding type casts
in C programs [32], but it is unnecessarily restrictive for our pur-
poses. To maximize the set of programs that can be handled by our
approach, we define the following weaker notion of subtyping that
is sufficient to ensure soundness of the approach.

Consider a program fragment:

T2 *q;
T1 *p = (T1*)malloc(....);
.... some code that initializes p ...
q = (T2 *)p;
.... code that dereferences q

Note that if T2 contains no pointers, then this use is always ac-
ceptable. Any spatial or temporal error in accessing a field of the
form q->a will be detected using the metadata in q info, which
would have been copied from p info. On the other hand, if T2
contains a pointer, say, in a field named b, then we need to make
sure that correct metadata information is available for checking
an access of the form q->b->c. Suppose that we blindly access
q info.link->b info. Since q info.link was assigned from
p info.link, this access will be equivalent to p info.link->
d info, where d info is at same offset in T1 info as is b info in
T2 info. Similarly, the q->b accesses the same location as p->e
where b and e are at the same offset with respect to the base of T2
and T1 respectively. Thus, the access q info.link->b info will
yield correct results if p->e is a pointer and p info.link->d info
corresponds to the metadata associated with this pointer. Note that
the types of pointers p->e and q->b need not be the same: if an
access q->b->c is incorrect, it will be detected when the runtime
type of q info.link->b info.link is examined.

Based on the above discussion, we define the following notion
of subtyping. Suppose that T1 contains pointer fields at offsets
p1, ..., pn, where pi’s are in sorted order. Similarly, let q1, ..., qm

denote all of the offsets of pointers fields within T2. Now, T1 is a
subtype of T2 iff m ≤ n and pi = qi for 1 ≤ i ≤ m.

3.2 Supporting Unions

Original Additional

union u {
char *p1;
struct stu *p2;

};

struct ptr_info {
int tid;
char *base;
unsigned long size;
capability *cap_ptr;
unsigned long cap_index;
struct ptr_info * link;

};
union u_info {

struct ptr_info p1_info;
struct {

int tid;
char *base;
unsigned long size;
capability *cap_ptr;
unsigned long cap_index;
struct stu_info *link;

} p2_info;
};

Unions in C represent implicit type casts when a union mem-
ber is stored as one type and accessed as another. Thus, the basic
machinery we have developed above will work for dealing with
unions. The previous example shows how a union definition is
transformed.

Note that the info type for the union does not have tags. This is
not a problem, since the tid is always the first field of all the structs
within u info, and can hence be accessed to determine the type of
the pointer currently stored in the union u. To ensure that this ap-
proach will work correctly, it is necessary to create and maintain the
tid field even when the union holds a non-pointer. For instance, if
an integer field p3 is added to the above union, then a field p3 info
will be added to u info. When an integer is stored into the union
using the field p3, then p3 info.tid will be set to indicate that
the current content of the union is an integer.

It is important to note that since we do not convert unions into
“tagged unions,” as is the case in [28] or Cyclone [19], programs
that expect to store into p1 and access this later using the field name
p2 will work as expected. However, any attempt to dereference
this pointer will be checked using the runtime type information, so
invalid memory accesses will be caught.

4. OPTIMIZATIONS

4.1 Local Optimizations
The most significant optimization we have performed is to sep-

arate metadata into two data structures: a header that holds in-
formation relating to a memory block, and a ptr info that holds
information relating to a specific pointer. The following table illus-
trates this separation.

Original Transformed

struct stu {
int id;
char *name;

};

struct stu s;

struct header {
void *base;
unsigned long size;
unsigned long cap_index;

};
struct ptr_info {
int tid;
struct header *blkhdr;
capability *cap_ptr;
struct ptr_info *link;

};
struct stu_info {
struct ptr_info name_info;

};
struct stu_info s_info;

struct stu *p;

struct {
int tid;
struct header *blkhdr;
capability *cap_ptr;
struct stu_info *link;

} p_info;

This separation yields significant savings when there are multiple
pointers to the same block, since the header field in the block can
be shared by all pointers to that block. Moreover, the split reduces
the number of fields involved in maintenance operations, and hence
improves performance.

Pointer dereferences tend to repeat frequently, and for each such
dereference, our transformation generates pointer validity checks.
However, gcc does not recognize and eliminate such checks when
they involve fields in a structure. For the same reason, gcc opti-
mizations cannot recognize and eliminate metadata updates even
when the results of these updates are not used again. In order to

exploit the common subexpression and dead variable elimination
optimizations of gcc, we therefore convert metadata structures into
individual variables whenever it is safe to do so. (In particular, we
break the metadata structure associated with a local pointer vari-
able when the address of the variable is not taken.) This optimiza-
tion eliminates several redundant checks and updates at an intra-
procedural level.

Another optimization we have implemented is to eliminate un-
necessary operations on the stack capability store (SCS). This elim-
ination is performed in the case of functions which never compute
the address of a local variable, and hence have no risk of a lo-
cal pointer escaping. This optimization primarily benefits function
call-intensive programs where the frequently called functions do
not contain reference operations that generate a pointer to a local
variable.

The effect of these optimizations are discussed in Section 5.2.3.
On the average, these optimizations improve performance by about
a factor of two.

4.2 Global Optimizations
There are a number of global optimizations which can be done

to eliminate checks and metadata, reducing the overhead of our
approach from its current level. Unlike the previous optimizations,
none of the optimizations discussed in this subsection have been
implemented.

The first is to identify pointers whose type can be statically deter-
mined, and replace RTTI with constant type information for these
pointers. This can be done using a fairly simple flow-insensitive
type inference approach similar to the method used to determine so-
called safe pointersin [26]. The results presented in [26] showed
that for typical C programs, roughly 90% of pointers could be stati-
cally shown to be safe pointers, and similar results are likely for our
approach. This is because safe and sequential pointers are never in-
volved in (nontrivial) casts, and hence their static type will be the
same as runtime type, there by making RTTI information redun-
dant.

A second optimization is to identify pointer operations which
can be statically determined to be temporally safe, and remove the
temporal checks for these operations. Criteria for statically deter-
mining the temporal safety of a pointer access depend on the stor-
age region(s) the pointer refers to. For heap pointers, there must be
no path along which the referent could be freed between the previ-
ous check and the current dereference location. For stack pointers,
there must be no chance that the pointer could have escaped from
a previous function call. Static data pointers are inherently tempo-
rally safe.

A third optimization is to identify pointer operations which are
statically spatially safe, and eliminate bounds checks for these point-
ers. The spatial safety of a pointer access is determined by examin-
ing all paths between the access and all recent checks/allocations. If
the value of the current pointer expression is the same as the previ-
ous ones, then the access is spatially safe. If the value is increasing
(e.g., the result of an increment operation such as p++), then the
access is lower-bound safebut not upper-bound safe. Similarly,
some accesses might be determined to be upper-bound safebut not
lower-bound safe. This information can be used to eliminate or
simplify checks inserted by the transformation.

Once checks have been eliminated, unnecessary maintenance
code can be eliminated. Updates to metadata which can never
reach a check can be detected using standard data flow techniques
and eliminated. Metadata variables/fields which are never used can
then be detected and eliminated. For pointers which exhibit partial
safety (e.g., lower bound safety), the metadata can be simplified.

Execution time Peak heap usage Executable size
Program Lines of Original Transformed Original Transformed Original Transformed

code (sec.) Ratio (MB) Ratio (KB) Ratio
Olden
bh 2080 1.37 2.82 0.17 4.76 81.7 1.97
bisort 684 0.66 1.76 1.57 5.51 30.6 1.43
em3d 561 2.77 1.79 6.53 3.13 44.7 1.14
health 709 1.08 2.72 2.33 5.45 50.9 1.21
mst 592 2.43 1.76 71.34 3.36 47.8 1.10
perimeter 395 1.49 3.37 2.74 4.72 29.6 1.04
power 763 1.81 1.22 0.42 3.12 43.8 1.54
treeadd 370 0.26 3.23 25.17 5.34 34.2 0.94
tsp 565 1.23 2.28 9.44 3.36 33.8 1.41
AVG 2.33 4.31 1.31
SPECINT
099.go 29262 19.29 2.60 0.00 1.00 437.8 2.51
129.compress 1939 2.69 1.85 0.00 1.00 103.6 1.17
164.gzip 8620 1.21 1.46 6.61 1.08 166.5 1.34
175.vpr 17897 0.93 3.53 0.91 1.86 408.2 3.23
181.mcf 2413 0.20 2.85 96.59 3.01 129.5 1.10
AVG 2.46 1.59 1.87
Utilities
bc-1.06 14264 2.59 2.69 0.09 2.67 191.1 2.82
gzip-1.2.4 8163 1.59 1.54 0.00 1.00 168.4 1.78
patch-2.5.4 11533 0.52 1.12 10.20 1.40 234.3 2.91
tar-1.12 24339 1.01 1.14 0.04 1.25 467.1 1.98
AVG 1.62 1.58 2.37

Figure 1: Transformation performance for Olden/SPECINT benchmarks and UNIX utilities. A ratio 1.22 means that the trans-
formed program was 22% slower/larger than the original.

We believe that these optimizations will result in further signifi-
cant improvements to the performance of our approach, and will be
the primary focus of our future research in this area.

5. EXPERIMENTAL RESULTS
We have implemented a prototype of the transformation described

in Sections 2 through 4. The prototype is a syntax-directed source-
source transformation tool to instrument C programs. It uses CIL
[25] as the front end and Objective Caml as the implementation
language. C is a very complex language to deal with for program
analysis and transformation. Our transformation work was con-
siderably simplified by the intermediate language provided by CIL
which consists of a clean subset of C constructs that can be easily
manipulated and then emitted as C source code.

To evaluate the performance of our prototype implementation,
we applied our transformation on a number of test programs from
Olden [7], SPECINT [1] benchmarks, and UNIX utility programs.
We used the Olden benchmarks included in the CCured package
since the original benchmarks do not run on Linux. Although our
implementation is not robust enough to handle all SPECINT pro-
grams, it is still able to process many moderate-sized programs —
five of our test programs are over 10K lines of code.

Our current implementation does not support user-defined mem-
ory allocation/deallocation functions that are functionally different
from malloc. Some of our benchmarks made use of such user-
defined functions, so we had to modify these programs to replace
the calls to these functions with standard functions such as malloc
and calloc. No other source code modifications were required by
our transformer.

5.1 Effectiveness
In our experiments, our implementation successfully detected

several bugs which have been reported in previous research [26]
in the SPECINT benchmarks: compress contains an array out-
of-boundary error, and go contains several array out-of-boundary

errors. In addition, our implementation detected an unreported ar-
ray out-of-boundary bug in the UNIX utility program patch. All
of these provide evidences to show that our implementation indeed
works to identify memory access errors.

5.2 Performance
We compared the performance of original programs and trans-

formed programs. Both of them were compiled using gcc ver-
sion 3.2.2 with -O2 optimization, and executed on an Intel Xeon
3.06GHz workstation with 3GB RAM running Red Hat Linux 9.
All the execution times were measured using the total of system
time and user time reported by time. Figure 1 shows the overall
performance of our transformation.

5.2.1 Execution overhead
The third and fourth columns of Figure 1 are the comparison

of execution time of original and transformed programs. For the
Olden benchmarks, the transformed programs have a slowdown of
1.22 to 3.37, with an average of 2.33; for the SPECINT benchmarks,
the slowdown ranges from 1.46 to 3.53, with an average of 2.46; for
the UNIX utility programs, the range of slowdown is between 1.12
and 2.69, and the average is 1.62.

5.2.2 Memory overhead
The fifth and sixth columns of Figure 1 present the peak heap

memory usage of both original and transformed programs. The
main source of overhead in transformed programs is the space for
storing info structures for the pointers that would be stored in each
malloc’d block. Since there are four fields in the info structure
associated with a pointer, the increase in memory usage can be 5
times in the worst case. Many Olden benchmarks use malloc pri-
marily to allocate structures that contain mostly pointers. Thus,
the memory overhead in these programs is close to this worst case
possibility. For some programs, the increase exceeds a factor of 5
since there are other sources for memory overhead that also need to

Transformed (ratio in execution time)
Program Spatial Spatial Spatial

& Temporal & Temporal
& RTTI

Olden
bh 1.88 2.60 2.82
bisort 1.45 1.61 1.76
em3d 1.36 1.83 1.79
health 1.97 2.47 2.72
mst 1.32 1.59 1.76
perimeter 1.82 2.11 3.37
power 1.17 1.20 1.22
treeadd 1.81 2.73 3.23
tsp 1.88 1.81 2.28
AVG 1.63 1.99 2.33
SPECINT
099.go 2.44 2.56 2.60
129.compress 1.37 1.65 1.85
164.gzip 1.15 1.33 1.46
175.vpr 2.05 2.88 3.53
181.mcf 2.85 2.50 2.85
AVG 1.97 2.18 2.46
Utilities
bc-1.06 1.96 2.49 2.69
gzip-1.2.4 1.46 1.47 1.54
patch-2.5.4 1.06 1.06 1.12
tar-1.12 1.05 1.19 1.14
AVG 1.38 1.55 1.62
AVG 1.67 1.95 2.21

Figure 2: Performance overheads of checking different mem-
ory errors

be considered. These include a fixed-length header for each heap
memory allocation, and the memory used for HCS and SCS.

Most of the SPECINT benchmarks and the UNIX utilities we
have tested do not store many pointers in heap, hence they do not
increase heap memory usage significantly.

5.2.3 Analysis of performance
We first studied the performance overheads due to different kinds

of checks inserted by our transformation: (a) checks for detecting
spatial memory errors, (b) checks for detecting temporal memory
errors, and (c) checks for verifying upcasts and downcasts using
run-time type information. Columns 2-4 of Figure 2 show the nor-
malized execution time for (a), (a)+(b), and (a)+(b)+(c) as com-
pared to the original execution time of each program. The average
execution time overheads for the three combinations are 67%, 95%
and 121% for all the test programs.

We then studied the effectiveness of the optimizations. Previ-
ous research efforts on detecting both spatial and temporal errors
have reported much higher runtime overheads than what is shown
in Figure 1. Typical slowdowns are by about a factor of 4. In order
to understand the source of performance improvement in our ap-
proach, we measured the execution time of our approach with each
of the optimizations discussed in Section 4.

The second column in Figure 3 shows the slowdown when we
combined the header and info metadata together. Note that the
slowdown has now increased to about a factor of 4, which is con-
sistent with the results reported by previous researchers. Column
3 of this table demonstrates that significant improvement in perfor-
mance is obtained as a result of splitting the metadata into header
and info variables. By eliminating unnecessary SCS operations,
further significant decrease in overheads is obtained, as shown in
the fourth column of the table. Finally, by converting the info

structures into individual variables, we enable gcc to aggressively

Transformed (ratio in execution time)
Program H/I merged H/I sep. H/I sep. H/I sep.

SCS elim. SCS elim.
Info split

Olden
bh 5.24 4.18 3.92 2.82
bisort 2.61 2.17 1.76 1.76
em3d 1.92 1.83 1.81 1.79
health 3.07 2.79 2.72 2.72
mst 2.28 2.06 1.77 1.76
perimeter 7.89 6.15 3.51 3.37
power 1.71 1.66 1.22 1.22
treeadd 4.92 4.12 3.96 3.23
tsp 4.44 3.06 2.28 2.28
AVG 3.79 3.11 2.55 2.33
SPECINT
099.go 3.46 3.06 2.65 2.60
129.compress 5.32 3.82 2.11 1.85
164.gzip 3.03 2.38 1.54 1.46
175.vpr 4.49 3.99 3.67 3.53
181.mcf 5.60 3.90 2.90 2.85
AVG 4.38 3.43 2.57 2.46
Utilities
bc-1.06 9.60 3.74 3.51 2.69
gzip-1.2.4 2.44 2.06 1.92 1.54
patch-2.5.4 1.27 1.13 1.12 1.12
tar-1.12 1.28 1.23 1.12 1.14
AVG 3.65 2.04 1.92 1.62
AVG 3.92 2.96 2.42 2.21

Figure 3: Effectiveness of optimizations

perform other optimizations. This factor leads to a further mod-
est decrease in overhead. Together, these optimizations reduce the
runtime overhead by about a factor of two.

The effectiveness of each optimization varies depending on the
characteristics of the test programs. Programs that make a large
number of function calls (e.g. perimeter) can benefit more from
unnecessary SCS operation eliminations than programs that make
fewer function calls (e.g. health). Programs that have a higher
ratio of the number of pointer assignments over the number of
pointer dereferences (e.g. compress) can have more performance
improvement due to the separation of header and info.

5.2.4 Performance comparison with related approaches
Since the primary goal of our work is to detect both spatial and

temporal errors, we limit our detailed comparison in this section
to previous techniques that are capable of detecting both types of
errors. It should be noted, however, that the comparison results
should be interpreted carefully, since the set of benchmarks used in
the related works are different from those used by us.

Patil and Fischer’s shadow processing [28] is similar to our basic
transformation, but has no support for downcasts. The approach
checks all the temporal and spatial memory errors. Its overheads for
a subset of the SPECINT benchmark programs is on an average of
538%, which is much higher than our result of 121%. The closely
related approach Safe-C [2] also reports overheads over 300%.

The bounds-checking work of Jones and Kelly [20] provides bet-
ter compatibility than our approach with untransformed external li-
braries. In particular, they do not require wrapper functions to be
developed for such libraries, even if they return dynamically al-
located data structures. On the downside, their approach incurs
higher overheads, and moreover, does not detect dangling pointers
to reallocated memory. They report a slowdown by a factor of 5
to 6 for most programs. Their work was initially distributed as an
extension to gcc 2.7, and further work has continued on this ap-

proach, yielding gcc patches for subsequent versions of gcc. Most
recent performance data for this method can be found in Ruwase
and Lam [31], where they present an improvement to the original
technique which has better compatibility with existing C programs.
They report performance overheads that are virtually identical to
that of the bounds-checking extension to gcc version 3.3.1. Their
overheads for the common test programs such as gzip are about
twice as much compared to our approach. In terms of worst case
performance, they report slowdowns by a factor of more than 10,
whereas the worst case slowdown reported for our work in Figure 1
is by a factor less than 4.

Yong and Horwitz [37] describe an approach which is similar to
Purify [17] but is enhanced using global static analysis. They re-
port an average overhead of 37% on the Olden benchmark. This is
better than our result of 133%, but this improvement is obtained in
their approach by checking pointer errors to write operations alone.
Read operations, which far outnumber writes in typical programs,
are not checked.

6. RELATED WORK
Much research effort has been put into the development of tech-

niques for detecting memory access errors in C programs. We dis-
cuss works that are most closely related to ours.

6.1 Debugging-targeted approaches
These approaches typically operate by inserting checks into a

program either at the source or binary level, with the goal of detect-
ing certain subclasses of memory errors. These include Kendall’s
bcc [22], Purify [17], Steffen’s rtcc [33], Loginov, et.al.’s work
on runtime type checking[24], and Haugh and Bishop’s STOBO
tool [18]. Also in this category is the CodeCenterinterpretive de-
bugger [21]. Since these techniques are focused on debugging, per-
formance is typically not a serious consideration. For instance, Pu-
rify and CodeCenter often have overheads in excess of 1000%. In
contrast, our interest is in techniques that can be enabled in pro-
duction code, so it is important to keep the overheads reasonably
low. Another distinction is that our approach is focused on detect-
ing all memory errors, while the above approaches generally target
detection of a subset of errors that are commonly encountered. For
instance, bcc and rtcc focus mainly on spatial errors. Similarly, Pu-
rify does not detect certain spatial errors (specifically, when pointer
arithmetic causes a pointer to overshoot past the end of one object
into the middle of the next object), or dangling pointers to reallo-
cated memory. On the other hand, some of these approaches do
provide better compatibility with external libraries, e.g., Purify can
perform memory error checks within libraries that are provided in
binary format.

6.2 Approaches that rely on garbage collection
Cyclone [19] is a variant of C that is designed with the express

goal of reducing source code changes needed to convert C pro-
grams to Cyclone. However, it still makes significant changes to
C-language syntax and semantics, e.g., C-style unions are replaced
by ML-style unions. In addition, to support separate compilation,
type declarations that provide detailed information about pointer
types become necessary, and these declarations cannot be automat-
ically generated. As a result, large C-programs require nontrivial
effort to port to Cyclone. In contrast, our approach requires almost
no changes to existing C-programs.

CCured, developed by Necula, McPeak, and Weimer [26], uses
type-inferencing to differentiate pointers into (definitely) safeand
(potentially) unsafepointers at compile-time, and insert run-time
checks to ensure validity of accesses through unsafe pointers. Un-

safe pointers are further subdivided into those using pointer arith-
metic (sequential pointers) and those using casts (dynamic point-
ers). The representation of safe pointers is unchanged, but a fat-
pointer representation is used for unsafe pointers. This can cause
some compatibility problems, as described in Section 2. In their
recent work [9], they have separated metadata associated with se-
quential pointers to gain increased compatibility, especially with
external libraries that often take pointers to arrays or character buffers.
However, dynamic pointers continue to use fat pointer representa-
tion. To further reduce compatibility problems and to improve per-
formance, they have added runtime type information, which can
result in fewer pointers being classified as dynamic. However, the
maintenance of RTTI is governed by programmer annotations, un-
like our approach where it is automatic. In addition, their notion
of subtyping is more restrictive than ours, so some programs that
require the use of dynamic pointers can still continue to work with
our notion of RTTI.

The most important difference between our approach and that of
Cyclone or CCured is their reliance on garbage collection. While
this change may be acceptable for some programs, it is not well-
suited for applications such as OS kernels or other performance-
critical or response-time critical servers.

6.3 Approaches targeting full compatibility
with the C-runtime model

Safe-Cinserts runtime checks to detect all memory errors. How-
ever, the approach introduces compatibility problems due to the
use of fat pointers. These compatibility problems were addressed
by Patil and Fischer [29, 28], but their performance overheads are
still much higher than ours — by as much as a factor of 2 to 4
times over our approach. Moreover, neither of these approaches
support downcasts, thereby significantly restricting the set of pro-
grams to which they can successfully be applied. The work of Jones
and Kelly [20] is applicable to a much broader class of programs,
including programs that cast pointers to integers and vice-versa.
They use a splay treeat runtime to store information about every
allocated memory chunk. Pointer validity is checked using this data
structure before dereferencing. Unfortunately, the approach incurs
heavy performance penalties (more than 10 times slowdown for
pointer-intensive code), and hence cannot be used for production
code. Moreover, it does not detect dangling pointers to reallocated
memory. Another recent attempt is the Fail-Safe ANSI-C Com-
piler [27], which attempts to compile any ANSI-C program into
a memory safe form, but is not yet complete.

The approach presented in this paper addresses the drawbacks of
the above approaches, and provides a practical solution for detect-
ing all memory errors with moderate overheads.

6.4 Security-targeted approaches
This category mainly consists of approaches that utilize code

transformation to protect return addresses of activation record [12,
4, 8, 14], and for protecting against format-string attacks[10].
More recently, works have emerged that use randomization to achieve
broad protection against attacks that exploit memory errors [5, 11].
While these techniques are very good in achieving their intended
goal, namely, protecting against attacks launched by some out-
sider, and doing so with very low overheads, they are not useful for
general-purpose memory error checking. In particular, these tech-
niques do not detect access errors at all, but simply prevent such
errors from being used to launch attacks.

Another security-targeted approach is CRED, developed by Ruwase
and Lam [31]. The primary goals of CRED include better compati-
bility with existing C programs, and decreasing runtime overheads

by focusing on memory errors that are most frequently associated
with security attacks. CRED is based on Jones and Kelly’s bounds-
checking extension to gcc, and provides an option by which run-
time overheads can be greatly reduced by restricting error checks
to operations involving string buffers. In the full-checking mode,
the performance of CRED is close to that of Jones and Kelly’s. A
more detailed discussion of this performance can be found in Sec-
tion 5.2.4.

There have also been a number of approaches which rely on
static source code analysis to detect potential security-related mem-
ory errors prior to execution [13, 16, 36, 23, 35, 30, 15], but these
are not as powerful as runtime detection techniques and hence not
used widely.

Several techniques which combine static analysis with dynamic
checking have also emerged recently. Yong and Horwitz [37] pre-
sented an approach to detect invalid memory writes by combining
static analysis and a run-time technique similar to Purify [17]. By
reducing the size of checked memory regions, they achieved both
good run-time performance and improved error detections. Their
performance overheads are generally lower than ours. However,
this result is achieved by omitting error checks for read operations,
which are typically much larger in number than write operations.
Moreover, because of its reliance on Purify-like techniques, it can-
not detect all memory errors.

Lhee and Chapin [34] developed a technique called type-assisted
dynamic buffer overflow detection, in which the compiler is ex-
tended to provide information about the sizes of buffers and li-
brary calls are intercepted. Their technique detects many errors
with fairly low overhead, but like many other security-targeted ap-
proaches, focus only on array-based spatial errors that occur within
a prespecified set of library calls. Dynamically sized automatic ar-
rays (i.e., those allocated by the alloca function) are also not sup-
ported by their approach. Avijit, Gupta, and Gupta [3] invented a
very similar approach called TIED/LibsafePlus which operates on
binary (rather than source) code.

7. DISCUSSION AND CONCLUSION
The ultimate goal of memory error detection is to develop an

approach which possesses four essential properties:
(1) the ability to detect all memory errors,
(2) the ability of handle all C programs without modification,
(3) low performance overhead, and
(4) preservation of the existing C memory allocation model.
The approach presented in this paper already satisfies properties
(1) and (4), but still has some shortcomings with regard to the other
areas. However, we believe that with some additional work, the ap-
proach can be extended to satisfy (2) and (3) as well. To satisfy (2),
arbitrary casts must be handled. To satisfy (3), additional optimiza-
tions are required, which were discussed in section 4.2. We discuss
support for arbitrary casting next, and follow with some additional
potential extensions to make the approach more useful.

7.1 Supporting Arbitrary Casts
There are two kinds of typecasting operation that the current im-

plementation does not support. The first is casting from an integer
type to a pointer. The second is casting between structure pointers
in a manner that violates the subtype criteria discussed in Section 3.

Integer to pointer casts can be handled by treating integers which
can receive cast pointer values as pointers, i.e., an integer i that
is assigned the result of a pointer expression cast to type integer
has an associated i info variable allocated by the transformation.
Along paths which assign non-pointer values to i, the base field of

i info is set to NULL. Limiting the number of integers treated as
pointers is critical to keep the runtime overhead reasonably low. A
fairly simple flow-insensitive data flow analysis or type inference
can be used to identify variables likely to be assigned converted
pointer values at runtime.

A second type of cast that presents challenges is casting from
one structure type to another, where the two structure types have
pointer fields at different offsets. In this case, the casting operation
is implicitly performing integer-to-pointer and/or pointer-to-integer
casts on the values contained within the structure fields. These
types of casts can be handled by treating the involved fields in a
manner similar to integer variables which can receive pointer val-
ues; by treating the fields as if they are pointers, and allocating the
corresponding info fields within the structure pointed by link.
Such fields can be identified by the same analysis used to identify
integer variables receiving pointer values.

7.2 Support for Non-Standard Memory
Allocation

Some programs implement their own memory management func-
tions on top of the C runtime library. Calls to program-defined al-
location functions can be handled if the functions exhibit semantics
similar to those of malloc/free. The transformation tool could be
extended with an option in which the user can specify which func-
tions are similar to malloc or free, then the transformation tool
would ignore the internal behavior of these functions, and insert
checking code which trusts the user-defined functions to behave
correctly. This approach would catch any errors due to misuse of
the user-defined allocation functions, but would not detect any bugs
within the allocation functions themselves.

It is nontrivial in our current implementation to support cus-
tomized memory management functions that have different seman-
tics compared to malloc/free.

7.3 Summary
The source transformation presented in this paper dynamically

detects memory errors for C programs which do not use customized
memory management functions that are fundamentally different
from malloc and obey two elementary casting restrictions: no
casting of integers to pointers, and no casting between pointers to
structure types which do not possess a subtype or supertype rela-
tionship. For such programs, the approach detects all spatial and
temporal memory errors, without modifications to program source
code, and without changing the memory allocation model. More-
over, when compared to previous approaches which detect tempo-
ral errors, our approach decreases overhead by at least a factor of
two.

8. REFERENCES
[1] Anonymous. SPEC CINT Benchmark. Standard Performance

Evaluation Corporation. http://www.specbench.org/.
[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient

detection of all pointer and array access errors. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 290–301, June 1994.

[3] K. Avijit, P. Gupta, and D. Gupta. TIED, LibsafePlus: Tools
for runtime buffer overflow protection. In USENIX Security
Symposium, pages 45–55, 2004.

[4] A. Baratloo, N. Singh, and T. Tsai. Transparent run-time
defense against stack smashing attacks. In USENIX Annual
Technical Conference, pages 251–262, Berkeley, CA, June
2000.

[5] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a broad range
of memory error exploits. In USENIX Security Symposium,
Washington, DC, August 2003.

[6] H. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. In Software - Practice and
Experience, pages 807–820, 1988.

[7] M. C. Carlisle and A. Rogers. Software caching and
computation migration in Olden. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 29–38, Santa Barbara, CA,
USA, 1995. ACM Press.

[8] T. Chiueh and F. Hsu. RAD: A compile-time solution to
buffer overflow attacks. In International Conference on
Distributed Computing Systems (ICDCS), April 2001.

[9] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the real world. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI), pages 232–244, June 2003.

[10] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman.
Formatguard: Automatic protection from printf format string
vulnerabilities. In USENIX Security Symposium, 2001.

[11] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer overflow vulnerabilities. In
USENIX Security Symposium, Washington, D.C., August
2003.

[12] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Automatic
detection and prevention of buffer-overflow attacks. In
USENIX Security Symposium, January 1998.

[13] N. Dor, M. Rodeh, and M. Sagiv. Cssv: Towards a realistic
tool for statically detecting all buffer overflows in c. In ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, June 2003.

[14] H. Etoh and K. Yoda. Protecting from stack-smashing
attacks. Published on World-Wide Web, June 2000.

[15] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type
qualifiers. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Atlanta, GA,
May 1999.

[16] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek.
Buffer overrun detection using linear programming and static
analysis. In ACM Conference on Computer and
Communication Security (CCS), pages 345–354, 2003.

[17] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. In Proceedings of the Winter
USENIX Conference, pages 125–136, 1992.

[18] E. Haugh and M. Bishop. Testing C programs for buffer
overflow vulnerabilities. In Network and Distributed System
Security Symposium (NDSS), February 2003.

[19] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, June 2002.

[20] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in c programs. In
International Workshop on Automated and Algorithmic
Debugging, pages 13–26, 1997.

[21] S. Kaufer, R. Lopez, and S. Pratap. Saber-C: an
interpreter-based programming environment for the C
language. In Proceedings of the Summer USENIX
Conference, pages 161–171, 1988.

[22] S. C. Kendall. Bcc: run–time checking for c programs. In
Proceedings of the USENIX Summer Conference, El. Cerrito,
California, USA, 1983. USENIX Association.

[23] D. Larochelle and D. Evans. Statically detecting likely buffer
overflow vulnerabilities. In USENIX Security Symposium,
pages 177–190, 2001.

[24] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps. Debugging
via run-time type checking. In Fundamental Approaches to
Software Engineering, 2001.

[25] S. McPeak, G. C. Necula, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for C program analysis and
transformation. In Conference on Compiler Construction,
pages 213–228, 2002.

[26] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In ACM Symposium on Principles
of Programming Languages (POPL), pages 128–139,
January 2002.

[27] Y. Oiwa, T. Sekiguchi, E. Sumii, and A. Yonezawa. Fail-safe
ansi-c compiler: An approach to making c programs secure
(progress report). In International Symposium on Software
Security, number 2609 in LNCS, pages 133–153.
Springer-Verlag, 2002.

[28] H. Patil and C. N. Fischer. Low-cost, concurrent checking of
pointer and array accesses in c programs. Software - Practice
and Experience, 27(1):87–110, 1997.

[29] H. G. Patil and C. N. Fischer. Efficient run-time monitoring
using shadow processing. In International Workshop on
Automated and Algorithmic Debugging, 1995.

[30] R. Rugina and M. Rinard. Symbolic bounds analysis of
pointers, array indices, and accessed memory regions. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 182–195. ACM
Press, 2000.

[31] O. Ruwase and M. S. Lam. A practical dynamic buffer
overflow detector. In Network and Distributed System
Security Symposium (NDSS), pages 159–169, February 2004.

[32] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and
T. Reps. Coping with type casts in C. In ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE), pages 180–198. Springer-Verlag, 1999.

[33] J. L. Steffen. Adding run-time checking to the portable c
compiler. Software - Practice and Experience,
22(4):305–316, April 1992.

[34] K. suk Lhee and S. J. Chapin. Type-assisted dynamic buffer
overflow detection. In USENIX Security Symposium, pages
81–88, 2002.

[35] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun
vulnerabilities. In Network and Distributed System Security
Symposium (NDSS), 2000.

[36] Y. Xie, A. Chou, and D. Engler. Archer: using symbolic,
path-sensitive analysis to detect memory access errors. In
European Software Engineering Conference / ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 327–336. ACM
Press, 2003.

[37] S. H. Yong and S. Horwitz. Protecting C programs from
attacks via invalid pointer dereferences. In ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE), 2003.

