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Abstract

Beginning with the work of Forrest et al, several researchers
have developed intrusion detection techniques based on
modeling program behaviors in terms of system calls. A
weakness of these techniques is that they focus on control
flows involving system calls, but not their arguments.
This weakness makes them susceptible to several classes
of attacks, including attacks on security-critical data,
race-condition and symbolic link attacks, and mimicry
attacks. To address this weakness, we develop a new
approach for learning dataflow behaviors of programs.
The novelty in our approach, as compared to previous
system-call argument learning techniques, is that it learns
temporal properties involving the arguments of different
system calls, thus capturing the flow of security-sensitive
data through the program. An interesting aspect of our
technique is that it can be uniformly layered on top of most
existing control-flow models, and can leverage control-flow
contexts to significantly increase the precision of dataflows
captured by the model. This contrasts with previous
system-call argument learning techniques that did not
leverage control-flow information, and moreover, were
focused on learning statistical properties of individual
system call arguments. Through experiments, we show
that temporal properties enable detection of many attacks
that aren’t detected by previous approaches. Moreover,
they support formal reasoning about security assurances
that can be provided when a program follows its dataflow
behavior model, e.g., tar would read only files located
within a directory specified as a command-line argument.

1. Introduction

Beginning with the work of Forrest et al [15], several re-
searchers have developed intrusion detection techniques
based on modeling behaviors of programs in terms of sys-
tem call sequences [26, 21, 11, 31, 7, 14, 9, 19]. Approaches
described in [15, 33, 34, 21, 26, 7, 9] learn models from pro-
gram behaviors observed during a training phase, which is
generally assumed to be free of attacks. Other approaches
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use static analysis of source code [31, 19] or binary [14, 6].
A variety of representations have been used for these mod-
els, beginning with strings [33, 34], to finite-state automata
[26, 31, 21] and push-down automata [7, 14, 19, 9].

All of the above techniques have been shown to be ef-
fective against the most common types of attacks, which
involve execution of foreign code. In addition, learning-
based techniques are effective against attacks that exercise
unusual code paths, e.g., a code path that is taken when a
maliciously crafted input is processed by vulnerable code
in a (buggy) server. However, an important weakness of the
above approaches is their singular focus on control flows,
with little emphasis on data flows involving system call ar-
guments. This makes them susceptible to several classes of
attacks:

• Non-control-flow hijacking attacks. [5] demonstrates at-
tacks on several common servers that target security-
critical data, e.g., variables that store the userid corre-
sponding to an FTP client, the directory that contains all
allowable CGI scripts for a web server, and so on.

• Race condition attacks [2] exploit TOCTOU errors, where
the resource referenced by a name has changed between
the time of check and time of use. Race attacks do not
change the system calls made by a victim process, but
only change the interpretation of their operands.

• Mimicry attacks [32]. These are evasion attacks, where
an attacker modifies an attack so that it closely mimics
program’s behavior as seen by the intrusion detection sys-
tem (IDS). Recent work [32, 10, 17] has shown that such
attacks can largely be generated in an automated way.

To detect these attacks, it is necessary to reason about sys-
tem call arguments. Research in this direction has so far
been focused on learning statistical properties of each sys-
tem call argument in isolation [18, 28]. In contrast, we
present an intrusion detection technique that is based on
learning temporal properties involving arguments of dif-
ferent system calls, thus capturing the flow of security-
sensitive data through the program. Specifically, we make
the following contributions in this paper:

• We formulate a notion of dataflow properties of programs.
Since properties are defined in terms of externally ob-
servable events (specifically, system calls), our formula-



tion cannot reason about actual dataflows that take place
in a program; instead, it hypothesizes the flows that may
be present, based on relationships observed between the
parameters of different system calls. Our formulation
is decoupled from control-flow models, but can leverage
control-flow context to significantly improve the precision
of dataflow models. Dataflow properties are categorized
into unary relations that involve properties of a single sys-
tem call argument, and binary relations that involve argu-
ments of two different system calls.

Binary relations turn out to be powerful and versa-
tile. They enable models to be parameterized, e.g.,
they can capture how a system call argument is derived
from a command-line parameter or an environment vari-
able. They enable detection of several recently reported
stealthy attacks that would be undetectable without them.
Binary relations also support formal reasoning about non-
trivial security properties of programs.

• We present an efficient algorithm that can be layered on
top of existing techniques for learning control-flow be-
haviors of programs. This algorithm provides a uniform
way to enhance the precision of existing methods, includ-
ing the N-gram [15], FSA [26], VtPath [7] and the execu-
tion graph [9] methods.

• We present a detailed experimental evaluation of the tech-
nique, establishing the following benefits:

– Attack detection. We selected several attacks that are
hard to detect using existing control-flow models, and
show that they can be detected using our technique. Of
particular significance in this regard are race attacks,
which, to the best of our knowledge, have not been
detected by previous program behavior based anomaly
detection technique. Moreover, our technique can de-
tect sophisticated attacks on security-critical data. We
argue that attack detection is based on essential charac-
teristics of the attack, and not the result of nonessential
artifacts that can be easily changed.

– Formal assurances about security. We show that the
models are precise enough that interesting dataflow
properties can be proved about them. This means that
we can assert that we can detect any attack that vio-
lates these properties. We believe that ours is the first
anomaly-based intrusion detection technique that can
provide formal assurances involving substantive secu-
rity properties for large programs.

– Model precision. The precision of model in terms of
average branching factor [31] improves by a factor be-
tween 10 to 105.

– False alarms. False alarm rate for intrusion detection
increased by a factor of 2 to 4 as a result of capturing
argument information.

Paper Organization The rest of the paper is organized as
follows. In Section 2, we define data flow properties that
can be incorporated into control-flow behavior models. Sec-
tion 3 describes an algorithm to learn dataflow relationships.
Section 4 provides details on implementation. In Section 5,
we evaluate the effectiveness of our approach. Section 6
discusses related work, followed by concluding remarks in
Section 7.

2. Defining Data Flow Behavior

2.1. Events, Traces and Behavior Model

We formalize program behaviors in terms of externally ob-
servable events generated by a program. Since our interest
is mainly confined to system call events in the rest of this
paper, we will use the terms “event” and “system call” in-
terchangeably. We begin with a series of definitions:

• An execution trace (or simply, a trace) for a program P ,
denoted T (P ), is the sequence of all the system calls ex-
ecuted by P during its execution. A trace typically in-
cludes information about system call arguments, and/or
information about the program’s runtime environment,
e.g., the program location from where a system call is
made (“PC” information).

• A system call tracer (or simply, a tracer) is responsible for
intercepting and recording system calls made by P , thus
generating T (P ).

• The trained behavior of P is the set T (P ) of all traces
generated by P during its training runs.

• A behavior model for P is an automaton that accepts
traces. (Strictly speaking, a model accepts prefixes of
traces, but for simplicity, we will say that the model ac-
cepts T .)

Given a training trace set T , a model for these traces cap-
tures some of the essential properties of these traces. The
properties captured will vary across different methods, as
discussed next.

2.2. Behavior Models from Previous Research

• N -gram method: The property captured by this method
is given by the set of all the substrings of T of length
N . Only event names are captured in the model, but not
the arguments. The model will accept another trace T ′,
provided all of its substrings of length N are found in the
training set T .

• FSA method: For the FSA method, events are anno-
tated with program location information. An event e

invoked from location L is denoted e@L. The FSA
method captures successor relationship between events
within each trace in T . A new trace T ′ will be accepted
by the model if and only if every successive event pair
(e1@PC1, e2@PC2) in T ′ is also present in some trace



in T . In addition, the first (last) event in T ′ must appear
as the first (last) event in some trace in T .

• VtPath method: This method also learns successor rela-
tionships similar to the FSA method, but it takes into ac-
count all of the function calls that were active at the time
of invocation of the system call, as opposed to just the
location of a system call. This call stack information is
compactly summarized using a VtPath, which captures
the difference between the call stacks observed at the time
of occurrence of e1 and e2.

• Execution graph method: This method captures a fur-
ther generalization of the relationship learnt by the VtPath
method. In particular, suppose that there is a pair (e1,S1)
and (e2,S2) of events in a trace T ∈ T , where S1,S2 de-
note the return addresses on the stack at the point of invo-
cation of these events. From this information, this method
infers a sequence of calls, returns, and intra-procedural
transitions that must have occurred in the program P in
order to generate this sequence of events and call-stack
information. Now, any trace T ′ whose event pairs can
be constructed by composing the program transitions ob-
served from all event pairs in T ∈ T are accepted by the
model.

From the above description, we conclude that the above four
methods capture:

(a) all-trace properties, i.e., properties that hold for every
execution trace, and

(b) sequencing relationships among events, i.e., control-
flow properties of programs.

Below, we describe how these methods can be extended to
incorporate dataflow properties.

2.3. Dataflow Properties

By dataflow properties, we still refer to properties of execu-
tion traces, but these properties relate to the values of event
argument data and their flow from one system call to a sub-
sequent one. A natural approach for capturing properties of
event arguments is using sets. For instance, we can use a set
to specify all possible file name arguments to open system
calls in any execution trace for a program P . Note that this
approach combines information about all open system calls
that appeared in any trace. Such a combination can lead to
significant (and needless) losses in accuracy. To illustrate
this, consider the following example program:

L1: fd1 = open("/etc/passwd", O_RDONLY);
... /* perform authentication */
L2: fd2 = open("/tmp/out", O_RDWR);

If we combined the information about all open operations
together in the dataflow model, then a trace that corresponds
to opening /etc/passwd file at line L2 will be accepted,
while it is clearly inconsistent with normal program behav-
ior. To improve accuracy, it is hence desirable to partition

the open system calls into subsets, and capture properties
of each subset separately. The question then is how to do
this partitioning.

Making control-flow context available for learning
dataflow properties. We make the important observation
that control-flow models already distinguish among differ-
ent occurrences of the same event in a trace. For instance, in
the above example, the FSA model distinguishes between
the two open system calls based on the PC value. More
generally, the approaches described above use some sort
of an automaton model: the N -gram model uses string-
matching automata to recognize N -grams, while the FSA
approach uses a finite-state automaton. The VtPath model
can be thought of as recognizing VtPaths, which are strings
over program locations. The execution graph method uses
a push-down automaton, and hence its control state, possi-
bly with some (bounded) information from the stack, can be
used to distinguish event occurrences.

We use the term control-flow context to refer to the
event context information that can be provided by a control-
flow model. We use labeled traces to encode control-flow
context into traces. This approach allows us to decouple
dataflow properties from control-flow models.

Control-context is encoded in traces by giving names for
event arguments: if the same event appears in two places
in a labeled trace, and these two instances correspond to
the same control-flow context, then (and only then) their
arguments should have the same name. An example labeled
trace is:

open@L1 X = "/etc/passwd" Y = "read"
open@L2 Z = "/tmp/out" W = "write"

2.4. Possible Dataflow Relationships

Similar to control-flow models, our focus is on learning all-
trace dataflow properties. These properties will be formu-
lated as relationships on event arguments. It is natural to
specify these relationships by referring to argument names
in a labeled trace. We limit our attention to unary and bi-
nary relations on event arguments in this paper, as they can
be learnt more efficiently, and seem adequate for our pur-
poses.

Unary Relations. Unary relations capture properties of a
single argument. They can all be represented using the form
X R c, where X is an argument name, R denotes a rela-
tion, and c is a constant value. Examples of unary relations
include:

• equal relationship is applicable to all types of arguments.
For instance X equal v indicates that the value of argu-
ment X is always v.

• elementOf relation is used to capture the fact that an ar-
gument can take one of several values. X elementOf S
indicates that X can take any of the values in the set S.



• subsetOf is a generalization of elementOf, and is
used when an argument can take multiple values,
all of which are drawn from a set. For instance,
M subsetOf {RD, WR} represents the fact that M is a
set-valued argument whose value is a subset of the set
{RD, WR}.

• range is a relation involving integer arguments. It
is characterized by a lower and upper bound, e.g.,
X range (0, 2) indicates that the argument X can take
values in the range 0− 2.

• isWithinDir relation is used to capture the fact that a file
name argument is contained within a specified directory.
For example, if X has the value "/home/user/xyz", we
can state X isWithinDir "/home/user/".

• hasExtension relation is used to specify the fact that
a file name argument has certain extensions, e.g., if X

takes values from the set {a.doc, b.doc, c.txt},
then X hasExtension {"doc", "txt"} holds.

Some of the unary relations mentioned above incorporate
some approximations. For instance, elementOf is an ex-
ample of a relation that doesn’t need to make approxi-
mations. If a variable X is observed to have k distinct
values v1, ..., vk across all traces, this can be captured as
X ∈ {v1, ..., vk}. Approximations become necessary when
the sets become large — with integer- or string-valued vari-
ables, sets can be unbounded in size. In this case, approxi-
mations such range or isWithinDir may be used.

We note that previous works on system call argument
learning [18, 28, 24] were all focused on unary relations.
The main difference with our approach is that we suggest
the use of control-flow contexts to support more accurate
learning. As a result, our approach learns properties that
hold across all occurrences of a system call made from
the same control context, whereas the previous approaches
learn properties that hold across all occurrences of a system
call, regardless of control context.

Binary Relations. Binary relations capture relationships
between two event arguments. These may be arguments of
the same event, or arguments of different events. Our focus
is mainly on the latter, since such relationships naturally
capture the flow of data from the arguments of one system
call to another.

Binary relations can in general be represented using sets
in a manner analogous to unary relations. However, such an
approach will limit the method to finite (small) relations, or
require approximations that lose important information. In
practice, we often need to represent some types of relations
over large domains without significant loss of information.
Examples of such relationships include:

• equal captures equality between system call operands,
e.g., the file descriptor returned by an open operation
equals the first argument of a subsequent write operation.

• isWithinDir indicates that one file name argument is
within the directory named by the other argument.

• contains is the reverse operation of isWithinDir, in
which the second file name argument is within the direc-
tory named by the first argument.

• hasSameDirAs indicates that two arguments have a com-
mon base directory, e.g., if X = "/home/user1/xyz"

and Y = "/home/user2/abc", X hasSameDirAs Y

and Y hasSameDirAs X hold, with the common direc-
tory being "/home/".

• hasSameBaseAs indicates that two file names have the
same base, e.g., if X = "somefile.txt" and Y =
"somefile.doc" then X hasSameBaseAs Y (as well
as Y hasSameBaseAs X) hold, with the common base
being "somefile".

• hasSameExtensionAs indicates that two file names
have the same extension. For example, if X has
the value "somefile.txt" and Y has the value
"someotherfile.txt", X hasSameExtensionAs Y

(as well as Y hasSameExtensionAs X) holds, where the
common extension is "txt".

In the next section, we describe how such relations can be
formulated and learnt.

Interpretation of Binary Relations. Unary relations were
defined to apply to all occurrences of an event argument
in any trace. However, this interpretation is unsuitable for
binary relations, since a relation of the form X equal Y

cannot hold with such an interpretation unless both X and
Y have only one possible value in all traces. Hence we use
an alternative interpretation that pairs each occurrence of X

in a trace with a single occurrence of Y . A natural way to
do this is to pair X and Y occurrences that are closest to
each other.
Definition 1 (Lifting a relation R to a trace.) Given a bi-
nary relation R on event arguments X and Y , we can lift R
to a trace T , denoted X RT Y , which holds iff, for each
occurrence of X and its closest preceding occurrence of Y

in T , X R Y holds. X RT Y holds iff X RT Y holds
∀T ∈ T .
Consider a labeled trace T of the form

Y = 1, Z = 2, X = 1, Y = 2, X = 2.

We can say that X equalT Y , but not Y equalT X .
Also, Y equalT Z, but not vice-versa. Now, consider
another trace, and the isWithinDir relationship:

Y ="/tmp", X ="/tmp/f1", X ="/f2",
Y ="/var", X ="/var/g1", X ="/g2"

It is clear that X isWithinDirT Y does not hold since
the second occurrence of X does not satisfy isWithinDir
when compared with the first Y . Note, however, that
X isWithinDir Y holds if we ignore all but the first oc-
currence of X among a series of occurrences of X without



1. int main(int argc, char **argv) {
2. source dir = argv[1]; target file = argv[2];

3. target fd = open(target file, WR);
4. push(source dir); // uses a global stack
5. while (dir name = pop()) != NULL) {
6. dir = opendir(dir name);
7. foreach (dir entry ∈ dir) {

8. if (isdirectory(dir entry))
9. push(dir entry);
10. else {
11. source fd = open(dir entry, RD);

12. read(source fd, buf);

13. write(target fd, buf);

14. close(source fd);
15. }
16. }
17. }
18. close(target fd);

19. exit(0);
20. }

END

START

`13

`14

`18

`3

`6

`8

`12

`19

start(I, O)

exit(0)

`11

close(FD′
14)

| FD′
14 equal FD11

| FD14 equal FD11

close(FD14)

isdirectory(F ′
8)

| F ′
8 isWithinDir F6

FD3=open(F3, M3) | F3 equal O;

M3 elementOf {WR}

opendir(F6)

FD11=open(F11, M11)

isdirectory(F8)

read(FD12)

write(FD13)
| FD13 equal FD3

| FD12 equal FD11

| F8 isWithinDir F6

| F11 equal F8;

| F6 isWithinDir I

M11 elementOf {RD}

| FD18 equal FD3

close(FD18)

Figure 1. Example program simpletar (left) and its model with argument information (right).

an intervening Y . This motivates a different flavor of the
relation RT that we denote using R

′
T .

Definition 2 X R
′
T Y holds iff X R Y holds for each pair

X, Y in T without an intervening X or Y .

Finally, consider the trace X = 1, Y = 0, X = 2, Y =
1, X = 3, Y = 2, .... Clearly, the value of Y equals the
value of the last but one preceding X . To accommodate
this, we define another variation R

n
T :

Definition 3 X R
n
T Y holds iff X R Y holds for each

occurrence of X and its n+1th preceding occurrence of Y .

Note that RT is the same as R
0

T . In the above example
trace, Y equal1T X .

2.5. Motivating Example

We illustrate the concepts developed above with an example
program that is a highly simplified version of the tar pro-
gram. Figure 1 shows this simpletar program, which takes
a command-line argument describing the source directory,
and another command-line argument that specifies the name
of the archive. It traverses the directory, which may con-
tain subdirectories, and copies all the files into the archive.
For simplicity, we ignore many aspects of archiving such as
maintaining file boundaries, directory structures, and so on.
In addition, we have abstracted away some details such as
the use of lstat system call, and replaced them with more
descriptive names such as isdirectory. In the example,

all system calls are underlined.

Figure 1 also shows an abstract version of FSA model
learnt for simpletar. States in the model are labeled with
`n where n is the line number. Transitions are labeled with
system call and argument information. Argument names are
based on the nature of the argument and the transition they
are associated with, e.g., a file descriptor argument to the
close system call made on the transition from state `14 to
`8 is labeled as FD14, while FD′

14 refers to the same argu-
ment when the transition is from `14 to `18. Relationships
are shown as annotations on the transitions.

To illustrate how some of these relationships are learnt,
we consider an execution trace generated when the program
is run to archive the directory /opt/proj into a tarball
/tmp/proj.tar. The operations of the trace are shown in
the first column of Figure 2. The second column shows cor-
responding control-flow transitions learnt in the FSA. The
third column shows values of system call arguments, and
the fourth column shows some of the relationships learnt. In
the generation of the trace, we have introduced a synthetic
event start to capture command line arguments, and con-
verted all the files names into absolute path names. Some
of the relationships, such as those capturing absolute values
of the file descriptors, are not shown in the above exam-
ple. In addition, absolute values of various file arguments
will be learnt from the above trace, but these are not shown



Operation Traces Control-Flow Argument Satisfied Data-
Transition Values Flow Property

Program started with arguments {I = "/opt/proj",
"/opt/proj","/tmp/proj.tar" O = "/tmp/proj.tar"}
`3 : open("/tmp/proj.tar", WR)=3 start → `3 {F3 = "/tmp/proj.tar", F3 equal O,

M3 = WR, FD3 = 3} M3 elementOf {WR}
`6 : opendir("/opt/proj") `3 → `6 {F6 = "/opt/proj"} F6 isWithinDir I

`8 : isdirectory("/opt/proj/README") `6 → `8 {F8 = "/opt/proj/README"} F8 isWithinDir F6

`11 : open("/opt/proj/README", RD)=4 `8 → `11 { F11 = "/opt/proj/README", F11 equal F8

M11 = RD, FD11 = 4} M11 elementOf {RD}
`12 : read(4) `11 → `12 {FD12 = 4} FD12 equal FD11

`13 : write(3) `12 → `13 {FD13 = 3} FD13 equal FD3

`14 : close(4) `13 → `14 {FD14 = 4} FD14 equal FD11

`8 : isdirectory("/opt/proj/src") `14 → `8 {F ′

8
= "/opt/proj/src"} F ′

8
isWithinDir F6

`6 : opendir("/opt/proj/src") `8 → `6 {F6 = "/opt/proj/src"} F6 isWithinDir I

`8 : isdirectory("/opt/proj/src/a.c") `6 → `8 {F8 = "/opt/proj/src/a.c"} F8 isWithinDir F6

`11 : open("/opt/proj/src/a.c", RD)=4 `8 → `11 { F11 = "/opt/proj/src/a.c", F11 equal F8

M11 = RD, FD11 = 4} M11 elementOf {RD}
`12 : read(4) `11 → `12 {FD12 = 4} FD12 equal FD11

`13 : write(3) `12 → `13 {FD13 = 3} FD13 equal FD3

`14 : close(4) `13 → `14 {FD′

14
= 4} FD′

14
equal FD11

`18 : close(3) `14 → `18 {FD18 = 3} FD18 equal FD3

`19 : exit(0) `18 → `19

Figure 2. A sample trace of the program in Figure 1 and the observed argument relationships.

here, since these values will vary when trained with many
different traces, and will eventually be discarded.

From the above example, it is evident that binary rela-
tionships involving file names and file descriptors are very
useful, as they allow us to track many interesting dataflow
properties of the traces. It is interesting to note that some of
these relationships arise due to the properties of the program
environment, rather than the program itself. For instance,
the relationship isWithinDir between F8 and F6 exists due
to the fact that in the file system, the absolute path name
of a file has the name of its parent directory as a prefix. A
static analysis technique will have a hard time extracting
such relationships, since it is obviously impossible to infer
the semantics of the file system from this program.

3. Learning Argument Relationships

In this section, we describe our algorithms for learning the
relationships described in the last section. These algorithms
take labeled traces as inputs, and output the relationships
that hold in all traces.

3.1. Learning Unary Relations

Learning unary relationships is straight-forward. With each
event argument, the algorithm maintains a list of all the val-
ues encountered in all the traces. If the number of values
exceeds a threshold, then the algorithm approximates the
set. The kind of approximation that is appropriate for each
event argument must be externally specified, through a con-
figuration file. A few lines from this configuration file are
shown in Figure 3. The first line specifies that for event ar-
guments that represent file modes, up to 4 distinct values
should be remembered. (Other parts of the configuration
file specify which event arguments represent what type of

value kind=[MODE] approx=BIT OR max=4;
value kind=[PATH] approx=PREFIX max=10

must=["/etc/*","/lib/*"];
value kind=[FD, SD] approx=RANGE max=4;

Figure 3. A sample configuration file.

data.) Beyond that, the values are to be approximated using
a bit-or operation. The second line is applicable to file or
directory arguments. A maximum of 10 distinct values are
to be remembered, after which they are to be approximated
using a common prefix operation. This line also states that
for file names that match "/etc/*" or "/lib/*", the
name should be remembered, regardless of the size of the
set. The last line states that for file and socket descriptors, a
maximum of 4 distinct values should be remembered, after
which only the range of values is to be kept.

Runtime and Storage Requirements. Unary relations can
be learnt in O(N) time, where N is the length (measured
in terms of number of bytes) of the labeled trace, provided
we restrict ourselves to simple approximation operations on
strings such as the longest common prefix (LCP). Note that
LCP can be computed quickly if the strings are represented
using a trie [22]. Construction of tries takes time that is
linear in the size of input strings. Computing the common
prefix takes no longer than the length of the shortest string
in the trie. Since at least one insertion will take place before
a second invocation of the common prefix operation, it can
be shown that the total time taken to maintain the LCP in-
formation is bounded by the total length of all strings in the
input trace, which, in turn, is bounded by the trace length.

Storage requirements are dictated by (a) the total number
of distinct argument names in the traces, and (b) the max-



1. procedure LearnRelations(EvArg X , Value V ) {
2. Y = ValTable.lookup(V, R);
3. CurRels[R][X] = CurRels[R][X] ∩ Y;
4. Yn = Y ∩ NewArgs(X);
5. CurRels[R][X] = CurRels[R][X] ∪ Yn;
6. ValTable.update(X, V );
7. }

Figure 4. Relationship learning algorithm

imum size of sets before an approximation is performed.
Note that due to the way we generate labeled traces, (a) is
bounded by the size of the control-flow model for N-gram,
FSA and VtPath methods. The key point here is that even
if the size of the traces is increased without a bound, the
storage requirements are still going to be bounded.

3.2. Learning Binary Relations

Binary relations are learnt using the procedure
LearnRelations shown in Figure 4. This procedure is
invoked repeatedly for each event in the input trace,
and for each argument to this event. LearnRelations is
parameterized with respect to a relation R, and is designed
to learn RT . (Modifications to learn R

′
T and R

k
T are

discussed subsequently.) It takes two arguments: the
current argument name X , and its current value V . It uses
two global data structures: (a) ValTable, which is used to
store the values of the most recent occurrences of all event
arguments, and (b) CurRels, which is indexed by a relation
R and an argument name X , and stores the set Ycur of
all arguments Yc such that X RTp

Yc holds for the prefix
Tp of current trace up to, but not including X . Both data
structures are initialized to be empty at the beginning of the
algorithm.

At line 2, ValTable is looked up to identify the set Y of
all arguments Y such that X R Y holds for the most recent
value of Y . In the next step, arguments Yd in Ycur that
aren’t in Y are deleted, as the latest occurrence of Yd didn’t
possess the specified relationship with X .

Line 4 is designed to handle event arguments Yn whose
first appearance in the current trace occurred after the pre-
vious occurrence of X . We rely on a function NewArgs to
identify such arguments. Note that for such Yn, the con-
dition characterizing X RTp

Yn holds vacuously. At the
same time, the relationship has not actually been verified to
hold even once, so Yn does not appear in CurRels[R][X ].
Therefore, such event arguments are explicitly added to
CurRels[R][X ] at line 5. Finally, ValTable is updated at
line 6 with the latest value of X .

A slight generalization of this algorithm is necessary
when dealing with relations that take an additional constant
parameter. For instance, consider the relation isWithinDir
such that X isWithinDir Y iff X = Y s, i.e., X is ob-
tained by adding a suffix s to Y . In this case, the suffix s

may change (“shrink”) as we examine more Y, X pairs. For
example, with a trace Y = abc, X = abcde, s has the value
de, but when an additional pair of X, Y values are added,
as in the trace Y = abc, X = abcde, Y = efg, X = efgd,
s becomes d∗. To support such relationships, a refinement
of isWithinDir, which modifies the parameter s, will be
needed at step 3.

Learning R
′
T requires a slight change to the algorithm.

Specifically, at step 3, we do not delete some variables from
CurRels[R][X ] even when they aren’t in Y . This excep-
tion is made for those variables Ye that haven’t appeared
on the trace since the previous occurrence of X . This can
be easily checked by associating timestamps for arguments,
and checking that the last timestamp of Ye is less than the
timestamp of the previous occurrence of X . Learning R

k
T

requires another kind of change: rather than deleting old
values of an event argument X each time a new value is
seen, we retain the k most recent values of X .

Runtime and Storage Requirements. Below, we discuss
the runtime and storage requirements for learning a single
relation. The LearnRelations algorithm is invoked O(M)
times, where M is the total number of events in the trace.
(This assumes that each event has O(1) arguments.) If a
hash table representation is used, and R is the equality re-
lation on integral types, then line 2 of the algorithm can
be completed in |Y| time. If R is an operation such as a
isWithinDir, contains, or hasSameDir, then this step can
be completed in time proportional to |Y| + length(V ) by
maintaining ValTable as a trie. Adding this over the M it-
erations of LearnRelations, we arrive at

M∑

i=1

|Y| +
M∑

i=1

length(Xi)

where Xi denotes the ith argument in the trace. This ex-
pression can be simplified to M ∗ |Y|+ N . Noting that |Y|
is bounded by the number distinct event arguments, which
in turn is bounded by the size S of the FSA, we get a bound
of O(SM + N) worst-case runtime for the approach, when
FSA method is used.

In the previous paragraph, we computed the runtime for
executing line 2 of LearnRelations. It can be easily seen
that the complexity of line 3 and 4 are bounded by the size
of Y . Also, since the size of Yn is smaller than that of Y , the
runtime of line 5 is also bound by |Y|. Finally, the update of
the value table takes time bounded by length(V ) for integer
and string relations. Thus, the runtime of all other steps
is bounded by the runtime of line 2, and hence the overall
complexity of O(SM + N).

The above argument is based on the worst-case size of
Y . By retracing the arguments, it is easy to see that we can
replace S by the average size A of Y , and the complexity
argument would still hold. In our experiments, we have ob-



served that A is relatively small (less than 10), while S is
much larger – of the order of hundreds. Moreover, N was
about a hundred times larger than M . As a result, the factor
N dominates in practice over SM . This leads to a practi-
cally efficient algorithm that takes time linear in the size of
the input trace file length.

It is easy to see that the storage requirements for learn-
ing binary relations is dependent on the number of distinct
event arguments. A worst-case storage complexity that is
quadratic in S can be established, but in practice, we find
that the storage requirements are more or less linear in S.

Dealing With Multiple Traces. The obvious approach for
handling multiple traces is to process each trace using
LearnRelations, one after the other. The global data struc-
tures need to be appropriately reinitialized between any two
traces. In particular, CurRels table is not reinitialized be-
tween traces. ValTable is cleared at the end of each trace.
Finally, a slight modification is necessary to the definition
of NewArgs(X). It will include only those event arguments
Y such that no occurrence of Y has preceded an occurrence
of X in the current trace up to X , or in any of the previously
processed traces.

Specifying Relations of Interest. Our algorithm is de-
signed to support common binary relations such as equal,
and file name/path related relations such as isWithinDir,
contains, hasSameDirAs, hasSameBaseAs, and has-
SameExtensionAs. We limit relationship learning within
arguments that represent the same kinds of objects, e.g.,
a relationship is learnt among file descriptors, but none is
learnt between a file descriptor and a userid. The relations
of interest are specified using a configuration file, a section
of which is shown below:

relation equal kind=[FD, UID, PATH]
relation isWithinDir kind=[PATH]
relation hasSameDirAs kind=[PATH]

The first line specifies that for arguments representing
file descriptors, userids and file names, equality relationship
should be learnt. The second and third lines specify that
for file name arguments, isWithinDir and hasSameDirAs
relations are of interest.

Observe that our model learning algorithm discounts the
possibility of coincidental relationships, in the sense that
any relationship that appears to hold is assumed to be a real,
meaningful relationship. This assumption works well if the
probability of accidental relationships is rather small. How-
ever, for file descriptors, which typically range over a small
number of distinct values, this assumption does not hold.
As a result, meaningless relations are often learnt, such as
the relationship between a file descriptor argument of read
and an open of an entirely different file that was opened
and closed long ago. To address this problem, we specify
that when a close(fd) occurs, no more relationships in-

volving that fd should be learnt. This is specified in the
configuration file using a “terminate” flag with the close

operation.
Another related problem involving file descriptors is that

a number of “useless” relationships are learnt. Suppose that
a program opens a file at location `0 and then performs
read operations on this file from locations `1,..,`n. Let X0,
X1,..,Xn be the corresponding argument names. Our algo-
rithm will learn that Xn has equality relationships with X0

through Xn−1, that Xn−1 has equality relationships with
X0 through Xn−2, and so on. From a security perspective,
it is clear that a relationship between Xi and X0 is useful,
for 0 < i ≤ n, since these relationships associate a read

operation with the name of the file being opened. However,
it does not seem to be useful to learn a relationship between
Xi and Xj where i, j 6= 0. Such useless relationships can
be specified in the configuration file, and the learner avoids
learning them. Our current implementation considers a re-
lationship between two file descriptor arguments X and Y

to be useful only when Y corresponds to the return value of
an open operation.

4. Implementation

We have implemented our approach on RedHat Linux 7.3.
The implementation consists of an online and an offline
component. The online component is a tracer, which uses
ptrace mechanism to trap each system call made by a
monitored process and logs the following information: (a)
the program location from where the system call was in-
voked, (b) values of significant arguments, and (c) the return
code for a system call. The tracer incorporates some knowl-
edge of the argument data that is useful, e.g., filenames are
logged, but not the buffer arguments of system calls such
as read. The tracer performs some normalization of sys-
tem call argument values, e.g., converting filenames into a
canonical form obtained by resolving symbolic links and
occurrences of “.” and “..”. For some system calls, ad-
ditional information is logged, e.g., inode information for
open and stat calls, and IP address and port information
for sockets.

The tracer records program parameters such as open
file descriptors, command-line arguments and environment
variables. These parameters are provided as arguments to
“synthetic events” generated by the tracer. For open file de-
scriptors, a synthetic open event is introduced that records
the name of the file (or network endpoint) involved. For
environment variables, the synthetic event name is derived
from the name of the environment variable. For command-
line arguments, the name is derived from the position of
the argument, i.e., the 5th command-line argument is pro-
vided as an argument to an event named arg5. A more
meaningful event name that is based on the function of an
argument (rather than its position) can be generated us-



Reference Program Attack description Detected?

S. Chen et al. [5] WU-FTPD format string attack overwrites userid data Yes (B)
S. Chen et al. [5] Netkit Telnetd heap overflow to corrupt name of execve’d program Yes (B, U)
S. Chen et al. [5] GHTTPD stack overflow to overwrite filename data Yes (U)
CVE-2000-0915 Fingerd read arbitrary file by symlinking .plan to it Yes (B)
CVE-2002-0435 GNU rm race condition Yes (B)
H. Chen et al. [4] Synthetic causing file open to return stderr descriptor Yes (U)

Figure 5. Attacks used in effectiveness evaluation. In the detection column, “B” and “U” respectively
indicate that the attack was detected as a violation of a binary relationship or a unary relationship.

ing an application-specific plugin to the tracer that maps
command-line arguments into appropriately named event
sequence. Such application-specific plugins can also be
used to obtain other parameters to a program, e.g., values
specified in a configuration file.

The offline component consists of a log file parser, which
reconstructs the system call events and feeds them into the
learning module. The operation of the learning module is
controlled using a configuration file as described earlier.
The implementation of this module follows the description
in the last section. Our experiments make use of only the
RT relation, but not the other variants R

′
T and R

k
T .

5. Evaluation

In this section, we first study the effectiveness of our ap-
proach in attack detection (Section 5.1), followed by an
analysis of false alarm rates (Section 5.2). We then study
the precision of models using the branching-factor metric
proposed in [31]. Finally, performance overheads for intru-
sion detection are discussed in Section 5.4.

5.1. Detection of Attacks

Note that in principle, a range of attacks are detectable by
our approach. One way to establish its effectiveness is to
select some of the most visible exploits from US-CERT or
CVE, and demonstrate their detection. However, this would
not be very helpful because we would primarily be test-
ing with very easy-to-detect attacks such as code-injection
attacks that alter control flows in obvious ways. Indeed,
many of those attacks can be detected by control-flow mod-
els. However, the real problem is that an attacker can easily
adapt his attack to evade detection by these techniques. The
main advantage of our approach is that due to the improved
precision offered by it, it can block such stealthy attacks
designed to evade existing IDS. To establish this, we:

• Demonstrate detection of a collection of stealthy attacks.
(See Section 5.1.1.) We chose the set of attacks shown in
Figure 5. Some of these attacks were designed to evade
techniques focused on control-flow hijack attacks. An-
other category of attacks we studied was that of race con-
ditions and symbolic link attacks, a category that has at-
tracted techniques that were specifically designed for it.

Previous program behavior based anomaly detection tech-
niques don’t detect them, since in their view, the behavior
of the program hasn’t changed at all.

• Formally establish, using automated verification tech-
niques, that certain attacks would never succeed. We can
show that if a program exhibits the behavior specified by
its model, then it would provide some safety guarantees,
regardless of any attack mounted against it. This is a
unique feature of our technique and is outlined in Sec-
tion 5.1.2.

5.1.1 Detection of Stealthy Attacks

For each of the attacks shown in Figure 5, we obtained the
corresponding exploit from the Internet or developed it our-
self. We ran the exploits and verified that the attacks were
successful. Then we trained the programs involved with be-
nign data. We then reran the attack, and verified that each
attack caused an anomaly. We investigated the anomaly to
ensure that the anomaly was a direct consequence of the
attack, and not an artifact that resulted from poor training
data, or nonessential aspects of the attack.

Figure 5 shows whether attacks were detected as a viola-
tion of a binary relation (B) or a unary relation (U). In half
the cases, the essential feature of an attack was the viola-
tion of a binary relationship. This means that previous ap-
proaches, which did not rely on binary relations, won’t be
able to detect these attacks. Of the remaining three attacks,
the last attack in the table requires control-flow context to be
combined with argument value, and hence we believe that
it won’t be detected by previous techniques, since they did
not leverage control-flow information. The remaining two
attacks could be detected by some previous approaches for
argument learning. Below, we describe each of the attacks
in more detail.

WU-FTPD: Corruption of user identity data [5]. This at-
tack exploits wu-ftpd format string vulnerability [3]. It in-
volves the following code in getdatasock() function:

L1: seteuid(0);
setsockopt(...);
...

L2: seteuid(pw->pw_uid);



In the above code, setsockopt() operation requires
root privilege. For this reason, the privilege is temporar-
ily escalated using seteuid(0), and then dropped after-
words using seteuid(pw->pw uid). The attack exploits
the format-string vulnerability to change pw->pw uid to 0.
Therefore, the root privilege is maintained even after sec-
ond seteuid() call, which allows the remote attacker to
upload and download arbitrary files as a root user.

In our experiments, we did not use the actual format-
string attack, but simulated it by instrumenting the code
to change value of pw->pw uid under attack scenario.
Our implementation detected this attack because it learns
an equality relation between the argument of seteuid at
line L2 and another setuid call appearing in the function
pass(), which is invoked when the user first logs in. This
equality relation is violated in an attack. It is important to
detect this attack as a violation of this relationship: an alter-
native, such as raising an alarm when the absolute value of
seteuid argument at L2 is zero, would raise a false alarm
when root uses this server.

Netkit Telnetd: Corruption of filename to be executed [5].
At the beginning of each client connection, the telnet dae-
mon authenticates its user with an external program. The
name of this program is stored in a variable loginprg. In
this attack, a heap overflow vulnerability is used to over-
write this variable with the value /bin/sh, so that a subse-
quent authentication attempt by a user will result in a root
shell. We simulated this attack in the similar manner as the
previous attack.

With typical configurations of telnetd, loginprg al-
ways has the value /bin/login. In this configuration, it is
easy to detect the attack as a violation of the value normally
observed as the argument of execve. It is more interest-
ing to note that our models are successfully able to handle
atypical configurations as well, where telnetd may be in-
voked with different command line parameters specifying
different authentication programs. In this case, recall that
the tracer introduces a synthetic event to record the com-
mand line argument. The model captures the relationship
between this argument and the argument of execve. In this
manner, a model that is produced in an environment using
a login program x can be deployed in another environment
with a login program named y, and still be able to detect
this attack.

GHTTPD: Directory traversal by corrupting filename [5].
A stack overflow in GHTTPD web server can be used
to evade path name checks, and execute an arbitrary pro-
gram [5]. Attack occurs in the following code fragment in
serverconnection function:

if (strstr(ptr, "/.."))
return ... //reject request

Log(...);
L1: if (strstr(ptr, "cgi-bin")) execve(ptr, ...)

Variable ptr is a pointer to a text string of the
URL requested by a remote client. The function
serverconnection() checks the absence of "/..", and
the presence of "cgi-bin" in the URL before the CGI
request is handled. The purpose of these checks is to en-
sure that only programs in the CGI-BIN directory are exe-
cuted by the server. The function Log() has a buffer over-
flow vulnerability which is exploited to change ptr to point
to a string /cgi-bin/../../../../bin/sh (details can
be found in [5]). The subsequent check strstr(ptr,

"/cgi-bin") is successful and spawns a shell. We used
an actual buffer overflow to produce this attack.

Our system learns that the common prefix of all
files executed at L1 is the CGI-BIN directory, i.e.,
F isWithinDir CGI-BIN directory, where F is the file
name argument of execve. Since this condition is violated
by the above attack, our approach was able to detect it.

Fingerd symlink vulnerability. Some programs assume
that file names given to them are regular names and do not
contain symbolic links. Attacks can be crafted by violat-
ing this assumption. We describe an example of symlink
vulnerability in old versions of BSD fingerd [8]. This
server uses a local finger client program to serve remote
requests. The server runs with root privileges, and executes
the client without dropping these privileges. This allows the
following attack: a user can create a symbolic link called
.plan in his home directory that points to a file readable
only to root (e.g., the shadow password file). Now, by run-
ning a finger on himself from a remote site, he can see the
contents of this file.

The vulnerability arises in the following code snippet in
show text() function, which verifies the presence of a file
to be shown, but does not check if it is a symbolic link.

if (lstat(tbuf, &sbuf1)) return 0;
L1: fd = open(tbuf, O_RDONLY); ...

fp = fdopen(fd, "r"); ...

As essential aspect of this attack is that the file name that
is actually read isn’t within the directory of the user. This
is detected in our approach as a violation of the relation-
ship between the command-line argument, which specifies
the name of the user to be fingered, and the directory of the
filename opened at L1. (Recall that we resolve symbolic
links in filenames before using them for learning or detec-
tion.) The attack could potentially be detected by observing
that the resolved filename is something other than .plan,
but this would raise a false alarm if the user were to use
the symbolic link in a benign way, say, by linking .plan to
another file named schedule.

Race condition attacks. Race conditions in file access oc-
cur when applications incorrectly assume that a sequence
of operations on files is atomic. The prototypical example
is that of a setuid-to-root program using access system call



to check if its real user ruid has access to a file f, and then
using open(f) to open it. In between the two calls, an at-
tacker (who is typically the real user) can change f, so that
the access call will succeed, but by the time open is exe-
cuted, f points to a file that isn’t accessible to ruid. Race
condition attacks are among the hardest attacks to detect,
and this has led to the development of detection techniques
specifically targeting them [29, 16, 20, 30]. It is interesting
to note that without any specialized effort, our approach can
detect them.

To demonstrate the ability of our approach to detect real-
world race attacks, we selected race condition in rm [25]
from GNU file utilities package. The attack exploits the fact
that rm descends into a subdirectory using chdir, and then
ascends out of this subdirectory using chdir(".."). In
the window of time between the descend and ascend opera-
tions, an attacker can move the subdirectory higher up. This
will result in the second chdir operation going out of the
directory on which it was invoked. For instance, consider
an operation rm -r /tmp/a/, where a contains a subdi-
rectory b. When rm descends into /tmp/a/b, the attacker
can rename /tmp/a/b to /tmp/b. Now, when rm executes
a chdir(".."), it will go into /tmp, and will start delet-
ing all files in /tmp, which is different from the original
intent of removing the subdirectory /tmp/a. In this attack,
typically the rm will be invoked by root to clean up some
directories of /tmp, while the attacker has write permission
on the subdirectory /tmp/a.

In our experiments, we inserted sleep command in the rm
program to obtain a sufficient time window to launch the ac-
tual attack. For the rm program, our implementation learnt a
relationship between its command-line argument and all of
the arguments to unlink and rmdir system calls made by
it: namely, that the arguments to these system calls should
be within the directory name given by the command-line
argument. This relationship was violated during the attack,
and hence it was detected. Other types of race conditions
can also be detected as violations to path relationships. For
a more robust detection technique, one can rely on inode
numbers instead of filenames obtained using realpath.

Attacks on file descriptors. Programs may make assump-
tions about the meanings of file descriptors, e.g., that de-
scriptor 2 corresponds to stderr. An example setuid pro-
gram with such a vulnerability is described in [4]:

fd = open("/etc/passwd");
str = read_from_user();

L1: fprintf(stderr,
"The user entered:\n%s\n", str);

If the attacker execve’d this program after closing
stderr, then a open of "/etc/passwd" will return file
descriptor 2, and subsequently, the fprintf will have the
effect of writing user provided data into the password file.
This attack is detected as a violation of unary relationships

learnt on file descriptors.

5.1.2 Verifying Security Properties Using Models

Note that if a security policy P can be statically verified
with respect to a model M learnt by our technique, then one
can be assured that an intrusion detection system based on
M will detect any attack that violates P . Clearly, it would
be beneficial if one can make such deterministic assertions
about an anomaly detection system.

For verification, security policies are expressed as an ex-
tended finite-state automaton, i.e., a finite-state automaton
that can remember a finite number of values such as file
names. Technically, these automata capture negations of
safety properties, so they accept traces that violate the de-
sired security property. The models are also extended finite-
state machines accepting normal execution traces. The ver-
ification then amounts to taking the intersection of the prop-
erty and model automata, and checking if the language ac-
cepted by this automata is nonempty. If so, then the prop-
erty is violated. The verifier is written in XSB Prolog [35],
a system well-suited to writing verification tools. The focus
of this section is on the results of verification rather than the
verification process, so we omit the technical details of this
process.

Following are three of the properties that we actually ver-
ified for tar, gzip and find:

• find executes only those programs that are specified
using a “-exec” command-line option. To verify this
property, we need an application-specific command-line
parser to recognize the parameter following “-exec”
switch and generate a corresponding synthetic event. The
property itself states that the first argument to any execve
made by find is equal to the “-exec” argument. Since
an equality relationship is learnt in the model involving
the “-exec” parameter and the argument to execve, this
property is easily verified.

• All files read by tar would reside within the direc-
tory specified on the command-line. Again, we need an
application-specific command-line parser to generate a
synthetic event that captures the value of this directory
argument. Once this is done, our model learns that files
read by tar are within this directory, or are configuration
files and shared libraries that get loaded during process
start-up. A policy that allows reading of configuration
files, libraries, and the files below the specified directory
is verified against this model.

• The only file written by gzip is obtained by adding a
".gz" suffix to its argument. Similar to the previous two
examples, this property is verified without any problem1

1Note that this property holds only if gzip is used with typical
command-line options. Otherwise, one would need a more complex policy
that correlates command-line parameters to the files accessed by it.



Training Detection
Program Trace length Trace length False alarm rates

(# Syscalls) (# Syscalls) Base Unary Binary
(×106) (×106) (×10−5) (×10−5) (×10−5)

httpd 1.75 3.10 16.6 0.97 64.12
sshd 4.15 14.74 0.35 0.79 0.02

Figure 6. False alarm rates.

In some instances, we could not verify properties in the
manner we expected. For instance, in the case of httpd, we
tried verifying the property that the only files executed by it
were within a cgi-bin directory. The verification succeeded,
but we subsequently realized that this was because the num-
ber of distinct executables seen during the training trace
was small enough that no approximation had taken place.
If more scripts had been executed, then an approximation
using common prefix (unary isWithinDir) relation would
have been applied. However, since (a) there were multi-
ple cgi-bin directories, (b) our learning algorithm currently
learns only a single common prefix, and (c) the common
prefix for these two directories is just /, the model would
only capture that all executed files are within /. As a re-
sult, verification would not succeed in this case. To handle
this problem, our learning algorithm needs to be extended
to handle disjunctions: that certain variables satisfy one of
many binary relations, and/or one of many unary relations.
This is a topic of our continuing research.

5.2. False Alarm Analysis

To determine false positive rates, we trained the system with
system call traces of different lengths. After training, the
system was run in detection mode against a different sys-
tem call trace. To be useful, false alarm analysis should be
performed with live traffic, rather than being based on train-
ing scripts. This limited our choice of applications. In our
laboratory, the two main servers that are well-exercised are
httpd and sshd, so we limited our false alarm analysis to
these two programs.

The results tabulated in Figure 6 show that the false
alarm rates are of the order of 10−4. Note that this cor-
responds to “raw” false alarm rates, i.e., the fraction of sys-
tem calls that caused violations, without any regard to the
nature of violations. In a practical system, these raw alarms
will be further evaluated, based on the nature of violation.
Moreover, series of alarms would be aggregated into one.
These factors typically result in a further significant reduc-
tion in false alarm rates. For this reason, it is hard to evalu-
ate the false alarm rates directly.What we can do is to com-
pare them with those reported by previous techniques such
as the FSA method, which is known to produce a modest
false alarm rate.

The addition of unary relations increases the false alarm

rate modestly. Note that binary relations add a very low
false positive rate for sshd, but a much higher rate is ob-
served for httpd. We investigated the reason for this, and
found that this is due to the fact that in the training trace,
a single system call was very rarely executed. Moreover,
for the few values of the parameters to these calls, it turned
out that they bore strong relations with arguments of many
subsequent system calls. However, during detection, this
same system call was executed several more times, and this
broke the relations involving this argument value. In fact,
we found that 95% of the false positives were due to this.
To address this problem, one could add a notion of confi-
dence level with each relation, which can be based on the
number of times it has been verified during training. We are
currently investigating such an approach to further reduce
false alarms. Such measures may reduce the level of binary
relation false positives to a fraction of the false alarm rate
of the base method.

5.3. Model Precision

Average branching factor metric, originally developed by
Wagner and Dean [31], has been used in the context of in-
trusion detection [14, 13] to measure precision of models.
Basically, the idea is to determine the degree of freedom that
an attacker has at each state of the model. This is roughly
measured by the average number of branches that can be
taken by the program at each state of the automaton during
the program execution. A lower branching factor translates
to improved model precision.

According to the definition in [31], system calls are par-
titioned into two sets, dangerous and harmless, and the av-
erage branching factor is defined in terms of branches that
correspond to dangerous system calls. However, danger-
ous system calls are considered harmless if their arguments
are known in advance. For example, execv("/bin/ls")
is considered harmless, but if its argument were not
known, attacker can potentially substitute the argument with
"/bin/sh" to obtain a shell. We applied a similar metric to
compute average branching factor in presence of argument
information. For each dangerous system call, if argument
values are learnt without approximations, then the system
call is considered harmless. If approximations have been
made while learning values, we further check if there are
binary relations present for the corresponding argument or



Program Program # States/ # Binary
size(KB) #Transitions Relations

sshd 260 228/633 2309
wu-ftpd 435 207/492 2281

httpd 292 281/755 3638
find 68 29/71 107

tar 156 55/181 647
gv 292 195/729 3637

gzip 68 29/59 151

Figure 7. Sample model sizes of the test pro-
grams used in the experiments.

Program Without With argument learning
argument Unary Unary &
learning only Binary Rels

sshd 5.0615 0.0127 0.0004
wu-ftpd 2.1211 0.0352 0.0064

httpd 0.0711 0.0003 0.0002
find 1.1728 0.1615 0.0807

tar 4.7779 0.8709 0.2032

Figure 8. Average branching factor

Program Workload % Enforcement overhead
realpath() overhead Detection overhead

gzip Compress a 12MB file. 0 2
gv Open and browse through a 500KB post script file. 0 5
tar Archive 600 files into a 6MB tar file. 2 3

find Search C header files in a directory tree of 12000 files. 41 11

Figure 9. Overhead for intrusion detection

not. If there exists a lossless binary relation, the call is con-
sidered to be harmless. Relation equal is considered to be
lossless. Relations isWithinDir and contains are consid-
ered to be lossless if their constant parameters do not con-
tain wild-card patterns such as “?” and “*”. For instance,
X isWithinDir Y is lossless iff X = Y s, where the con-
stant parameter s does not contain any wild-card pattern.
On the other hand, relation hasSameDirAs is lossy because
only the common directory name is retained, but the rest of
argument information is lost.

Figure 8 shows the average branching factor for our
models without argument learning, learning unary relations
alone, and learning unary and binary relations that do not
lose significant information as mentioned above. The table
shows that the use of binary relations leads to major im-
provements in branching factor.

We point out that the average branching factor of our
technique cannot be directly compared to that of other tech-
niques unless they too use an FSA-based control model.
For this reason, we do not directly compare our results with
those reported by [14].

5.4. Performance Overheads

Model Sizes. Figure 7 shows the programs used in our ex-
periments, along with their model sizes in terms of number
of states/transitions and relations in the models. The mod-
els are relatively small as compared to the size of programs
involved.

Time for Learning Models. We studied the performance
of the learning algorithm. Three programs were considered,
httpd, ftpd and sshd. The training traces were between
100MB and 300MB, consisting of 1.5 to 4 million system

calls. The learning algorithm took between 5 to 25 minutes
to process these traces.

Overhead for Intrusion Detection. Our current imple-
mentation uses ptrace for system call interception, which
itself introduces high runtime overheads for interception
that can exceed 100% for some programs. To obtain better
performance, an in-kernel interceptor can be used. Over-
heads for system call interception, including the costs of
retrieving the PC, have been reported to be around 6% for
a kernel implementation [9]. In addition to this, intrusion
detection requires verification of binary relations, and the
cost of making realpath calls for file names. We have
measured these overheads individually, using our user level
implementation, and shown it in Figure 9. We remark that
find represents perhaps the worst-case scenario in terms
of overheads because it performs a very large number of
system calls involving file names, each of which incurs the
overhead of a realpath call, and the overhead of verifying
relationships on file names. An in-kernel implementation
of realpath would likely have lower overheads, but the
overhead numbers for relationship verification are unlikely
to change.

6. Related Work

6.1. Static Analysis Techniques

A number of static analysis techniques have been devel-
oped for building intrusion detection models. A source-
code analysis is used in [31, 19], while binary analysis is
used in [14]. [14, 19] can also extract system call argu-
ments that appear as immediate constants in the program.
Binary analysis based approach of [12] additionally asso-



ciates calling context of the extracted static data using data
flow analysis. They also incorporate environment depen-
dency in the program models. However, this dependency
needs to be specified manually in their approach. In con-
trast, our approach learns these dependencies automatically.

The primary benefit of static analysis based techniques
is that they eliminate false alarms. This is because these
models are conservative, capturing a superset of all possi-
ble behaviors that can be exhibited by a program. But the
conservative nature also limits attack detection ability: only
attacks that cause a program’s runtime behavior to deviate
from its code are detected. This means that a variety of at-
tacks, such as input validation errors, race conditions, and
so on, cannot be detected, as the erroneous behaviors do
represent possible behaviors of the victim program. As a
result, most attacks discussed in this paper can’t be detected
by these methods. Moreover, capturing accurate informa-
tion about data values is quite challenging, given the com-
plexities of a language such as C, which allows arbitrary
type casts and pointer arithmetic.

6.2. Learning-Based Approaches

Intrusion Detection. A number of techniques to learn
control-flow behaviors for intrusion detection have already
been discussed before, so we focus our attention to tech-
niques for learning argument information. In this regard,
[18] describes techniques for learning statistical informa-
tion about system call arguments for anomaly detection.
The statistical information includes properties of string ar-
guments such as its length and distribution of its characters.
Furthermore, structural inferences are made over string ar-
guments to learn a regular grammar that describes all of its
normal values.

[28] proposes another host-based anomaly detection sys-
tem that uses a rule-learning algorithm to model system call
behaviors incorporating argument information. It uses a
rule-based learning algorithm that captures a fixed number
of distinct values of frequently occurring arguments.

In our terminology, both of the above two approaches are
focused on unary relations, whereas the primary strength of
our approach is that of learning the more complex binary
relations. Moreover, our approach is able to utilize control-
flow context to improve the precision of dataflow relation-
ships, whereas the above approaches don’t do that.

Hypothesizing Program Properties. [1] describes a tech-
nique for automatically extracting likely program proper-
ties from execution traces. However, it relies on humans to
specify regions within a trace where such property extrac-
tion will be attempted. This contrasts with our technique,
which is fully automated. [23] has similar goals as [1], but is
fully automated. The primary difference with our technique
is that they focus on invariant properties, whereas our algo-
rithm is focused on temporal properties on traces. Techni-

cally, the two problems are quite different, requiring differ-
ent techniques to be employed. For instance, algorithms for
learning invariants can be speeded up by exploiting transi-
tivity, i.e., if p holds and p → q, then we need not explicitly
verify q. Unfortunately, this is not true for trace properties.

Mobile Code Security. In [27], we described models sim-
ilar to those of this paper. The goal of [27] was to pro-
vide a overall view of the model-carrying code approach for
mobile code security, and hence that paper provides only
a superficial treatment of models. The results presented
in this paper improves over [27] in many important ways.
First, we develop a formal treatment of dataflow properties
in this paper. Second, we show how control flow contexts
from different control-flow models can be utilized to im-
prove precision of dataflow relationships, whereas [27] is
limited to FSA method. Third, we develop an efficient algo-
rithm for learning relationships and analyzing its complex-
ity. Fourth, we show how to parameterize the model by in-
corporating dependence on program’s environment, includ-
ing command-line argument, environment variables, open
file descriptors, and so on. Finally, and most importantly,
we provide a detailed evaluation of our technique for in-
trusion detection in this paper, whereas [27] was concerned
with mobile code security.

7. Conclusion

In this paper, we presented an approach for enhancing the
accuracy of host-based intrusion detection models by cap-
turing dataflow information. This approach can be layered
over existing techniques for learning control-flows. We pre-
sented a formal treatment of data flow properties of traces,
and presented an efficient learning algorithm that is param-
eterized with respect to relations of interest. Through exper-
imental evaluation, we showed that the approach was effec-
tive in detecting sophisticated attacks on which most pre-
vious techniques fail. We also established that the models
are compact and produce low false alarm rates. An impor-
tant benefit of our approach is that it enables formal reason-
ing about the security guarantees that can be provided when
these models are used for intrusion detection.
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