
Light-weight Bounds Checking∗

Niranjan Hasabnis, Ashish Misra and R. Sekar
Stony Brook University, Stony Brook, NY 11794

ABSTRACT
Memory errors in C and C++ programs continue to be one
of the dominant sources of security problems, accounting for
over a third of the high severity vulnerabilities reported in
2011. Wide-spread deployment of defenses such as address-
space layout randomization (ASLR) have made memory ex-
ploit development more difficult, but recent trends indicate
that attacks are evolving to overcome this defense. Tech-
niques for systematic detection and blocking of memory er-
rors can provide more comprehensive protection that can
stand up to skilled adversaries, but unfortunately, these
techniques introduce much higher overheads and provide sig-
nificantly less compatibility than ASLR. We propose a new
memory error detection technique that explores a part of the
design space that trades off some ability to detect bounds er-
rors in order to obtain good performance and excellent back-
wards compatibility. On the SPECINT 2000 benchmark, the
runtime overheads of our technique is about half of that re-
ported by the fastest previous bounds-checking technique.
On the compatibility front, our technique has been tested
on over 7 million lines of code, which is much larger than
that reported for previous bounds-checking techniques.

1. Introduction
Memory errors in C and C++ programs constitute one

of the most difficult class of errors to track down and de-
bug. They remain an important source of problems long
after programs are tested and shipped. From a security per-
spective, memory corruption vulnerabilities continue to be a
dominant concern: they account for four of the CWE/SANS
“Top 25 Most Dangerous Software Errors” [35]. According to
the NVD database [27] from NIST, of the 1818 high severity
vulnerabilities reported in 2011, over one-third were due to
memory corruption. They are also behind most of critical
updates distributed by OS and application vendors.

Recognizing the importance of memory errors, numerous

∗This work was supported in part by an NSF grant CNS-
0831298, an AFOSR grant FA9550-09-1-0539, and an ONR grant
N000140710928.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CGO ’12 , March 31 - April 4 2012, San Jose, CA, USA.
Copyright 2012 ACM 978-1-4503-1206-6/12/03 ...$10.00.

research efforts, spanning over a quarter century, have tar-
geted runtime detection of memory errors [18, 34, 15, 6, 29,
17, 16, 25, 32, 38, 12, 13, 26, 5, 22, 39, 3, 23]. These efforts
have yielded many practical tools that enjoy widespread use
during software testing. However, in order to defend against
security exploits, these techniques have to be deployed in op-
erational software. Two factors have so far held this up:

• High runtime overheads. Many of these techniques suf-
fer from significant runtime overheads, often reaching or
exceeding 100% for compute-intensive programs.

• Incompatibility with existing code. Some of these tech-
niques are not compatible with precompiled libraries. In
addition, they are incompatible with one or more of the
following features found in some C/C++ programs: use
of address arithmetic and type-casting, conversion be-
tween integer and pointer types, and bit-manipulations
on pointers such as packing a pointer with additional data
into a single word1, or the use of bit-masking to force a
pointer to be in-bounds.

For these reasons, most contemporary operating systems
(including Microsoft Windows and Linux) have based their
memory corruption vulnerability defenses on address-space
layout randomization (ASLR) [8, 30] and data execution
prevention (DEP). Rather than being concerned with pro-
gram operations involving pointers, these techniques shift
their focus to the after-effects of memory corruption. In
particular, both absolute-address randomization [8, 30] and
relative address randomization [10, 19] do not interfere with
a program’s ability to manipulate pointers, thus avoiding
compatibility issues; instead, they randomize the effect of
dereferencing an out-of-bounds pointer. Since ASLR does
not check any pointer operation, it poses low or negligible
runtime overhead. DEP is not concerned with memory cor-
ruption at all, but one of its common after-effects, namely,
execution of injected code, which is prevented by ensuring
that no (injected) data can be executed.

Widespread deployment of ASLR and DEP has raised the
bar for successful exploits. However, it appears that this
may be a temporary rather than permanent setback for at-
tackers. Over the past few years, heapspray attacks [2] have
become a standard technique to brute-force ASLR. Even
when deployed together with DEP, attackers have been able
to bypass ASLR, as demonstrated in a recent high-profile
zero-day exploit on Adobe Acrobat/Reader [24]2.

1This may allow reuse of bits whose values are known, e.g., lower
3 bits of a 8-byte aligned pointer.
2To overcome DEP, these exploits use return-to-libc attacks, or
return-oriented programming [33, 11].

char *beg, *end;

int get(unsigned i) {

if ((beg+i) < end)

return *(beg+i);

else return -1;

}

driver() {

// makes many calls to get()

beg = (char*) malloc(1024);

end = beg+1024;

for (int i=0; i < N; i++)

get(i);

}

Figure 1: Program causing build-up of OOB objects

char p[10];

char *q = &p[30]; // creates an OOB pointer

long r = (long)q;

*((char *)(r-23)) = ’x’; // Assigns to p[7];

Figure 2: Casting between OOB pointer and integer

char *p, *q;

...

ptrdiff_t o = p-q;

*(q+o) = ’x’; // Has the same effect as *p = ’x’

Figure 3: Using the difference between two pointers

The weakness of ASLR is that it is a probabilistic defense.
Moreover, neither ASLR nor DEP prevent memory errors,
but an after-effect that may occur long afterwards. This in-
terval provides an opportunity for attackers to devise clever
attacks that bypass these defenses.

To defend reliably against adversarial attacks, it is there-
fore necessary to bring back the strengths of memory er-
ror detection techniques, namely, prompt and deterministic
identification of memory corruptions. At the same time,
in order to enable widespread deployment, it is necessary
to provide the same level of compatibility that ASLR/DEP
provide. We believe this can only be achieved if we fol-
low the design philosophy of ASLR: avoid any restrictions
to pointer manipulation operations, and shift the focus to
preventing invalid pointer dereferences. We develop a new
memory error detection technique that achieves this com-
bination of strengths, and thus provides a better basis for
long-lasting defense against clever attacks by skilled adver-
saries. Below, we provide an overview of our approach and
summarize its contributions.

1.1 Background and Rationale
Memory errors are broadly divided into spatial errors and

temporal errors. Our focus is on spatial errors, which con-
tribute to most of memory-related security vulnerabilities.

Many existing spatial error detection techniques [6, 29,
25, 38, 26, 22] maintain per-pointer metadata, e.g., the
base address and size of the referent (i.e., the memory re-
gion pointed). This data can be used to detect instances
when a pointer value goes outside of its referent, either due
to pointer arithmetic or due to an unintended overwrite of
the pointer3. Unfortunately, such techniques are incompati-
ble with uninstrumented libraries, i.e., precompiled libraries
that do not incorporate memory error checking. This is be-
cause the required per-pointer metadata would be absent
for data structures created within such libraries. This fac-
tor was cited as the motivation for the bounds-checking tech-
nique of Jones and Kelly [17], which has been further refined
by many researchers [32, 12, 5, 39].

3Such an overwrite is possible due to features such as arbitrary
casting and unions. For instance, a structure containing pointers
may be cast into a byte array, and arbitrary values copied into it.

Bounds-checking techniques maintain metadata regard-
ing allocations, but no per-pointer metadata is maintained.
Each variable on the stack or on the static area corresponds
to a distinct allocation unit, as does a block returned by
malloc. The property enforced by these techniques is that
if a pointer p is derived from q using pointer arithmetic, then
both p and q should fall within the bounds of the same al-
location unit. If not, p is assigned a special value ILLEGAL

[17] that points to inaccessible memory. Thus, any future
attempt to dereference p would lead to a memory fault.

Although Jones and Kelly’s technique [17] was designed
to be compatible with the ANSI C standard, Ruwase and
Lam [32] noted that a large number of existing programs
(about 60% among the ones they studied) violate this stan-
dard and are hence broken by Jones and Kelly’s technique.
In particular, they create an out-of-bounds pointer p, but
use pointer arithmetic to bring it back within bounds. Un-
fortunately, the original pointer value would have been lost
when p was assigned the value ILLEGAL. CRED [32] incor-
porates a clever approach to overcome this problem: p is set
to point to an out-of-bounds (OOB) object, which in turn
stores the (out-of-bounds) value of p, as well as the original
referent of p. CRED was shown to work on many medium to
large software packages. Subsequent bounds-checking works
[12, 5, 39] have significantly improved on the performance of
CRED, but have not focused on the compatibility problems
posed by these OOB objects. Unfortunately, OOB objects
do pose several challenges in practice:

• Unpredictable space usage for storing OOB objects. Fig-
ure 1 shows a program that uses about 1KB of data mem-
ory and contains no memory errors. With CRED4, each
iteration of the loop with i > 1024 causes the creation
of one OOB object. If the loop is executed 500K times,
the program consumes 7MB rather than 1KB! With more
iterations, it will eventually run out of memory.

• High runtime overheads. Every pointer arithmetic and
dereference operation needs additional checks to deter-
mine if OOB objects are involved, thus further increasing
overheads. For instance, 500K iterations of the loop in
Figure 1 takes a small fraction of a second on a con-
temporary laptop, but this increases to 15 minutes with
CRED due to OOB operations.

Although Reference [12] makes some changes to CRED’s
OOB object design, these only improve the efficiency of
dereference operations, and do not change aspects of OOB
design that are related to these problems. As a result
References [12, 39] continue to suffer from unpredictable
space and runtime overheads for OOB objects. Baggy
[5] does use a different scheme for OOB objects, but this
scheme restricts the usable range of OOB pointers to half
the size of the referent object. This restriction seems to be
the most significant compatibility issue posed by Baggy.
It caused Baggy to fail on some SPEC 2000 benchmarks,
requiring a few manual changes to these programs5.

• Potential to break working programs. Since out-of-bounds
pointers have a different representation from valid point-
ers, they can cause compatibility problems if they are
passed to uninstrumented libraries. Two other examples
that are broken due to the use of OOB are shown in Fig-

4We used CRED’s Bounds Checking Patches for gcc-4.0.2.
5As reported in the evaluation section of their work, they had to
modify perlbmk and gap of SPEC 2000 benchmark.

ures 2 and 3. Figure 3 captures a use found in the SPEC
2000’s gcc program that caused Baggy to fail.

1.2 Approach Overview and Contributions
For reasons enumerated above, we argue that achieving

full backward compatibility with existing software requires
techniques that neither use per-pointer metadata, nor change
the representation of pointers under any condition. This
seems to leave us with only one option, namely, changing
the memory layout in a manner that allows us to detect
(most) memory errors. In particular, we base our Light-
weight Bounds Checking (LBC) on the idea of guard zones
around memory objects. Dereferencing a pointer to the
guard zone will flag a memory error. The vast majority
of bounds errors involve accesses that are just past the end
of an object, and these can be detected using guard zones.

Although LBC is applicable to C and C++ programs, our
current implementation, available at http://seclab.cs.sunysb.
edu/download.html, is limited to C-programs.

The idea of guard zones is quite old, and is used in tools
such as Purify [15]. What is new here is the development of
techniques for implementing them efficiently. In particular,
this paper makes the following contributions:

• Low memory overheads. The fixed overheads (i.e., over-
head that is independent of the memory usage of a pro-
gram) of our approach is just 256KB. Its variable over-
head for the SPEC 2000 benchmark suite is less than 5%,
which compares favorably with Baggy’s memory overhead
of about 15% on the same suite.

• Low runtime overheads. On the SPECINT 2000 bench-
mark, our CPU overhead of 23% is less than half of that
reported by Baggy [5], the fastest bounds checking imple-
mentation available. This high performance is achieved
using the following techniques:

– Zero metadata operations in the common case. Memory
error detection techniques introduce additional mem-
ory accesses to read or write metadata, thus increasing
the pressure on caches and memory. We develop a de-
sign that improves performance by avoiding additional
metadata operations for most memory reads.

– Avoidance of locking for most metadata operations. Meta-
data reads and updates occur very frequently in LBC.
Use of locks to guard these operations can lead to high
overheads. We therefore develop new techniques to
minimize the number of lock operations, leading to over-
head reduction by almost a factor of two.

– Static analysis to eliminate metadata. We develop a
static analysis based on CCured’s [25] pointer analysis.
Overheads are reduced another two-fold as a result.

• Highly backwards compatible. The only programs that
should break under LBC are those that make assump-
tions regarding the relative distances between different
variables. Moreover, LBC does not interfere with a pro-
gram’s ability to allocate large amounts of memory. Un-
like Baggy, which relies on a buddy allocator, our ap-
proach is compatible with the more traditional chunk al-
locators. To demonstrate compatibility, we have success-
fully compiled and tested over 7M lines of C-code, which
is about 7 times more than any of the previous techniques.

• Effective in blocking exploits. Although LBC isn’t guar-
anteed to detect all memory errors, our evaluation on the

Memory

Guard zones

Object 2 Object 3Object 1... ...

Figure 4: Illustration of guard zones

bugbench [20], SAMATE [28] and the RIPE [36] bench-
marks show its effectiveness for detecting buffer overflows
and blocking security exploits.

2. LBC Overview
LBC separates all objects6 in all memory areas — the

stack, heap and static area — from each other using guard
zones as shown in Figure 4. Guard zones represent memory
that must not be accessed by any correct program.

The semantics of many pointer manipulation operations
are left unspecified in the C-language. However, most com-
pilers permit free, value-preserving conversions between point-
ers and integers. This has led to a belief held by many C
programmers that pointers and integers (or long integers)
are interchangeable, and that they may use arbitrary pointer
arithmetic. For this reason, LBC leaves pointer arithmetic
(and pointer-integer conversion) operations alone; instead,
it only checks pointer dereferences. In particular, LBC in-
struments every memory read and write of *p to check if
p points to the guard zone, and if so, aborts the program
with an error message7. Note that since errors are detected
before memory has been corrupted, recovery is easier with
LBC as compared to alternatives such as ASLR.

2.1 Guard zone size
A large size for guard zones increases the likelihood that

out-of-bounds pointers will land in the guard zone, and thus
increases the likelihood of detecting out-of-bounds derefer-
ences. At the same time, too large a size will increase space
overheads. Runtime will increase as well due to increased
time needed for initializing guard zones. Making the right
trade-off requires some consideration of how a memory ob-
ject is used. For instance, if the object is an array, the guard
zone size should be a small multiple of the array element size:
since a guard zone n times the element size will enable the
detection of overflow by up to n elements. If the object is
not an array, the guard zone may be made a fraction of the
allocation request. More generally, we may use the following
expression to determine guard zone size.

max(2 ∗ element size, request size/8)

Our implementation sets a minimum size of 8 bytes and
maximum size of 1K for guard zones.

Note that complete type information is available for stack
allocations, and hence we can determine element size. For
calls to malloc and related routines, note that they typically
have the following structure:

x = (T∗)malloc(n ∗ sizeof(T))

Element size in this case is obtained from the pointer type to
which malloc result is cast. For others, we can fall back on a
default value, say, the word size on the underlying processor.

6An object refers to a unit of allocation in C programs: a variable
on the stack or global memory, or a block returned by malloc.
7An alternative is to call a handler specified by the program.

http://seclab.cs.sunysb.edu/download.html
http://seclab.cs.sunysb.edu/download.html

Original program LBC-transformed version

void f() { void f() {

struct X { struct X {

char *p; char *p;

int q[8]; int q[8];

} x; };

struct X_gz {

char front[24];

struct X orig;

char rear[24];

} x;

struct X* y; struct X* y;

init_guardzone(x);

init_guardzonemap(x);

y=&x; y=&x.orig;

*y->p = ’a’; if (y->p==guardzone_val)

if slowcheck(y->p)

flag_error();

if (*y->p==guardzone_val)

if slowcheck(*y->p)

flag_error();

*y->p = ’a’;

uninit_guardzonemap(x);

} }

Figure 5: A sample program and its transformation.

Note that in comparison to stack and heap allocations, the
number of allocations in the static area are typically much
smaller. Hence we can use larger sizes (say, a minimum of
4 ∗ element size) for guard zones in the static area.

2.2 Guard zone representation and access
Memory error detection techniques are notorious for high

overheads even when the underlying checks seem quite sim-
ple and efficient. An important reason for this is that they
typically increase the number of memory accesses, since they
need to fetch metadata related to pointers or their referents.
Since memory access times are far longer than CPU cycles
on modern processors, even a few additional accesses dispro-
portionately increase runtime overheads.

For the above reason, LBC design is geared to achieve
zero additional memory accesses in the most common case.
In particular, we note that most memory accesses are reads,
and LBC avoids extra memory accesses for them. This is
achieved as follows. LBC initializes guard zones with a spe-
cial guard zone value. This enables a fast check in the typical
case, which simply involves determining that the data just
read was not the guard zone value. If the guard zone value is
a random 8-bit value, then a match with guard zone value is
likely to happen 1/256th of the time. In this atypical case, a
more expensive slow check is performed, as described below.

The slow check operation makes use of a guard map. This
map associates one bit of data for each byte of data memory
to specify if that byte falls on a guard zone. A simple and
efficient way to implement such a map is to use an array that
is indexed by memory address. The downside is that this
array requires a contiguous memory region that is as large as
1/8th of the addressable memory. Moreover, to obtain max-
imum performance, the array may have to be mapped to a
fixed memory location [37]. These aspects pose compatibil-
ity problems for applications that require large contiguous
memory spaces, and applications that need to fix the mem-
ory location of certain objects. Hence we opt for a two-level
data structure. The first level consists of a static array of n

elements, each of which points to a second-level structure of
size m-bits. These second-level structures, called map pages,
are allocated on demand. Note that n ∗m should equal the
size of the virtual address space. Smaller values for n will
reduce the fixed memory overheads, i.e., overheads that are
independent of the memory usage of a program. Our im-
plementation sets n = m = 216, i.e., it uses a 256KB static
array with 8KB map pages to address a total of 232 bytes.

To look up the guard map for a data location A, we first
access the static array to identify the map page pointer cor-
responding to A. If this pointer is non-null, then the bit
corresponding to location A is accessed. If the map page
pointer is null, then there are two cases to consider. For
pointer dereferences, this means that the memory location
being looked up is not in the guard zone. On the other
hand, if this is an operation to initialize a guard zone, then
the map page has to be allocated and initialized.

Note that the guard map needs to store only the loca-
tions of guard zones; it is unnecessary to have map pages
corresponding to memory regions that have no guard zones.
This means that for programs that make large allocations,
the guard map can take less than 1/8th of allocated memory.

2.3 Instrumentation strategy
Two main strategies for implementing LBC are: (a) mod-

ify an existing compiler such as gcc, and (b) a source-to-
source transformation. Although the key elements of LBC
design are unaffected by this choice, we preferred the latter
choice due to its compiler-neutral nature. Key aspects of
our source transformation are:

• Changing the types of static and stack-allocated variables
to introduce guard zones. The new type consists of three
fields: the front guard zone, a field with the original type
of the variable, and a rear guard zone. Figure 5 illustrates
this transformation for the variable x. Dynamic memory
allocations are handled by a runtime library, and do not
require source-level changes.

• Initialization of guard zones. Code is emitted at the be-
ginning of each function to initialize the guard zone and
guard map corresponding to the local variables of that
function. In addition, code is added to the construc-
tor section of each source file to initialize guard zones
of global variables.

Note that when a variable is deallocated, the above steps
need to be reversed. However, we do not clear the guard
zones, but only the guard map. This approach may seem
to increase the likelihood that reads would return a guard
zone value, and hence increase the probability of calling
a slow check. However, note that this can happen only
for uninitialized reads (should not occur unless there is a
bug) or the first write after an allocation. Thus, omission
of unintialization can be a net positive.

• Replacement of variable references so that they refer to
the start of the original variables. In Figure 5, original
references to x are replaced with x.orig.

• Pointer dereferencing instrumentation to perform guard
zone checks, as described earlier.

2.4 Runtime support functions
LBC modifies malloc and related routines to allocate ad-

ditional space needed for front and rear guard zones, and
initialize them. Another component of runtime support is a

library to implement the guard map data structure.
Our runtime introduces a wrapper for the standard mal-

loc function. This wrapper increases the size of memory
request by 2 ∗ gz size, where gz size denotes the size of
guard zone for the memory block. This new size request is
passed on to the original malloc. When it returns, the wrap-
per initializes the front and rear guard zones, and returns a
pointer that is gz size from the start of the block.

Wrappers are also created for other dynamic memory al-
location functions such as calloc, realloc, alloca, and
memalign. Variants of these wrappers are also created that
take an additional parameter that specifies the element size,
in case of requests that allocate space for an array. As noted
before, if this element size can be easily inferred from the
source code, then the transformation can call these vari-
ants, providing them with more information to assist them
in choosing the most appropriate guard zone size.

A catch with memalign is that the alignment requirements
may be large. Since the guard zone size must be a multiple
of alignment size, this may cause a large amount of memory
to be wasted. It is possible to trade off some protection for
reduction in space use: in particular, a front guard zone is
omitted if its size must be greater than the size chosen for
the rear guard zone.

Calls to free are also wrapped. Note that the pointer p
returned to this wrapper will be offset by gz size from the
beginning of the block that was allocated by malloc. Since
gz size was computed at malloc-time but not remembered,
our approach for computing the beginning of the block uses
the guard map. Specifically, we scan backwards in the map,
starting from the bit location corresponding to p, to deter-
mine where the front guard zone ends.

2.5 Separate compilation and libraries
In order to preserve compatibility with existing code, LBC

supports separate compilation of each source file.
LBC provides full compatibility with uninstrumented li-

braries. Note that any memory dynamically allocated by
such libraries will be intercepted by LBC’s malloc wrappers
and guard zones added, similar to memory blocks dynami-
cally allocated by the rest of the program. Stack and static
memory allocated by uninstrumented libraries will contain
no guard zones. Consequently, dereferences of pointers to
stack or static memory objects of uninstrumented libraries
will always indicate that they do not point to guard zones.
Thus, LBC will not interfere with access to these objects.
Naturally, this means that memory errors in the stack and
static areas of uninstrumented libraries cannot be detected.

3. Optimizations

3.1 Simple optimizations
There are several simple optimizations employed by LBC:

• Speeding up guard zone checks for all primitive types. Our
original design treated guard zone value as a single byte.
Although the use of a 4-byte guard-zone value for integers
would further reduce the ratio of slow checks performed,
we felt that the actual gains would be negligible since slow
checks were already rare. So, we were surprised to find
out that on many integer benchmarks, LBC’s overheads
were quite high. Further analysis revealed that the com-
piler generated code was performing two memory reads:

one to read a byte value, and another to read an integer
value. Our optimization was to match the guard zone
value with the size and type of the pointer being deref-
erenced. Now, we were able to achieve the goal of zero
additional memory reads for the fast check operation.

• Removal of guard zones for “safe” variables. These are
local variables and static global variables (i.e., variables
identified with the keyword static) that contain no ar-
rays, and their addresses are never taken. As observed in
previous works, they cannot be involved in bounds errors.

• Optimizations such as common subexpression elimination.
Programs often contain repeated pointer dereferences, e.g.,

p->q->r = p->q->r + p->q->s

For good performance, we need to eliminate redundant
pointer checks. Since our approach relies on a source-
to-source transformation, we leave it to the C-compiler
(used to compile the transformed code) to perform these
optimizations. The only effort needed in our implementa-
tion is to ensure that our transformation does not obscure
possible optimizations, or make them difficult.

• Guard zone placement. Note that the design described so
far incorporates guard zones on both sides of each object.
By sharing the guard zone between two successive objects,
we can reduce both time and space overheads. This is
accomplished as follows:

– Stack objects: To control the lay out of stack allocated
objects, our transformation creates a single struct that
includes all of the unsafe local variables. A guard zone
is introduced at the front and rear of this struct, and
in between successive fields that each represent a local
variable in the original program. The size of each guard
zone is chosen to be the maximum of the sizes needed
for protecting the variables that are adjacent to it. To
minimize the size of these guard zones, our transfor-
mation lists the original variables in increasing order of
their required guard zone sizes.

– Heap objects: Note that for heap-allocated objects, typ-
ical heap implementations place heap metadata just be-
fore user data. The front guard zone protects this meta-
data, while the rear guard zone protects the metadata
of an adjacent heap block. For this reason, we do leave
both guard zones in place for the heap.

– Global objects: As mentioned earlier, global objects are
relatively few in number and are initialized just once, so
we did not consider additional optimizations for them.

3.2 Multithreaded programs
In a multithreaded program, LBC introduces the potential

for new race conditions. Note that each pointer dereference
is now preceded by metadata accesses, i.e., the guard zones
and the guard map. While one thread is reading this meta-
data, another thread may concurrently update it.

The safest approach for avoiding these race conditions is
to use locks before accessing guard zone or guard map. How-
ever, such an approach leads to major overheads in LBC. We
have therefore developed an approach to minimize the use
of locks while still ensuring correctness, by considering all
pairs of conflicting operations.

• Multiple concurrent dereferencing operations. Dereferenc-
ing operations perform only reads on guard zones and

guard map. Thus, multiple read operations can be exe-
cuted in parallel without experiencing concurrency errors.

• Concurrent initializations of guard zones. Initialization of
a guard zone follows the allocation of an object. A correct
compiler and runtime infrastructure must already ensure
that no two concurrent allocations will overlap. Note that
except for stack-allocated objects, a guard zone is associ-
ated with exactly one object. Thus, the guard zones be-
ing concurrently initialized must also be disjoint, thereby
avoiding race conditions. Stack objects are allocated by
a single thread, thus precluding concurrency errors.

• Guard zone initialization concurrent with the dereferenc-
ing of a pointer into that guard zone. Note that LBC
seeks to detect those memory errors where arithmetic on
a pointer to an object caused it to point to the adja-
cent guard zone. LBC, in general, cannot assure the ab-
sence of other types of memory errors such as unintended
overwriting of pointers or overflows that jump past guard
zones. Thus, the only case in which we need to eliminate
the possibility of a concurrency error is one where the
pointer being dereferenced is derived from a pointer to the
object being allocated (which in turn caused guard zone
initialization). However, this cannot happen: a pointer
to the object is invalid until the object is initialized.

• Concurrent initializations of guard map. These should
occur in response to two concurrent object allocations.

– If the two initializations fall on different map pages,
then there is obviously no conflict.

– If they fall on the same map page that is already present,
we can again rule out the possibility of conflict because
the regions updated for disjoint object allocations must
also be disjoint. However, since individual bits cannot
be atomically updated on most architectures, it is pos-
sible that the updates overlap even though the bit po-
sitions that need updating are disjoint. Note that this
danger arises for concurrent allocations of objects that
are next to each other. This cannot happen on the stack
since allocations on a single stack happen sequentially.
It cannot happen on the heap on most 32-bit archi-
tectures because malloc alignment requirements ensure
that guard zones for heap variables are aligned on an 8-
byte boundary, and hence the corresponding bits in the
guard map must be aligned on a byte boundary. In the
static area, we explicitly ensure an alignment of guard
zones on 8-byte boundaries to avoid this problem.

– If they fall on the same map page that is not present,
then LBC uses a lock. In particular, if the first level
look up yields a null pointer, then a lock is acquired.
After acquiring the lock, the pointer is checked again,
and if it is still empty, a new map page is allocated and
the pointer updated. Finally, the lock is released, and
the map page bits are updated as appropriate.

• Guard map initialization concurrent with pointer deref-
erencing. As noted before, these two concurrent accesses
must involve different objects. Also, as argued in the pre-
vious case, conflicts cannot arise due to access to guard
zone bits, but only when the relevant map page is not
present. However, in this case, it must be the case that
the pointer being dereferenced does not correspond to a
guard zone, or else the map page would have been created
at the allocation time of the object being dereferenced.

Thus, pointer dereferencing operations simply return if a
map page pointer is null, and does not use locks.

Our optimization avoids locks except in the rare case of a
map page allocation. Note that each time the lock is ac-
quired, a map page is added. Since map pages are never
deleted, our design has the interesting property that the to-
tal number of lock operations is bounded, and is a small
fraction of the address space used by the application.

3.3 Static Analysis
There may be many pointer variables in a program that

are never involved in pointer arithmetic. Clearly, guard zone
checks do not provide any additional protection for such
pointer variables. We have developed a static analysis to
detect such pointers. Our analysis mainly uses the static
analysis implemented in CCured [25]. In particular, they
identify three kinds of pointers. Safe pointers are never in-
volved in pointer arithmetic or unsafe casts8. Sequential
pointers are those that are involved in pointer arithmetic
but not unsafe casts. Finally, wild pointers may be involved
in both pointer arithmetic and unsafe casts.

A type inference algorithm for inferring pointer types is
described in [25] and is implemented in the CCured proto-
type. We made a few changes to this algorithm. In particu-
lar, pointers inferred to be safe are exactly those that do not
need guard zone checks. Pointers inferred to be sequential,
as well as those inferred to be wild, will be instrumented for
guard zone checks.

There is a small but important change we made that to
the type system. In particular, CCured permits a sequential
pointer q to be assigned to a safe pointer p. To make this
sound, CCured introduces a bounds check before assigning
to p, and if the check fails, program execution is aborted.
However, this may be premature, and break legitimate pro-
grams. In particular, if the program never dereferences p,
then it will never be involved in a memory error, yet CCured
would have aborted the program. To avoid this possibility,
we have modified the type inference algorithm to disallow
casts from sequential to safe pointers.

Note that objects whose addresses are assigned only to
safe pointers (or none at all) do not need any guard zones.

Static analysis becomes a bit complex in the context of
separate compilation. In particular, if a function f in one
C-file calls another function g in another C-file, then we are
unable to analyze how g uses the parameters passed to it
by f . In our current implementation, we label any pointer
variable passed to such an external function and all global
pointers as a wild pointer. This is sound, but can obviously
impact precision, as wild pointers tend to propagate rapidly
during type inference. We are currently investigating ways
to improve the precision further in this case.

To overcome the challenge of precision loss posed by sepa-
rate compilation, CIL [21] provides a “merged compilation”
mode that works with most makefiles, and merges all rel-
evant C-files into one big file that is then analyzed. This
enables inter-procedural analysis across procedures defined
in difference source files. Unfortunately, this merged mode
compilation can fail for some large packages. Our current ap-
proach is to invoke a merge-mode compilation for any pack-

8Intuitively, unsafe casts are those that can cause “confusion”
about the nature of pointers contained within a referent, e.g.,
casting an int to a char *, or a struct A* to a struct B* where
A contains no pointers but B does.

age, but if the package encounters a build failure, then it
is rebuilt using separate compilation. Many of the larger
packages in our evaluation relied on separate compilation,
but LBC still provided good performance.

Unlike some approaches that require global compilation,
our use of merged mode compilation is opportunistic: it is
used if it works. LBC does not require access to all source
code, but benefits from source code that is available. For
large projects that organize their source code into modules
that are built independently, LBC can benefit from inter-
procedural analysis across source files within a module, while
permitting separate compilation of each module. Most im-
portantly, our opportunistic use of merged mode compilation
is fully compatible with external libraries (including shared
libraries) that are available only in binary form.

Certain additional optimizations are possible for standard
libraries. For libraries where CCured provides accurate type
information, e.g., glibc, LBC uses this information instead
of treating pointer parameters to these libraries as wild. For
other libraries, we make use of const annotations to elimi-
nate designation of some pointers as wild. In particular, an
otherwise safe pointer can be passed to an external library
in the place of a const pointer.

4. Experimental Evaluation
In this section, we evaluate LBC in terms of (a) compat-

ibility with existing software, (b) runtime and space over-
head, (c) effectiveness of various optimizations, and (d) abil-
ity to detect memory errors and stop exploits.

4.1 Implementation
We implemented LBC for 32-bit machines running Linux.

Our prototype consists of a program analysis/transforma-
tion system implemented using CIL [21], together with C-
code that implements runtime support functions. CIL in-
frastructure provides a high-level tree representation of a
C-program, along with a set of tools that simplify analysis
and instrumentation. Our implementation uses two passes,
with the first pass determining which objects need guard
zones, and the second pass introducing these guard zones
and associated instrumentation. Overall, LBC consists of
about 5K lines of OCaml code and 1K lines of C code.

4.2 Compatibility
To verify the compatibility of our technique with real

world programs, we compiled a variety of software pack-
ages shown in Figure 6. All of them compiled successfully.
Although it is not possible to comprehensively test each of
them, we made sure that they could all run. Where test
cases were available with the package, we were able to verify
that they produced the expected results.

Our compatibility tests involved 7 million lines of C-code
(as measured using SLOCCount tool [1]). This is much
larger than those considered in previous works: Baggy [5]
and CRED [32] were tested with about 1M lines of code,
while SoftBound [22] was tested with 272K lines.

4.3 Runtime Overhead
We measured space and runtime overhead of our tech-

nique using CPU-intensive SPEC 2000 benchmark. We used
SPEC 2000 rather than more recent ones such as SPEC 2006
because previous works have mostly used SPEC 2000, thus
permitting a direct performance comparison. All the bench-

Program Description KLOC

wireshark-1.0.7 Network Traffic Analyzer 1473
binutils-2.13.2.1 Binary Tools 947
emacs-22-22.2 The GNU Emacs Editor 834
ghostscript-9.00 PostScript/PDF Interpreter 714
gimp-2.7.1 Image Manipulation 675
evolution-2.26.1 Email/Personal Organizer 305
pidgin-2.5.5 Multi-protocol IM 296
pine-4.64 Email Client 238
openssl-0.9.8k SSL/Crypto Suite 235
httpd-2.2.16 Apache Web Server 230
snort-2.7.0 Intrusion Detection 115
gnupg-1.4.11 OpenPGP Implementation 115
sendmail-8.14.4 Email Server 92
postfix-2.6.7 Email Server 90
coreutils-8.9 UNIX Utilities 87
libcurl-7.21.3 File Transfer Suite 82
xpdf-3.02 PDF Viewer 82
openssh-4.7 SSH Server/Client 60
transmission-1.51 BitTorrent Client 59
audacious-1.5.1 Audio Player 56
squid-3.1.0.9 Caching Web Proxy 37
hypermail-2.3.0 HTML Converter 36
gawk-3.1.8 String Manipulation Tool 32
bison-2.4.3 Parser Generator 27
libpng-1.4.1 PNG Library 25
enscript-1.6.1 ASCII to Postscript converter 22
wu-ftpd-2.8.0 FTP Server 22
ccrypt-1.9 Encryption Utility 13
grep-2.7 Pattern Matching Utility 11
monkey-0.12.2 Web Server 10
WsMp3-0.0.10 Web Server 4
pgp4pine-1.76 Mail Encryption Tool 3
nullhttpd-0.5.1 Lightweight HTTP Server 2
zlib-1.2.3 Compression Library 0.4
polymorph-0.40 Filesystem Unixier 0.4
Total 7000

Figure 6: Packages compiled and run with LBC

marks were compiled with standard options (which includes
-O2 optimization) and run using the tests provided with
them. The measurements were taken on a Ubuntu 9.04 sys-
tem with 2.4GHz Intel Core 2 Duo and 3 GB of RAM.

Of the SPECINT 2000 benchmark, we left out eon which
is a C++ program, and vortex which failed to compile with
the version of gcc we had. We could compile the rest suc-
cessfully. Note that Baggy [5] could not compile gcc, and
had to make changes to perlbmk and gap — all due to out-
of-bounds pointer problem discussed in the introduction.

As shown in Figure 7, the average runtime overhead of
LBC for SPECINT 2000 benchmarks is 23%. Baggy [5],
which has the best performance among previous bounds
checkers, reports 2.5 times this overhead — an average of
60%. Baggy’s highest overhead of 127% is for vpr, for which
LBC has only 27% overhead. Of course, it is not a simple
numbers comparison since Baggy can detect more memory
errors than LBC. However, we believe that LBC’s chosen
trade-off between performance and compatibility versus cov-
erage is more appropriate when applying bounds checking to
large software collections, e.g., GNU/Linux distributions.

On the three C programs that were included in SPECFP
2000, LBC introduced an average overhead of about 9%.

We also measured overheads for a few security-relevant
applications: openssl-0.9.8k, apache-2.2.16, nullhttpd-0.5.1,

Program Base Runtime Base Memory
runtime overhead Memory overhead

(seconds) (%) (in MB) (%)

gzip 156 1 180 0.2

vpr 122 27 20 1.5

gcc 65.6 43 83 7.5

mcf 115 0 94 0.3

crafty 77.7 2 1 44

parser 179 15 30 1.1

perlbmk 109 25 45 0.8

gap 74 54 192 0.2

bzip2 129 21 184 0.2

twolf 174 46 1 30

Average 23 8.5

Figure 7: SPECINT 2000 performance overheads

and libpng-1.4.1. LBC’s CPU overheads were low across all
these programs, ranging between 1% and 13%. In partic-
ular, LBC’s overhead was 12.7% and 3.5% on openssl and
libpng respectively, when they were run with the default
tests that came with these packages. Apache and Nullhttpd
performance was obtained using ab, Apache’s web server
benchmarking tool. Both the server and the client were run
on the same machine in order to avoid network bandwidth
saturation effects. We measured a decrease in throughput
of 7% for apache and 1.5% for Nullhttpd. Baggy’s numbers
are close to ours. This is partly because the effectiveness of
our static analysis was limited due to separate compilation.

4.4 Memory Overhead
Figure 7 also shows memory overheads of LBC. As noted

earlier, LBC can be highly space-efficient for large alloca-
tions. This is because the guard zone size is capped at 1KB,
and because guard map size increases in proportion to the
total size of guard zones.

The memory overhead of LBC is 8.5% on SPECINT 2000,
which is significantly lower than that of Baggy. crafty and
twolf show relatively higher overhead when compared with
other programs. This is primarily because of the fixed over-
head (mentioned in the introduction section) which proves
to be significant for these programs.

4.5 Effectiveness of Optimizations
Figure 8 summarizes the effectiveness of various LBC opti-

mizations. In this figure, the second column shows the base
runtime of the benchmark when compiled using gcc, and
without any use of LBC. The next columns show overheads
(measured as a percentage of base runtime) when different
optimizations were enabled. The fourth column shows the
effectiveness of fast check optimization, which reduces over-
heads from a massive 556% to (a still considerable) 86% on
the average. The lock optimization is also very effective, re-
ducing the overhead by another factor of two. Finally, static
analysis achieves almost another halving of the overhead.

4.6 Detection of bounds violations
We evaluated LBC on three benchmarks and the Null-

httpd server. As detailed below, LBC detected all bounds
violations in all these cases. Note that intra-object overflows
and temporal errors are outside the scope of LBC as well as
other bounds-checkers [17, 32, 5].

Bugbench [20]. This benchmark consists of several buggy
real-world programs, including bc-1.06, cvs-1.11.4, gzip-

Program Base No Prev col Prev Prev
optimi- + Fast column column

(secs) zation check + Lock + static
over- optimi- optimi- analysis
head zation zation (%)
(%) (%) (%)

gzip 156 302 12 4 1

vpr 122 565 81 32 27

gcc 65.6 641 147 55 43

mcf 115 191 9 2 0

crafty 77.7 182 57 48 2

parser 179 465 52 17 15

perlbmk 109 834 152 107 25

gap 74 1234 149 62 54

bzip2 129 599 74 36 21

twolf 174 543 129 49 46

Avg 120 556 86 41 23

Figure 8: Effectiveness of LBC optimizations

Weakness SRD test case ID

CWE-121 Stack overflow 9, 14, 115,
601, 751, 907

CWE-122 Heap overflow 015, 145, 147, 572

CWE-123 Write-where-what 013, 750, 756

CWE-120 Buffer copy without 1493
checking size of input

CWE-119 Failure to constrain 7
operations within the
bounds of a buffer

CWE-118 Improper access of 97
indexable resource

Figure 9: SAMATE test cases

1.2.4, htpd1, man-1.5h1, mysql1, mysql2, mysql3, ncom-

press, squid-2.3, and polymorph-0.4.0. Of these pro-
grams, mysql1, mysql2, and mysql3 have data race bug,
and cvs has a double-free bug, both of which are outside
the scope of LBC. Of the remaining programs, bc, man, and
polymorph have overflow bugs, and LBC could detect them.
gzip and ncompress exploit overflows using strcpy, and are
detected with an LBC-instrumented version of glibc9.

RIPE [36]. This recently developed testsuite is designed
to measure the coverage provided by buffer overflow de-
fenses. It consists of 850 distinct exploits. Of these, 80
involve intra-object overflows. (Recall that such overflows
are not detected by ours or other existing bounds checkers.)
LBC detects a bounds violation with the remaining 770 ex-
ploits in this dataset.

Nullhttpd server. In this case, LBC detected two bound
violations that were also detected by Baggy [5].

SAMATE Reference Dataset (SRD) [28]. The pur-
pose of this reference dataset is“to provide users, researchers,
and software security assurance tool developers with a set of
known security flaws.” It consists of test cases that illustrate
various vulnerabilities catalogued in the Common Weakness
Enumeration (CWE). Figure 9 lists all of test cases in the
SRD on buffer-overflow-related CWEs. LBC was able to
successfully handle all of these.

9In order for gcc to use an instrumented version of a function from
glibc, one needs to prevent gcc from using its builtin version of
the function by using -fno-builtin-function option.

5. Related Work

Comprehensive memory error detection approaches.
Steffen’s RTCC [34] was one of the early approaches to pro-
vide comprehensive detection of pointer errors. Its focus
was on spatial errors, and the implementation approach was
based on “fat” pointers that enlarge the size of a normal
pointer to include additional metadata for memory error
checking. Safe-C [6] is also based on fat pointers, but can
detect temporal errors. The main difficulty with these ap-
proaches is that fat pointers change the representation of
data (pointers as well as structures containing pointers) and
are thus incompatible with uninstrumented libraries. Patil
and Fischer [29] avoid the problems of fat pointers by stor-
ing metadata separately. Xu et al [38] improve on their re-
sults by providing support for unions and the most common
form of type casts, and also providing a much faster imple-
mentation. SoftBounds [22] provides even better backward
compatibility, supporting arbitrary type casts, and provid-
ing improved performance.

CCured [25] developed a novel static analysis to greatly
reduce runtime overheads. However, it requires nontrivial
porting effort to “cure” many large C-programs.

In summary, the main advantage of these techniques is
that they can detect a larger class of memory errors than the
bounds-checking techniques described below. Their draw-
back is that they experience significant compatibility prob-
lems, and much higher overheads.

Bounds checking techniques. This class of techniques
do not maintain per-pointer metadata, and hence cannot
answer the question of whether a given pointer is valid. In-
stead, they check each pointer arithmetic operation to en-
sure that it does not cause the pointer value to go out-of-
bounds of its referent. Jones and Kelly [17] pioneered this
technique. CRED [32] improved their work by providing
much better compatibility with existing C-programs by pro-
viding a mechanism to represent out-of-bounds pointers.

Dhurjati et al [12] obtained significant speed improve-
ments over CRED by leveraging the results of a whole-
program analysis. They provide an improved representation
for out-of-bounds pointers that avoids the need for check-
ing them on each pointer dereference. However, the rest
of the OOB object design remains the same as CRED, so
they would share the problems described in the introduc-
tion related to OOB objects. Baggy [5] reports the fastest
performance numbers among bounds checkers so far. Their
performance comes from cleverly sizing objects in such a way
that bounds checks can be performed very efficiently. An-
other source of performance improvement is their improved
design of OOB pointers, but as discussed before, this design
reduces compatibility with existing C-programs.

Paricheck [39] speeds up bounds-checking by attaching la-
bels to objects, and verifying that pointer arithmetic does
not lead to an object with a different label.

In summary, although bounds-checking provides improved
performance and backward compatibility over techniques
that maintain per-pointer metadata, their performance over-
heads are still significantly higher than LBC. Moreover, LBC
does not break on programs that perform arbitrary pointer
arithmetic and pointer-to-integer-to-pointer conversions. To
achieve this level of compatibility, LBC trades off the ability
to detect some bounds errors, specifically, those that “jump
over” guard zones without accessing any data in between.

Security-targeted techniques. Rather than detecting
memory errors like the above techniques, this class of tech-
niques is aimed at detecting exploit attempts. The most
popular among these is the ASLR technique that is widely
deployed today. The technique provides excellent compati-
bility and performance, but is vulnerable to guessing attacks.
This factor motivated LBC, which does not rely on protect-
ing a secret. Moreover, LBC is fully compatible with ASLR
and can be combined with it to provide even stronger pro-
tection. In particular, LBC, like previous bounds-checking
techniques, does not provide any protection against intra-
structure overflows. In contrast, ASLR, by virtue of ran-
domizing pointer values, is resistant to the important sub-
class of intra-struct overflows that overwrite a pointer.

Similar to ASLR, DieHard [7] uses randomization to make
it harder for attackers to exploit memory errors. Specifically,
DieHard randomizes the location of objects in the heap, and
the order in which freed objects are reused. The weakness of
DieHard is that it offers probabilistic memory safety. LBC,
in contrast, offers deterministic and prompt memory error
detection.

Write-integrity testing (WIT) [4] uses a static analysis to
identify all memory locations that can be written by an in-
struction, and assigns the same “color” to all these loca-
tions. Before a memory write, WIT ensures that the color
associated with the write instruction matches the color of
the location that is written. This approach enables the de-
tection of out-of-bounds writes as well pointer-corruption
due to intra-object overflows, subject to the limitations of a
whole-program static (alias) analysis.

Since a static analysis may assign the same color to ad-
jacent objects, WIT inserts a 8-byte region between objects
that is given a color distinct from all valid objects. This
idea is similar to our guard zone. However, LBC differs
from and improves on WIT in several ways. First, LBC is
optimized for checking both reads and writes, whereas WIT
is focused on writes only. Although reads typically far out-
number writes, LBC’s overhead is only about twice as much
as WIT. Detecting out-of-bounds reads enables early detec-
tion of errors, and can support better error recovery. It can
also prevent some information leakage attacks that rely on
out-of-bounds reads.

Second, WIT always uses a fixed size region between ob-
jects, and hence can fail to detect overflows that involve
arrays containing objects of size greater than 8 bytes. In
contrast, LBC uses a guard zone size that is at least twice
the size of array elements, and will detect overflows unless
they are off by more than two elements.

Third, LBC is designed to maximize compatibility with
arbitrary applications and third-party libraries. WIT, on
the other hand, can run into compatibility problems with
uninstrumented libraries. Moreover, it takes away a contigu-
ous 12.5% of available address space (starting from address
0x40000000) for its metadata. In contrast, LBC’s two-level
structure for its metadata provides maximum compatibility
with existing applications.

Data space randomization [9] associates a random mask
with each data object, and uses the mask to randomize the
representation of this object. Mask assignment uses an anal-
ysis similar to that used by WIT.

Debugging-oriented approaches. Tools such as Val-
grind [26], Purify [15], mudflap [14] and mpatrol [31] are

targeted at the software testing phase. Some of them, in-
cluding Purify and mpatrol, use guard zones, but apply it
only to heap objects. Moreover, they are typically slow, and
are not intended for use on production software. Our contri-
bution is the development of algorithms and techniques that
enable guard zone operations to be efficient enough that they
can be enabled on production code.

6. Conclusion
Out of bound arrays and pointers are the dominant source

of memory errors in C programs. We presented a new light-
weight backwards compatible approach for detecting these
errors. While our design relies on the idea of guard zones
that have been proposed before, our key contribution is the
development of techniques to achieve excellent performance.

As opposed to some of the previous techniques, our ap-
proach achieves better backward compatibility and better
runtime performance. On the CPU-intensive SPECINT bench-
mark, our overheads are less than half of the fastest times
previously reported for bounds checking. Our technique
achieves backward compatibility by avoiding pointer arith-
metic checks, thereby coping with programs that perform
arbitrary pointer manipulations and pointer-to-integer and
integer-to-pointer conversions. Our evaluations demonstrated
the ability of our technique to work seamlessly with unin-
strumented libraries and modules, thus providing an easy
migration path to using our approach. Furthermore, our em-
phasis on achieving good performance without breaking the
separate compilation paradigm makes it easier to integrate
the approach into the build processes of existing software.
These factors make LBC a promising choice for applying to
large collections of software, of the scale of operating system
distributions, thus significantly decreasing the potential for
exploitable memory corruption vulnerabilities in them.

7. References[1] Wheeler. SLOCCount.
http://www.dwheeler.com/sloccount/.

[2] Internet Explorer IFRAME src & name parameter BoF
remote compromise.
http://www.kb.cert.org/vuls/id/842160, 2004.

[3] Akritidis. Cling: A memory allocator to mitigate dangling
pointers. In USENIX Security, 2010.

[4] Akritidis, Cadar, Raiciu, Costa, and Castro. Preventing
memory error exploits with WIT. In IEEE S&P, 2008.

[5] Akritidis, Costa, Castro, and Hand. Baggy bounds
checking: an efficient and backwards-compatible defense
against out-of-bounds errors. In USENIX security, 2009.

[6] Austin, Breach, and Sohi. Efficient detection of all pointer
and array access errors. SIGPLAN, 1994.

[7] Berger and Zorn. DieHard: Probabilistic memory safety for
unsafe languages. In PLDI, 2006.

[8] Bhatkar, DuVarney, and Sekar. Address obfuscation: An
efficient approach to combat a broad range of memory error
exploits. In USENIX Security, 2003.

[9] Bhatkar and Sekar. Data space randomization. DIMVA,
2008.

[10] Bhatkar, Sekar, and DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In
USENIX Security, 2005.

[11] Checkoway, Davi, Dmitrienko, Sadeghi, Shacham, and
Winandy. Return-oriented programming without returns. In
ACM CCS, 2010.

[12] Dhurjati and Adve. Backwards-compatible array bounds
checking for C with very low overhead. In ICSE, 2006.

[13] Dhurjati and Adve. Efficiently detecting all dangling pointer
uses in production servers. In DSN, 2006.

[14] Eigler. Mudflap: Pointer Use Checking for C/C++. In GCC
Developers Summit, 2003.

[15] Hastings and Joyce. Purify: A tool for detecting memory
leaks and access errors in C and C++ programs. In
USENIX Winter Conference, 1992.

[16] Jim, Morrisett, Grossman, Hicks, Cheney, and Wang.
Cyclone: A safe dialect of C. In USENIX Annual Technical
Conference, 2002.

[17] Jones and Kelly. Backwards-compatible bounds checking for
arrays and pointers in C programs. In Workshop on
Automated Debugging, 1997.

[18] Kendall. Bcc: run–time checking for C programs. In
USENIX Summer Conference, 1983.

[19] Kil, Jun, Bookholt, Xu, and Ning. Address space layout
permutation (ASLP): Towards fine-grained randomization
of commodity software. In ACSAC, 2006.

[20] Lu, Li, Qin, Tan, Zhou, and Zhou. Bugbench: Benchmarks
for evaluating bug detection tools. In Workshop on the
Evaluation of Software Defect Detection Tools, 2005.

[21] McPeak, Necula, Rahul, and Weimer. CIL: Intermediate
language and tools for C program analysis and
transformation. In Compiler Construction, 2002.

[22] Nagarakatte, Zhao, Martin, and Zdancewic. SoftBound:
highly compatible and complete spatial memory safety for
C. In ACM PLDI, 2009.

[23] Nagarakatte, Zhao, Martin, and Zdancewic. CETS:
compiler enforced temporal safety for C. In Symp. on
Memory management, 2010.

[24] Naraine. Adobe PDF exploits using signed certificates,
bypasses ASLR/DEP. http://tinyurl.com/38kppsy, 2010.

[25] Necula, Condit, Harren, McPeak, and Weimer. CCured:
type-safe retrofitting of legacy software. ACM TOPLAS,
2005.

[26] Nethercote and Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM
PLDI, 2007.

[27] NIST. NVD. http://nvd.nist.gov/.

[28] National Institute of Standards and Technology. SAMATE
Reference Dataset Project. http://samate.nist.gov/SRD/.

[29] Patil and Fischer. Low-cost, concurrent checking of pointer
and array accesses in C programs. Software — Practice &
Experience, 1997.

[30] PaX. Published on World-Wide Web at URL
http://pax.grsecurity.net, 2001.

[31] Roy. Mpatrol. http://mpatrol.sourceforge.net/.

[32] Ruwase and Lam. A practical dynamic buffer overflow
detector. In NDSS, 2004.

[33] Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
ACM CCS, 2007.

[34] Steffen. Adding run-time checking to the portable C
compiler. Software — Practice & Experience, 1992.

[35] The MITRE Corporation. 2011 CWE/SANS Top 25 Most
Dangerous Programming Errors.
http://cwe.mitre.org/top25/.

[36] Wilander, Nikiforakis, Younan, Kamkar, and Joosen. RIPE:
runtime intrusion prevention evaluator. In ACSAC, 2011.

[37] Xu, Bhatkar, and Sekar. Taint-enhanced policy
enforcement: A practical approach to defeat a wide range of
attacks. In USENIX Security, 2006.

[38] Xu, DuVarney, and Sekar. An efficient and
backwards-compatible transformation to ensure memory
safety of C programs. In FSE, 2004.

[39] Younan, Philippaerts, Cavallaro, Sekar, Piessens, and
Joosen. PAriCheck: an efficient pointer arithmetic checker
for C programs. In ASIACCS, 2010.

http://www.dwheeler.com/sloccount/
http://www.kb.cert.org/vuls/id/842160
http://tinyurl.com/38kppsy
http://nvd.nist.gov/
http://samate.nist.gov/SRD/
http://mpatrol.sourceforge.net/
http://cwe.mitre.org/top25/

	1 Introduction
	1.1 Background and Rationale
	1.2 Approach Overview and Contributions

	2 LBC Overview
	2.1 Guard zone size
	2.2 Guard zone representation and access
	2.3 Instrumentation strategy
	2.4 Runtime support functions
	2.5 Separate compilation and libraries

	3 Optimizations
	3.1 Simple optimizations
	3.2 Multithreaded programs
	3.3 Static Analysis

	4 Experimental Evaluation
	4.1 Implementation
	4.2 Compatibility
	4.3 Runtime Overhead
	4.4 Memory Overhead
	4.5 Effectiveness of Optimizations
	4.6 Detection of bounds violations

	5 Related Work
	6 Conclusion
	7 References

