
Provably Correct Runtime Enforcement

of Non-Interference Properties∗

V.N. Venkatakrishnan Wei Xu Daniel C. DuVarney R. Sekar

University of Illinois at Chicago Stony Brook University

venkat@cs.uic.edu {weixu,dand,sekar}@cs.sunysb.edu

Abstract

Non-interference has become the standard criterion for ensuring confidentiality of sensitive data
in the information flow literature. However, application of non-interference to software systems has
been limited in practice. This is partly due to the imprecision that is inherent in static analyses
that have formed the basis of previous non-interference based techniques. Runtime approaches can be
significantly more accurate than static analysis, and have been more successful in practical systems
that reason about information flow. However, these techniques only reason about explicit information
flows that take place via assignments in a program. Implicit flows that take place without involving
assignments, and can be inferred from the structure and/or semantics of the program, are missed by
runtime techniques. This paper seeks to bridge the gap between the accuracy provided by runtime
techniques and the completeness provided by static analysis techniques. In particular, we develop a
hybrid technique that relies primarily on runtime information-flow tracking, but augments it with static
analysis to reason about implicit flows that arise due to unexecuted paths in a program. We prove that
the resulting technique preserves non-interference.

1 Introduction

Protecting the privacy of personal information has become one of the main challenges facing the
Internet today. Although traditional access control mechanisms can prevent information from
being given to unauthorized principals, they don’t address the central problem in privacy, namely,
information flow control. The domain of information flow control begins at the point where sensitive
information is handed to a piece of software, and governs the manner in which this software uses this
information. The primary concern is whether sensitive information may flow into (or influence) data
that may be read by unauthorized principals. In addition to privacy, information flow techniques
can also address integrity concerns. The term “taint” is used in place of “information flow” in the
context of integrity, and the techniques are concerned with ensuring that untrustworthy data does
not influence data whose trustworthiness needs to be preserved.

There are two basic approaches for dealing with information flows in a program: static analysis
and runtime tracking. A static analysis technique has an advantage over runtime tracking in terms
of runtime performance. However, static analysis techniques need to reason about all possible
executions of a program, and reject programs that can potentially leak sensitive information during
some executions. In particular, the following difficulties of static analysis make it less accurate than
runtime techniques:

• Approximations needed to ensure termination of static analysis. Like most problems in program
analysis, it is in general undecidable whether a program contains a prohibited information flow.
Approximations need to be made in order to make the analysis decidable, and these approxima-
tions will negatively impact accuracy. In contrast, runtime techniques concern themselves with
execution paths actually taken at runtime, and hence can remain decidable without having to
resort to the same approximations.

∗This research was supported in part by NSF grants CCR-0098154, CCR-0208877, CNS-0627687 and CNS-0551660,

and an ONR grant N000140110967.

1

• Inability to support programs that occasionally leak information. Consider a program that sends
a crash report to its developer, and assume that this report contains sensitive information. Under
normal conditions, there may not be any leak. Such a program can be supported by a runtime
tracking technique by simply suppressing unacceptable flows at runtime, i.e., by disallowing the
crash report from being sent. A purely static analysis technique would have to altogether disallow
any use of such programs.

• Inability to support applications where data sensitivity is dynamically determined. Consider a
web browser that interacts with a number of web sites, some of which handle sensitive data and
the others don’t. Thus, the sensitivity of a piece of information received on a communication
channel is determined at runtime, based on the identity of the web site providing the information.
Naturally, static analysis techniques that require static specification of sensitivity information will
have a hard time coping with such applications.

In fact, precision issues are sufficiently problematic that in the related domain of access control,
runtime enforcement is the method of choice. Within the domain of information flow, runtime
techniques [6, 26, 20, 7, 34] have enjoyed more applications to large-scale software as compared to
their static analysis counterparts.

In spite of precision issues, static analysis has been the predominant technique in recent infor-
mation flow literature [18, 23, 2, 31]. This is because runtime techniques aren’t able to capture
so-called implicit flows that do not involve explicit assignments, but can be inferred from the struc-
ture of the program. For instance, consider the following program, where h contains sensitive data
but l should not, since the latter is being printed to a public channel.

1. l := 1;
2. if (h == 1) then l := 0;
3. print l;

Assume that h take only two values: 0 or 1. In this case, the value of h can be determined from
the value of l printed by the program. However, a runtime tracking technique will not be able to
infer this dependency, since there were no explicit actions that transfer information from h to l.
Consequently, runtime techniques are incomplete with respect to the notion of noninterference [12],
which formed the basis of all the above static information flow analysis techniques. Noninterference
states that the public outputs of a program shouldn’t be influenced by changes to its sensitive inputs.

It has often been stated that runtime techniques cannot be expected to preserve noninterference
since the presence of information flow is dependent on program paths not taken during an execution
[24]. It seems natural to conclude that runtime techniques, which make their decisions based on
the actual execution trace taken at runtime, cannot detect such flows. We present a result in
this paper that, on the surface, seems to contradict this “conventional wisdom.” In particular,
we present a runtime information flow tracking technique that preserves noninterference. Our
technique first employs a program transformation to encode information flows that take place due
to unexecuted paths into those paths that are executed. This transformation itself is guided by a
static analysis. We then use runtime information flow tracking on the transformed program. We
establish formally that the resulting runtime technique preserves noninterference. We use a simple
procedural language to develop our techniques, and do not address information leaks resulting from
timing, storage and termination channels [24].

The rest of the paper is organized as follows. In Section 2, we present our program transfor-
mation technique and illustrate it using an example. We then establish the correctness of this
transformation with respect to the noninterference property in Section 3. Practical issues in the
adoption of runtime enforcement techniques are discussed in Section 4. Related work is discussed
in Section 5, followed by concluding remarks in Section 6.

2

[type] T ::= int | bool

[declaration] D ::= [high | low] T x (variable declaration)
| proc f([T x]) { [D;] S } (procedure definition)

[expr] E ::= c (constant)
| x (variable)
| uop E (unary operator)
| E bop E (binary operator)

[stmt] S ::= x := e (assignment)
| if e then S else S endif (conditional)
| while e do S done (loop)
| call f(e) (procedure call)
| S; S (sequencing)
| skip (empty statement)

Figure 1: The syntax of expressions and statements in the language.

2 The Transformation

2.1 The language

We develop our technique using a simple imperative language shown in Figure 1. This language
has basic arithmetic and logical expressions (composed using binary operators (bop) and unary
operators (uop)), assignments, conditionals, loops, sequencing and skip statements, and procedure
calls that use call-by-value semantics.

An information flow policy is specified in this language using high and low type annotations.
A high type may be associated with a variable that is input from a sensitive input channel, while
a low type may be associated with a variable whose value is output to a public output channel.
Variables that aren’t assigned a security type are considered to be internal variables that may hold
either a high or a low value. Constants are assumed to be of type low.

2.2 Capturing Explicit Flows

In this paper, we use the term explicit flow to refer to information flows that take place through
assignments. To track such flows at runtime, we associate a label variable lx with each variable
x. At any time during program execution, lx will be true if x contains a sensitive value at that
point, and false otherwise. To achieve this, we transform a program so that each assignment to
a variable x is preceded by an assignment to lx. For example, an assignment x := y + z will be
preceded by a (label assignment) statement lx := ly ∨ lz in the transformed program. Additionally,
if x is specified to be low, lx will be checked immediately after such a label assignment to ensure
that it is false. Otherwise, the information flow policy is about to be violated by the assignment
to x, and hence the program will be terminated.

2.3 Capturing Implicit Flows

Implicit flows occur due to control dependencies, i.e., when the execution (or non-execution) of an
assignment on a variable x is dependent on the value of another variable y. These two cases are
further described below.

• Positive control dependence: When a variable x is assigned within an if -then-else statement,
the value of x may reveal some information about the value of the variable used in the condition.
For instance, in the following statement:

if (y > 100) then x := 1 else x := 0 endif

3

the value of x reveals whether y is above or below 100.

Note that positive control dependencies capture information that can be derived from the mere
fact that program execution reaches a particular point in the program. Thus, to capture such
dependences, we introduce a label variable lpc that captures the sensitivity associated with the
control flow, i.e., the value of the Program Counter. Now, for each assignment statement that
assigns a value to some variable x, lx is updated to incorporate the value of lpc.

Note that lpc needs to be updated on encountering any conditional control-flow transfer instruc-
tions. Specifically, our transformation saves the current value of lpc before entering any if -the-else
statement. Its new value is set to lpc ∨ L(cond), where cond denotes the condition association
with the if-statement, and L(cond) denotes its sensitivity (obtained from the sensitivity of its
constituent variables). On exiting the conditional, the saved value of lpc is restored.

• Negative control dependence: If some values of a variable y can cause an assignment on x to be
skipped, then we say that there is a negative control dependence between y and x. Consider:

x := 0; if (y > 100) then x := 1 else skip endif

There is a negative control dependence between y and x in the else-clause, since an assignment
involving x, which would have been executed in the then-clause if y was larger than 100, is being
skipped in the else-clause. In other words, since x retains its original value when the else-clause
is executed, its value after the if -then-else reveals information about y.

2.4 Transformation Rules

2.4.1 Declarations

In the transformed program, a declaration for a (boolean type) label variable lx is introduced for
each declaration of a (global or local) variable x. lx is initialized to true if x is declared to be
high; otherwise lx is initialized to false. To track the information associated with control flows,
a global variable lpc (initialized to false) is introduced. In addition, sufficient number of local
label variables are introduced as needed for saving lpc before entering any (conditional) control-
flow transfer statements. To track information flows associated with procedure parameters, the
transformation associates an extra label parameter lp for each procedure parameter p. An example
procedure and its transformed version are shown below:

proc f(int i) { proc f(int i, bool li) {
int j; int j; bool lj := false;
... ...

} }

2.4.2 Expressions

We now define a function L that maps an expression e into an expression that computes its label.

L(c) = false

L(x) = lx

L(uop E) = L(E)

L(E1 bop E2) = L(E1) ∨ L(E2)

2.4.3 Statements

We now describe the transformation of statements so that the transformed statements track infor-
mation flows at runtime. The transformation is given by a mapping →Γ,A that is parameterized
with respect to Γ, the type environment that captures the information flow policy, and A, which
captures the results of static analysis used to compute variables that are assigned in unexecuted

4

branches. Note that Γ associates a high type with those variables that are explicitly declared to
be high, a low type with variables explicitly declared to be low, and an unknown type with vari-
ables lacking explicit declarations. The transformation rules are shown in Figure 2, and are further
described below.

Assignments are transformed to update the label variable corresponding to the variable being
assigned. Note that we need to take the sensitivity of control flow (lpc) in updating lx. Before
the actual assignment, we use a primitive policy check to ensure that a high-sensitivity value isn’t
assigned to a variable declared to be low. Specifically, policy check checks if its second argument
is low and its first argument is true, and if so, terminates the program. Otherwise, it is equivalent
to a skip-statement.

The transformation of an if-then-else-statement is as described before. Specifically, lpc is saved,
and updated to incorporate the effect of checking the condition e. The results of static analysis are

[SEQ]
S1 →Γ,A S∗

1
S2 →Γ,A S∗

2

S1;S2 →Γ,A S∗

1
;S∗

2

[SKIP]
skip →Γ,A skip

[ASSIGN]
Γ ⊢ x : τ

x := e →Γ,A lx := L(e) ∨ lpc;
policy check(lx, τ);
x := e

[IF]

S1 →Γ,A S∗

1
S2 →Γ,A S∗

2
l′pc is a fresh temporary variable

{x1, . . . , xm} = A(S1) {y1, . . . , yn} = A(S2)
τ1 = low if for every i, 1 ≤ i ≤ m, Γ ⊢ xi : low; high otherwise
τ2 = low if for every j, 1 ≤ j ≤ n, Γ ⊢ yi : low; high otherwise

S1 = lx1
:= lx1

∨ lpc; . . . ; lxm
:= lxm

∨ lpc; policy check(lx1
∨ . . . ∨ lxm

, τ1);
S2 = ly1

:= ly1
∨ lpc; . . . ; lyn

:= lyn
∨ lpc; policy check(ly1

∨ . . . ∨ lyn
, τ2);

if e then S1 else S2 endif →Γ,A l′pc := lpc; lpc := lpc ∨ L(e);
if e then

S2;S
∗

1

else
S1;S

∗

2

endif;
lpc := l′pc

[WHILE]

S →Γ,A S∗ {x1, . . . , xn} = A(S) l′pc is a fresh temporary variable
τ = low if for every i, 1 ≤ i ≤ m, Γ ⊢ xi : low; high otherwise

S = lx1
:= lx1

∨ lpc; . . . ; lxm
:= lxm

∨ lpc; policy check(lx1
∨ . . . ∨ lxm

, τ);

while e do S done →Γ,A l′pc := lpc; lpc := lpc ∨ L(e);
while e do

lpc := lpc ∨ L(e);
S∗

done;
S;
lpc := l′pc

[CALL]
call f(e) →Γ,A call f(e, L(e) ∨ lpc)

Figure 2: Transformation →Γ,A, parameterized w.r.t. information flow policy Γ and static analysis A.

5

used to estimate the variables assigned in the untaken branch, and the sensitivity of these variables
is updated to incorporate lpc. For instance, these updates are made in the statement S1 for the then
branch. At the end of all these updates, a call to policy-check ensures the resulting information
flows are in fact legal.

The transformation rule for while-statement can be understood using the equivalence between
the semantics of a while-statement S1 of the form “while e do S done” and the statement “if e then
S; S1 else skip endif.”

The transformation rule for call-statement is straightforward – it simply passes in the sensitivity
of the actual parameter expression as an additional parameter to the (transformed) procedure. Note
that lpc is a global variable, and hence the control-flow sensitivity is going to be passed in as well.

We illustrate some of the above rules using an example in Figure 3. To reduce clutter,
policy check operations are shown only for assignments to variables declared to be low.

1. int x; int y;

2. high int h; low int l;

3. x := l;
4. y := 0;

5. while (x > 0) do

6. x := x − 1; y := y + 1;
7. done

8. if (h == 0) then
9. x := y − 1;
10. else
11. skip;
12. endif

13. l := x;

bool lpc := false; bool l′pc := false;

bool lx = false; bool ly = false;
int x; int y;

bool lh := true; bool ll := false;
int h; int l;

lx := lpc ∨ ll; x := l;
ly := lpc; y := 0;

l′pc := lpc; lpc := lpc ∨ lx;

while (x > 0) do
lpc := lpc ∨ lx;
lx := lx ∨ lpc; x := x − 1; ly := ly ∨ lpc; y := y + 1;

done
lx := lx ∨ lpc; ly := ly ∨ lpc;
lpc := l′pc;

l′pc := lpc;

lpc := lpc ∨ lh;
if (h == 0) then

lx := ly ∨ lpc; x := y − 1;
else

lx := lx ∨ lpc;
endif
lpc := l′pc;

ll := lx ∨ lpc;
policy check(ll, low);
l := x;

Figure 3: An example program and its transformation

6

3 Formalization of Correctness Criteria

First, we claim the simple result that the transformation is semantics preserving, provided that
policy check does not terminate the program. Before stating this formally, we need to clarify the
notions of “inputs” and “outputs” in our language. Inputs in our language simply correspond to
an initial environment at the beginning of program execution, i.e., the environment that specifies
the initial value of variables. Analogously, outputs correspond to the contents of the environment
at the point of program termination. We use the notation P [E] to denote the final environment
that results when a program P is executed with an initial environment E.

Theorem 1 (Semantics preservation) Let P be any program, and P →Γ,A P ∗. For an initial
environment E, let Pn[E] denote the contents of the environment of P after executing n statements.
If P ∗ is not terminated by policy check before executing the same number of statements from P ,
then Pn[E](x) = P ∗

n [E](x).

This theorem can be proved by induction on n. The main reason why it holds is because P
and P ∗ differ only in terms of updates to the new (label) variables introduced in P ∗, and hence
the two programs must agree as far as the original variables are concerned. The only exception is
if policy check terminates P ∗ prematurely, in which case the theorem holds vacuously.

We would also like to prove that policy check does not unnecessarily terminate programs, but
this is not true. For instance, consider the program

l := 0; if h then l := e1 else l := e2 endif

If e1 and e2 are equal in every possible execution of the program, then it is clear that the value of l
does not reveal any information about the value of h, but it is in general undecidable if e1 and e2 will
always be equal. For this reason, one cannot expect to develop techniques that terminate only those
programs that definitely leak information. However, it can be seen from the transformation rules
that they cannot be weakened in obvious ways without risking the violation of specified information
flow policies on some programs.

Next, we proceed to establishing the soundness of the transformation with respect to the non-
interference property [12], which ensures that an attacker cannot learn confidential information by
observing only low security variables.

Definition 2 (Non-interference) A program P is said to be non-interfering if for any two ini-
tial environments E1 and E2 that differ only on variables declared to be of high type, the final
environments P [E1] and P [E2] agree on the values of all low-type variables.

The above property refers only to the final environment when a program finishes execution.
However, to prove this property, we will need to establish a tighter relationship between the steps
in the executions corresponding to the two environments. An obvious choice for relating the steps
of two executions, where each step corresponds to the execution of one statement in a program,
is to use line numbers in the program. However, since runs may differ in terms of the number of
times they execute loops, we need a more refined notion, called program counter, that combines
statement numbers with loop counters.

Definition 3 (Procedure Counter) A procedure counter is a pair (pname, ℓ0 : 〈ℓ1, i1〉 : 〈ℓ2, i2〉 :
. . . : 〈ℓn, in〉), where

• pname is the name of the procedure that is currently being executed,

• ℓ0 is the location (source line number) of the statement currently being executed, and

• ∀1 ≤ k ≤ n, ℓk is the line number of the kth innermost while statement enclosing ℓ0, and ik is
the iteration count for this loop.

7

Definition 4 (Program Counter) A program counter is a sequence of procedure counters P1, P2,
. . . , Pn where P1 is the procedure counter of the current procedure being executed, and Pi for i > 1
is the procedure counter of the caller of the procedure corresponding to Pi−1.

To illustrate this concept, consider the (untransformed) example program shown in Figure 3.
The program counter corresponding to the execution of statement 6 for the second time in the
while-loop is given by

(main, 6 : 〈5, 2〉)

Here, we have used the convention of naming the top-level program as a procedure named main.
Note that program counter values are unique within the same execution (due to the fact that we

capture iteration counts and procedure in program counters). Two program counters are said to be
equal if and only if they have the same number of components, and the corresponding components
are identical.

Based on the concept of program counter, we now proceed to define the notion of a program
state and an execution trace.

Definition 5 (Program State) A program state S is a pair 〈P, E〉 where the program counter
P represents some point during the execution of a program, and the environment E captures the
values of all program variables at this point.

For a program state S, we use PS and ES to denote its program counter and environment
components, respectively.

Definition 6 (Trace) A trace for a program is the sequence of program states S0 S1 . . .Sn observed
during one of its executions. S0 must be the start state of the program. In addition, if Sn is the
final state of the program, S0 S1 . . .Sn is called a complete trace.

The example program in Figure 3 will exhibit the following trace if the initial value is 2 for l
and 1 for h.(For clarity, the environment is not shown.)

(main, 3), (main, 4), (main, 5 : 〈5, 1〉), (main, 6 : 〈5, 1〉), (main, 5 : 〈5, 2〉), (main, 6 : 〈5, 2〉),
(main, 5 : 〈5, 3〉), (main, 8), (main, 11), (main, 13)

We now develop a notion of correspondence between two traces that provides the basis for reasoning
about non-interference.

Definition 7 (Trace Pair) A trace pair ΠT,T′ of two traces T and T′ of a program is obtained
by pairing each program state S = 〈P, E〉 in T with the corresponding state S ′ = 〈P, E′〉 in T′. If
no corresponding state can be found, a state is paired with ⊥. To preserve the sequencing of states
in T and T′, the elements of ΠT,T′ are (partially) ordered as follows: 〈Ŝ, Ŝ ′〉⊳〈S,S ′〉 iff Ŝ precedes

S or Ŝ ′ precedes S ′.

To illustrate this definition, consider two executions of the example program in Figure 3, cor-
responding to initial values of 1 and 0 for h, and always 1 for l.

• (main, 3), (main, 4), (main, 5 : 〈5, 1〉), (main, 6 : 〈5, 1〉), (main, 5 : 〈5, 2〉), (main, 8), (main, 11), (main, 13)

• (main, 3), (main, 4), (main, 5 : 〈5, 1〉), (main, 6 : 〈5, 1〉), (main, 5 : 〈5, 2〉), (main, 8), (main, 9), (main, 13)

S3, S
′
3

S4, S
′
4

S5:〈5,1〉, S
′
5:〈5,1〉 S6:〈5,1〉, S

′
6:〈5,1〉 S5:〈5,2〉, S

′
5:〈5,2〉 S8, S

′
8

S11,⊥

⊥, S′
9

S13, S
′
13

Figure 4: Example of an execution trace pair.

8

A trace pair obtained from these traces is illustrated in Figure 4. To reduce clutter, the figure
only shows the program counter component of program state. Moreover, procedure names have
been omitted. The figure visualizes trace-pairing as a “stitching together” of two traces in such
a way that the traces “come together” where their program counters match, and diverge in other
places. We now proceed to define a few more concepts required to formally state our correctness
criteria:

• An immediate predecessor pred(σ) of a state pair σ in a trace pair Π is the largest σ′ ∈ Π such
that σ′

⊳ σ. Note that there can be at most two immediate predecessors for any σ.

• For σ′, σ′′ ∈ Π, their greatest common ancestor gca(σ′, σ′′) is the largest σ ∈ Π such that σ ⊳ σ′

and σ ⊳ σ′′.

Lemma 1 Let T and T′ be any two traces of a transformed program P ∗ corresponding to initial
environments that differ only on the values of high-type variables. For each state pair 〈S,S ′〉 ∈
ΠT,T′, exactly one of the following cases is applicable:

• (a) if S = ⊥ then ES′(lpc) = true

• (b) if S ′ = ⊥ then ES(lpc) = true

• (c) otherwise, for every variable x, either ES(x) = ES′(x) or ES(lx) = ES′(lx) = true.

Proof By induction over the size of sets satisfying the partial order ⊳.
Base: For sets of size one, the only element is 〈S0,S

′
0
〉, which is the initial state of every 〈Π, ⊳〉

structure and is the start state. Say S0 = 〈P0, E0〉, and S ′
0

= 〈P0, E
′
0
〉 and E0 agrees with E′

0
on all

low security input values. For all the high security input values that may differ in the two traces,
as all their label variables are initialized to true, branch (c) of lemma 1 is trivially satisfied.

Induction Hypothesis: Assume that for all sets Π′ of size n that satisfy the relation ⊳, for
all σ ∈ Π′, σ satisfies Lemma 1.

Step: pick any σ /∈ Π′, such that all its immediate predecessors are in Π′ (pred(σ) ∩ Π′ =
pred(σ)). σ either has the form (Case 1) 〈S,S ′〉, or (Case 2) 〈S,⊥〉, or (Case 3) 〈⊥,S ′〉.

Case 1: σ = 〈S,S ′〉. Consider pred(σ).
Either (Case 1.1) pred(σ) = 〈Ŝ, Ŝ ′〉, or (Case 1.2) pred(σ) = { 〈Ŝ,⊥〉, 〈⊥, Ŝ ′〉}.

Case 1.1: σ = 〈S,S ′〉 and pred(σ) = 〈Ŝ, Ŝ ′〉.
By the induction hypothesis, 〈Ŝ, Ŝ ′〉 satisfies Lemma 1(c). Consider the form of stmt bS

(= stmt bS′
).

If stmt bS
is not an assignment statement, then the environment E is the same in both σ and pred(σ),

so σ satisfies Lemma 1(c).
If stmt bS

is an assignment statement, then it must have the form x := e;. If ES(x) = ES′(x),
then σ satisfies Lemma 1(c). If ES(x) 6= ES′(x), then we know that there was some y ∈ e such that
If E bS

(y) 6= E bS′
(y). By the induction hypothesis, E bS

(ly) = E bS′
(ly) = true. By the transformation

rule for the assignment statement, we know that lx is assigned lpc ∨ (∨y∈ely). This will result in

E(lx) = true in both Ŝ and Ŝ ′. In all cases, σ satisfies Lemma 1(c).
Case 1.2: σ = 〈S,S ′〉. and pred(σ) = {〈Ŝ,⊥〉, 〈⊥, Ŝ ′〉}.

In this case, stmtS must be the exit from a while or if statement. Let 〈S1,S
′
1
〉 = gca(〈Ŝ,⊥〉, 〈⊥, Ŝ ′〉).

By the induction hypothesis, 〈S1,S
′
1
〉 satisfies Lemma 1(c). Also, by the induction hypothesis, in

each state along the path from 〈S1,S
′
1
〉 to S satisfies Lemma 1(b), and each state along the path

from 〈S1,S
′
1
〉 to S ′ satisfies Lemma 1(a) (i.e., E(lpc) is true along these paths). Because of the

latter two facts, we show that for any variable x, E(lx) can only go from false to true along either
path (it can never become false from true).

Pick any x ∈ V ar, by the induction hypothesis, if ES1
(x) 6= ES′

1
(x), then ES1

(lx) = ES′

1
(lx) =

true, and if x is not assigned anywhere between 〈S1,S
′
1
〉 to 〈S,S ′〉, then the same value of x and lx

9

will propagate to 〈S,S ′〉, so 〈S,S ′〉 will satisfy ES(x) 6= ES′(x) ⇒ ES(lx) = ES′(lx) = true. The
same is true if x is assigned to along both paths since E(lx) will become true as E(lpc) = true at
the point of assignment until the merge.

The only remaining case is where x is assigned to along on one path (without loss of generality
assume it is the path from S1 to S), and x is not assigned to along the other path (S ′

1
to S ′).

There are two ways this could happen: a) execution flow follows two different paths of an if or b)
execution flow passes once through a while loop on S1 . . .S but not on S ′

1
. . .S ′.

In both these cases, there will be implicit flows from all the variables in the condition plus lpc

to lx along the path where x is not modified (S ′
1
. . .S ′). Since, E(lpc) = true, E(lx) will become

true, (by the transformation rules for assignment) and ES′(lx) = true. The final result is that in
ES(lx) = ES′(lx) = true.

In every possible sub-case of case 1.2, for any x ∈ V ar, ES(x) 6= ES′(x) ⇒ ES(lx) = ES′(lx) =
true, hence 〈S,S ′〉 satisfies Lemma 1(c).

Case 2: σ = 〈S,⊥〉. Consider pred(σ).
Either (Case 2.1) pred(σ) = {〈Ŝ,⊥〉}, or (Case 2.2) pred(σ) = {〈Ŝ, Ŝ ′〉}.

Case 2.1: σ = 〈S,⊥〉 and pred(σ) = {〈Ŝ,⊥〉}.
By the induction hypothesis, E bS

(lpc) = true. Consider stmt bS
. If stmt bS

is not the exit from (i.e., last
state in the execution of) an if or while, then E(lpc) is preserved in S, and σ satisfies Lemma 1(b).

If Ŝ is the exit from an if or while, then stmt bS
must be embedded within an enclosing if or while

(otherwise, the second trace would reach the same extended program counter location and σ would
have the form 〈S,S ′〉). In the latter case, E(lpc) will still be true when the if or while exits
according to the transformation rules. So, in both cases, σ satisfies Lemma 1(b).

Case 2.2: σ = 〈S,⊥〉 and pred(σ) = {〈Ŝ, Ŝ ′〉}.
In this case, pred(σ) must be the beginning of an if or while with two successors (due to trace
divergence). That means that the expression e used to determine the branch outcome evaluated
differently in Ŝ and Ŝ ′, which must be due to some set of variables X whose values differ in E bS
and E bS′

. By the induction hypothesis, for each x ∈ X, lx evaluates to true in both E bS
and E bS′

.
According to the transformation rules, lpc will be bound in ES to the result of or-ing the lx values
together (along with some other values), so the result will be ES(lpc) = true. Hence σ satisfies
Lemma 1(b).

Case 3: σ = 〈⊥,S ′〉.
By an argument symmetric to Case 2, σ satisfies Lemma 1(a).

Conclusion: In all cases, Lemma 1 is satisfied. By induction, all σ ∈ Π reachable by traversing
⊳ from 〈S0,S

′
0
〉 satisfy Lemma 1.

Theorem 8 The transformation →Γ,A respects non-interference, i.e., if the program P has two
traces that differ on assignments to low security variables (thus causing differing observable outputs)
when only high security input values differ in the program, then the transformed program P ∗ exits
before such an assignment occurs.

Proof Consider the differing assignment statement. Depending on whether the assignment to the
low security variable happened in both traces, two cases are possible.

Case a) The assignment happens on both the traces with different values assigned to the low
security variable x(say). In this case, the trace pair is of the form 〈S,S ′〉 which satisfies Lemma 1(c),
since the values assigned to x are different, then ES(lx) = ES′(lx) = true before the assignment,
and the policy check procedure inserted before the assignment halts on inspecting this value of lx.

Case b) The assignment happens in only one trace. In this case, the trace pair is of the form
〈S,⊥〉 or 〈⊥,S ′〉. ES(lpc) = ES′(lpc) = true by Lemma 1(b) (or by Lemma 1(a)). Hence by the

10

transformation rule for the assignment statement, for the variable x that is assigned, ES(lx) and
ES′(lx) will become true. The policy check procedure will halt the execution in a similar fashion.
Hence the proof.

4 Practical Issues in Runtime Information Flow Enforcement

In this section, we discuss several issues that arise in building practical information flow enforcement
mechanisms for general-purpose programs.

4.1 Optimizations

The transformation presented in Section 2 was kept simple, avoiding all possible optimizations, for
the sake of readability and clarity. In this section, we discuss techniques to optimize the performance
of the run-time approach.

• Standard compiler optimizations. Since our technique is implemented using a source-code
transformation, we can rely on routine optimizations that are implemented into modern compil-
ers. For instance, many redundant label updates in the transformed program can be eliminated
by optimizations such as common-subexpression elimination and dead-code elimination.

• Using static analysis to prune away redundant label updates. We can use a conservative
static analysis to obtain a compile-time bound on the sensitivity of data that may be stored in
a variable at any time during execution. If this static analysis determines that a variable x
never holds sensitive information, then all runtime operations involving lx can be eliminated,
and occurrences of lx in the program replaced by false.

• Merging label variables. A more sophisticated static analysis can partition program variables
into subsets that each contain variables that are equivalent in terms of sensitivity of data stored
in them at runtime. Such an analysis may be based on reasoning about equivalence of expressions
assigning values to label variables. Note that the analysis can make approximations by which
two variables that can sometimes store data with different sensitivities are put into the same
equivalence class. This approximation reduces the accuracy of runtime information flow tracking,
but does not compromise non-interference.

We can then use a single label variable for each equivalence class identified by the analysis. Such
an approach has the potential to significantly decrease the number of label updates performed
at runtime. Moreover, it can cope with languages that permit aliasing by sharing the same label
variable across all program variables that may be aliased.

4.2 Static Analysis for Transformation

Our transformation relies on a static analysis to compute a conservative approximation of variables
that may be modified in an unexecuted branch of a conditional. Although this analysis is straight-
forward, there is a potential difficulty when the untaken branch makes procedure calls. In this
case, label updates need to be made for all variables that may be modified during some execution
of the called procedure. The theoretical worst case is that this set may end up including all
program variables, thereby imposing significant runtime overhead for label updates. It remains to
be discovered whether this worst-case behavior will arise in practice.

4.3 Aliasing

An alias of a variable refers to the same storage location of the variable through a different name.
Writes to an aliased variable will affect the values of its aliases. Variable aliasing is common in
modern program languages such as Java and C++, and hence a practical information flow technique
must cope with it.

Aliasing is easy to handle when tracking explicit information flows and positive control depen-

11

dences: we use label variables that are based on the location (rather than the name) of a program
variable. This technique has been used successfully in [34]. However, negative control dependence
poses a challenge since we need to consider variables that are assigned in untaken branches and
their potential aliases. The key difficulty is that since it concerns untaken branches, actual aliasing
information is not available at runtime. Instead, we need to take into account potential aliases that
may be possible. In particular, a pointer alias analysis technique (e.g. [33, 9]) needs to be used,
and we need to associate a single label variable with each statically computed alias set. This has
the potential to reduce the accuracy of runtime tracking.

4.4 Declassification

Declassification of information is required to downgrade sensitive information intentionally to a
low security value, when dictated by certain situations. A classic example is a password program
that accepts low-sensitivity input from a user, and compares it to high-sensitivity password data,
and returns a boolean output that indicates if the passwords match. By the definition of non-
interference, this boolean variable must be considered as containing high-sensitivity output, but
it is necessary to reveal the result of the password check to the user. To allow this, the concept
of declassification has been introduced [17, 15]. Usually, a declassification operator is introduced,
which has the property that its output has low sensitivity regardless of its input. We can support
such an operator in our framework without any significant changes, except that of modifying the
definition of L to handle the declassification operator.

4.5 Dynamic type specifications

As noted in the introduction, sensitivity information for data may not be available until the program
is running. Even though the transformation rules presented earlier require specification of the
security types of the variables, these do not have to be specified statically. The function policy-
check can be made to consult for the security type dynamically when the program is running.
For instance, in the web browser example that was mentioned earlier, the sensitivity of a piece of
information received on the communication channel is determined at runtime, this runtime value
can be used by the policy-check procedure to determine conformance to the information flow policy.

5 Related Work

Approaches addressing the information flow problem broadly fall into three categories: runtime
approaches, static analysis approaches, and theorem proving based approaches.

Runtime approaches. Early work on protecting confidentiality of data involved the use of
runtime monitoring. This was mainly started with the development of mandatory access control
model in the context of multi-level security by Bell and LaPadula [5]. Subsequent models, such
as Fenton [11], followed this approach in the context of programs, in which the sensitivity of the
output of a computation was calculated along with the computation.

The scripting language Perl has a taint mode [32] that tracks data that arrives from untrusted
sources (such as the network). Perl also supports implicit downgrading data from “tainted” to
“untainted” through pattern matching.

Recently, several works have proposed the use of taint-tracking to defeat attacks targeting
vulnerabilities in programs. As compared to information flow techniques that associate a single
taint bit with each variable, these techniques rely on fine-grained taint. In particular, one or more
bits of taint is associated with each byte of data in memory. The techniques described in [20, 7, 26]
focus on memory corruption attacks, while [21, 22] focus on injection attacks on web applications.
Our recent work [34] addresses both classes of attacks.

A key difference between the above works and ours is that none of the above works deal with

12

negative control dependences, and hence do not respect non-interference.
Static analysis checks have been considered out of EM enforcement mechanisms [25]. While EM-

enforceable properties are those over traces, information flow properties are not EM-enforceable,
as they are properties of trace sets[30]. Hence, a purely runtime mechanism will not be able to
enforce information flow policies. In this paper, we augment the execution trace with information
about other possible executions that relate to the current execution. By doing this, we gain the
ability to enforce information flow policies on programs.

Two other works use dynamic approaches in the context of the information flow analysis problem
to address some of the limitations that were discussed in the introduction. The first is due to Zheng
et al [35], which provides support for dynamically providing the values of labels for data items (such
as a file whose access permission is not known). The second work by Tse et al [28] provides similar
support for unknown principals (that are only available at runtime) that interact with the system.
In both these works, the use of dynamic techniques is to expand the scope of the static analysis based
policy enforcement mechanism. However, they still do not support programs that may occasionally
leak information such as the crash example discussed in the introduction.

Guernic and Jensen [13] have independently developed a similar approach that provides non-
interferences guarantees based on a single run of a program. They present their approach through
an operational semantics, but do not provide a proof. Our work [29] predates [13].

Static analysis approaches. Various static analysis based approaches have been used for infor-
mation flow analysis. We only discuss the works most closely related to ours. A more comprehensive
treatment of previous works in this area can be found in the survey [24].

Denning’s approach [10] based on program certification was the first work that used an aug-
mented compiler to track information flows. Andrews and Reitman [1] used an extended axiomatic
logic with the secure flow certification of Denning. The work of Volpano et al [31] is based on the
use of type analysis for detecting information flows, and the approach is provably secure in handling
implicit flows.

Myers presents a decentralized label model [19] for information flow. In this model, the owner
of a piece of data can specify the set of principals that can access this data in a language called
Jif. A static analysis is used to detect illegal flows [18]. Flow Caml [23], developed by Simonet
and Pottier, is another realistic programming language aimed at supporting information flow con-
trols. More recently, a certifying compiler for information flow policies was described in Barthe [4].
Banerjee and Naumann [2] connect information-flow policies and stack inspection (an access control
mechanism) for static checking of information flow policies in a Java-like language. Mclean [16]
presents a specification of a program using trace semantics and develops a systematic theory to
enable reasoning about non-interference for such specifications.

As we pointed out in the introduction, static analysis based approaches have drawbacks that
may result in rejection of safe programs.

Theorem proving based approaches. In order to improve over the precision offered by static
analysis, Joshi et al [14] (and more recently, Darvas et al [8] and Barthe et al [3]) have proposed
the use of theorem proving techniques. This is done by characterizing information flow as a safety
problem (using a technique called self-composition, summarized in a formulation by [27]) and using
theorem proving technology to certify programs as safe. The downsides of theorem-proving is that
it isn’t fully automated, and the risk of non-termination.

6 Conclusion

In this paper, we presented a runtime information flow tracking technique that respects non-
interference. The principal idea is that of using a static analysis to capture negative control-flow de-

13

pendences that were not handled by previous runtime techniques. The primary contribution of this
paper is theoretical in nature, formally establishing that our technique preserves non-interference.
In future work, we plan to implement this technique and evaluate its effectiveness and performance
in practice.

References

[1] G. R. Andrews and R. P. Reitman. An axiomatic approach to information flow in programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2(1):56–75, 1980.

[2] A. Banerjee and D. A. Naumann. Using access control for secure information flow in a java-like
language. In Proc. IEEE Computer Security Foundations Workshop, 2003.

[3] G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-composition. In Proc.
IEEE Computer Security Foundations Workshop, 2004.

[4] G. Barthe, T. Rezk, and D. Naumann. Deriving an information flow checker and certifying
compiler for java. In IEEE Symposium on Security and Privacy, 2006.

[5] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations. Technical
Report MTR-2547, Vol. 1, MITRE Corp., 1973.

[6] P. Broadwell, M. Harren, and N. Sastry. Scrash: A system for generating security crash
information. In USENIX Security Symposium, 2003.

[7] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Defeating memory corruption attacks
via pointer taintedness detection. In IEEE International Conference on Dependable Systems
and Networks (DSN), 2005.

[8] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure
information flow. In D. Hutter and M. Ullmann, editors, Proc. 2nd International Conference
on Security in Pervasive Computing, volume 3450 of LNCS, pages 193–209. Springer-Verlag,
2005.

[9] M. Das. Unification-based pointer analysis with directional assignments. In Programming
Languages Design and Implementation (PLDI), 2000.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Comm.
of the ACM, 20(7):504–513, 1977.

[11] J. S. Fenton. Memoryless subsystems. Computing J., 17(2):143–147, 1974.

[12] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on
Security and Privacy, pages 11–20, 1982.

[13] G. L. Guernic and T. Jensen. Monitoring information flow. In Workshop on Foundations of
Computer Security, 2005.

[14] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of
Computer Programming, 37(1–3):113–138, 2000.

[15] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In ACM Symposium
on Principles of Programming Languages (POPL), 2005.

[16] J. McLean. Proving noninterference and functional correctness using traces. Journal of Com-
puter Security, 1(1), 1992.

[17] A. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification. In Proc. IEEE
Computer Security Foundations Workshop, 2004.

[18] A. C. Myers. JFlow: Practical mostly-static information flow control. In ACM Symposium on
Principles of Programming Languages (POPL), pages 228–241, 1999.

[19] A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In

14

IEEE Symposium on Security and Privacy, pages 186–197, 1998.

[20] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and
signature generation of exploits on commodity software. In Network and Distributed System
Security Symposium (NDSS), 2005.

[21] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically harden-
ing web applications using precise tainting. In 20th IFIP International Information Security
Conference, 2005.

[22] T. Pietraszek and C. V. Berghe. Defending against injection attacks through context-sensitive
string evaluation. In Recent Advances in Intrusion Detection (RAID), 2005.

[23] F. Pottier and V. Simonet. Information flow inference for ml. In ACM Symposium on Principles
of Programming Languages (POPL), 2002.

[24] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected
Areas in Communications, 21(1), 2003.

[25] F. B. Schneider. Enforceable security policies. ACM Transactions on Information and System
Security (TISSEC), 3(1), 2001.

[26] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via dynamic infor-
mation flow tracking. In International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 85–96, 2004.

[27] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In Static Analysis
Symposium (SAS), 2005.

[28] S. Tse and S. Zdancewic. Run-time principals in information-flow type systems. In IEEE
Symposium on Security and Privacy., 2004.

[29] V. N. Venkatakrishnan, D. C. DuVarney, W. Xu, and R. Sekar. A program transformation
technique for enforcement of information flow properties. Technical Report SECLAB-04-01,
Department of Computer Science, Stony Brook University, 2004.

[30] D. Volpano. Safety versus secrecy. In Static Analysis Symposium (SAS), volume 1694 of
Lecture Notes in Computer Science, pages 303–311, 1999.

[31] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal
of Computer Security (JCS), 4(3):167–187, 1996.

[32] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O’Reilly, 1996.

[33] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In Programming Languages Design and Implementation (PLDI), 2004.

[34] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A practical approach
to defeat a wide range of attacks. In USENIX Security Symposium, 2006.

[35] L. Zheng and A. Myers. Dynamic security labels and noninterference. In Workshop on Formal
Aspects in Security and Trust (FAST), 2004.

15

	1 Introduction
	2 The Transformation
	2.1 The language
	2.2 Capturing Explicit Flows
	2.3 Capturing Implicit Flows
	2.4 Transformation Rules
	2.4.1 Declarations
	2.4.2 Expressions
	2.4.3 Statements

	3 Formalization of Correctness Criteria
	4 Practical Issues in Runtime Information Flow Enforcement
	4.1 Optimizations
	4.2 Static Analysis for Transformation
	4.3 Aliasing
	4.4 Declassification
	4.5 Dynamic type specifications

	5 Related Work
	6 Conclusion

