A Practical Mimicry Attack Against Powerful System-Call Monitors

Chetan Parampalli, R. Sekar and Rob Johnson
Stony Brook University

Abstract

System-call monitoring has become the basis for many hasgdintrusion detection as well as policy enforce-
ment techniques. Previous work on mimicry attacks showadt gjistem-call monitors can be evaded, but these
attacks are effective primarily against relatively weagteyn-call monitors, e.g., those that ignore system-cgil-ar
ments. As more powerful monitoring techniques continuegaliscovered, a natural question is whether they too
can be evaded. In this paper, we formulate a class of very hokgystem call monitors, calleldO-data-oblivious
monitors, which incorporate perfect knowledge about tHaesof all system call arguments as well as their rela-
tionships, with the exception of data buffer argumentsead andwr i t e. We then present a successful mimicry
attack, which we call gersistent interposition attackgainst such monitors. Hackers can build a persistenpioter
sition attack from a typical code injection vulnerabilitytivmoderate effort and tools and techniques in use today
— we have implemented working attacks against real-worfilieations such as the Apache web server. In contrast,
previous work hasn’t demonstrated working mimicry attacksealistic applications protected by gray-box IDS.

1 Introduction

System-call monitoring intrusion detection systems @Di8ave created an arms race between defenders, who
create new and more powerful monitors, and attackers, who createttemksato evade the monitors. Re-
searchers have refined system-call monitoring defenses by capteguersing relationship47, 36], by using
call-site BQ], call-stack P, 11], and system-call argumer2], 32, 5] information. In parallelmimicry attacks
have been refined to evade many of these defenses, leading to themuestio

Can system-call monitoring be made powerful enough to defeat clanehfuture evasion attacks?

The answer to this question would be affirmative if we were to build a pesfestem-call monitor that captures
the totality of interactions between an application and its OS. Since these intesatetitne what we consider as
an application’s behavior, a monitor that can predict the totality of these atii@na has to effectively duplicate
the application logic. Moreover, in order to provide effective protectiba,monitor shouldn’t duplicate any
of the application’s vulnerabilities! Since this isn’t a recipe for a practigatean call monitor, we formulate
the notion of al/O-data-obliviousmonitor that comes close to being perfect: the only difference is that such
monitors ignore data buffer argumentsrtead andwr i t e system calls. This eliminates the need for the
monitor to predict the application’s behavior as a function of its inputs/outfgieby making it more practical.
We note that existing system-call monitoring techniqu&s20, 34, 30, 36, 25, 13, 27, 21, 32,9, 15,8, 11, 14, 5]
are all /0-data-oblivious

Despite their power, we show that I/O-data-oblivious monitors can betbefeising an evasion attack that
we call aspersistent interposition attacks his result implies thaturrent and future system call monitoring
techniques, by themselves, are unlikely to can't provide a good deégaest attack vectors that permit
injected code execution.

Overview of Persistent Interposition Attack. Like previous mimicry attacks, persistent interposition attack
relies on code-injection vulnerabilities. 1t hooks into the victim applicationéakon path so that it can inspect
and modify the arguments to all the programé&ad andwr i t e calls. For example, a persistent interposition
attack could overwrite the global offset table (GOT) entries fontised andwr i t e functions in the C library.
Our attack strategy is similar to a “man-in-the-middle” attack, where the attadk doeffect, modifies the
input/output data of the victim application. Since a persistent interposition attagknodifies data read or
written by the program, it is not powerful enough to obtain a root shellaim g persistent foothold on the
victim host. Nevertheless, many end-goals of today’s attacks remain abléev

'Henceforth, we use the term “IDS” to refer to system-call monitoring.IDS
2Content-based IDS, such &5 aren't I/O-data-oblivious, but are vulnerable to attack techniquesatiealargely orthogonal to
ours [L0]. By combining the two techniques, these IDS can likely be evaded as w8kke-Sectio® for a more detailed discussion.

e Steal credit-card numbers or passwords.persistent interposition attack against a web server processing
e-commerce requests can enable an attacker to steal the credit-cardsfonlgasswords) of customers
visiting the server.

e Redirect request# hacker can use a persistent interposition attack against a domain’séds ® redirect
(some or all) visitors to the domain’s web server to the hacker’s web site natieely, a DHCP server may
be attacked in a way that enables an attacker to redirect clients to her naere @ed subsequently, redirect
all client requests to the destinations of her choice.

e Impersonate a secure serveA persistent interposition attack against a secure web server can allow an
attacker to steal the server’s private key, which would enable him tegubkstly impersonate the server.

e Suppress or alter email#\n adversary can use a persistent interposition attack on a mail seruggress
or alter emails delivered by it.

e Launch worms.An attacker could use complementary attacks against a server and clianldt@ bvorm:
compromised clients would infect servers and compromised servers wéerd atients.

Persistent interposition is well-suited for attackiogg-running event-driven applicatiotisat execute a request-
response loop, e.g., most network servers, as well as some frequegétethdesktop applications such as
browsers and email readers. In addition, the “embed-and-wait” strateeyy in our attack can achieve more
powerful end-goals against weaker IDS: if the IDS doesn’t monitstesy-call arguments, then our attack code
can simply interpose itself oopen andwr i t e operations, and when they are invoked, modify the arguments
to create (or overwrite) a file of attacker’s choice.

Previous Work in Mimicry Attacks. Mimicry attacks B3] can be defined as attacks that achieve attacker-
intended effects without modifying aspects of an application behavior teahanitored by an IDS. The prin-
cipal challenge is that of making them practical: showing that mimicry attackkearafted to exploit existing
vulnerabilities in real-world applications, and can achieve typical goals attacker.

Prior mimicry attacks attempted to alter the control flow of their victims while generatystem call
sequences that would seem benign to an IDS, but this turned out to beguipdex. Typically, the attack code
needs to make a large number of system calls, e.g., Wagner and3Sjdimuind a sequence of 138 system calls
that evaded the pH IDS while attackingf t pd, while Gao et al12] showed that thehortest possiblmimicry
attacks against gray-box IDS typically needed a few tens of system calls.

Modern gray-box IDS that inspect a program’s runtime st&ck I] pose additional challenges for mimicry
attacks. In particular, the attack code cancalt system calls since that would save the attack code’s address
on the stack, thereby revealing execution of code from a writable sedtimemory. Instead, it has to jump
to some location in the application’s existing code that invokes a system calle\dovthis means that control
won't return back to the attack code after this system call, and hence tlk e#ta’t continue. To overcome
this problem, Kruegel et alP] devised a technique to corrupt memory locations (and registers) in a manne
that ensures that control is returned back to the attack code when théotlodving the system call is executed.
They developed an elegant technique to automate the identification of the mismatipns that need to be
corrupted, and the corresponding values. Their work showed thainiag control-flow is feasible, but didn’t
address several other issues that arise in constructing mimicry attadkstagal-world applications:

e For complex applications, how feasible is it to set up the stack before gatenscall (invoked by the attack
code) so as to escape detection by a stack-inspecting IDS?

¢ Note that typical attacks need tens of system calls, and each each ca@leseapany operations to (a) set
up its arguments, (b) set up the call stack, and (c) to modify memory locatieaeddor regaining control.
Will the exploit code needed to accomplish these steps be small enough to ffiit thighsize limits imposed
by typical code injection vulnerabilities?

e Given that the technique 02f] successfully regains control only about 90% of the time, how feasibléas it
string together the tens of system calls needed in typical mimicry attacks? Véidtegbmemory corruptions
(needed for regaining control after each system call) cause a pndgrerash before the attack is complete?

e How easy is it to extend the attack technique to work against more powB@ylduch as those that reason

about system-call argumen@]] 32, 14, 5]?
We discuss below how our work overcomes these challenges to devetkipgvevasion attacks on real-world
applications.

Advantages of Persistent Interposition Attacks. Our attack usegersistent control-flow interpositionather
than thecontrol-flow hijackstrategy used by previous mimicry attacks. As compared to control-flow hijeeck
believe that our approach smpler, more reliableandstealthy thus enabling us to develop a fully-working
evasion attack against the Apache web server, and also demonstragzéssary components of this attack
on a few other servers. Our technique addresses some of the key iagexl above in developing practical
mimicry attacks, e.g., restoring stack content after an attack, and limiting thefsitack code. It side-steps
the other issues by employing a different attack strategther than eagerly attempting to control program
behavior at every point, we take the lazy approach of lodging the attakkyaplaces in the programwhere
such interposition can be done easily and reliably, &itdout a need for repeated memory corruptioiée
show that this lazy approach can still achieve the attacker objectives augianker.

To implement a persistent interposition attack, a hacker does not need &gding sequence of acceptable
system calls, which requires an understanding of control flows poseikbl@rogram. Instead, he only needs
to find a convenient place to hook his code into the application’s 1/O routifleste are several easy choices,
as described in Sectio® After this is donethe victim application “cooperates” in the attack by invoking
the attack code at convenient points during the request processitgyayihe victim application'Moreover,
data needed by the attack code is typically available at this point via pararaetérs stack, thus avoiding the
error-prone guessing of absolute memory locations of victim applicati@té structures.

By inserting itself into the request-processing flow of a seipersistent interposition attack provides an
active channel for the attacker to dynamically control and/or alter the bieha¥ the attack codef-or instance,
an attacker can interactively examine and/or modify the memory of victim byirsgag@propriate “commands”
embedded in legitimate-looking requests to the server. Alternatively, the atteak upload new code that
embodies additional attack capabilities onto the victim.

Note that the attacker is able to control the contents of victim’s inputs remotelyitsaoutputs using the
interposed attack code on the victim side. This makes it possible for the attackeploy techniques such
as those described ii(] to encode his requests and responses in a manner that blends it witH traiffia
making it possible to evade most content-based IDS using a persistenbsitienp attack.

In summary, persistent interposition attacks are quite convenient for implemgepplication-layer attacks.
They are practical for hackers to implement using skills and tools they @&jreave, making them perhaps a
more realistic and immediate threat, as compared to prior mimicry attacks.

Paper Organization. Section2 defines the class dhput-Output data oblivious monitarsThe design of
persistent interposition attack is described in Sec8dfollowed by its implementation and evaluation in Sec-
tion 4. Implications of our attack on system-call monitoring techniques is discuss®ekiion5, followed by

a discussion of related work in Secti6npand concluding remarks in Secti@n

2 Input/Output-Data-Oblivious System-Call Monitors

In this section, we formalize 1/0O data-oblivious monitors that were intuitivecdbed in the introduction. We
also explain how they capture the likely limits of future system-call monitors.

We begin by formalizing the notion of program behaviors as observedsiggtam call monitor. In theory,
a system call monitor could examine the entire memory of a monitored applicatica@aitit of invocation of
each system call. For performance reasons, practical system call isdimtid the amount of memory that is
examined to that of system-call arguments. In addition, gray-box anom>des also examine the program’s
call stack. This suggests the following formalization of execution traces.
Definition 1 (Gray-box Execution Trace) A gray-box execution trace (or simply,tace for a program P,
denotedl'(P), is the sequence of all the system calls invoked’guring its execution. A system call in a
trace provides information about its name, arguments (at the point ofaallts return), return value, and the
context in which it is made, i.e., the list of return addresses on the progistack.

Note that, in principle, a powerful monitor can incorporate knowledge apassible control-flows in the
program, and hence can infer the calling context without explicitly readimg@itbhgram memory. Nevertheless,
we chose to incorporate the calling context in the definition in order to explicithude so-calledyray-box
anomaly detectiotiechniques 30, 9, 11] that rely on this information. Based on execution traces, program
behaviors can be formalized as follows:

Definition 2 (Program Behavior) The behavior of a program is the s&t(P) of all traces generated by
during any of its legitimate executions.

Not all of the possible executions of a program may be considered aptabte uses of the program from
a security perspective. We use the term “legitimate execution” in the abéiwndida to eliminate unacceptable
behaviors from consideration.

Practical system-call monitors accept a superséf @) defined above. However, one can imagine the
extreme case where the monitor accepts exaktly):

Definition 3 (Perfect System-Call Monitor) Given an observed execution tra€dor a programp, a perfect
monitor classified” as legitimate if and only if” € 7 (P).

Since a perfect monitor has complete knowledge about the entire behbaipragram, it can potentially
be used as a generator of traces rather than as an acceptor of Tiaisds.particularly easy to see in the case
of a deterministic progran®, since the next system call made by such a program is uniquely deternyiiitsd b
inputs until this point. Moreover, these inputs (including command-line andamaent parameters) are fully
captured by the system calls made thus far, together with their argumentstandvalues. Thus, a perfect
monitor can uniquely determine the next system call that would be made fiogm all the preceding calls.
This suggests that such a monitor must effectively be duplicating the essgpiigation logic contained i.
Moreover, it must do this without duplicating the vulnerabilitiesinor otherwise an attack may compromise
the monitor as well. Practical monitors are unlikely to duplicate application logit,hance won't be able
to predict application behavior from its inputs/outputs. This observation atesvthe following definition of
practical system-call monitors.

Definition 4 (Input/Output Data Oblivious Monitor (IOM)) An I/O-oblivious monitor accepts all trac§%
obtained from any” € 7 (P) by modifying the data argument to zero or more input and output systisn ca

Note that only the data-buffer arguments to system call that performlaonfud/output, such asead,
write, send andrecv are being ignored; other arguments such as the file descriptors used|l @s the
return value from the call are incorporated into the behavior model catett by an IOM. Moreover, all
arguments to every other system call, including I/O-related calls sucpeasare captured in the model.

We point out that IOMs are significantly more powerful than today’s syatall monitors 5, 27, 34, 9,
24,11, 5]. In fact, they are probably too powerful to be implementable now or in thedu Even so, we show
that they can be evaded by our persistent interposition attack, whichiggdddo leave the stack unmodified
at every system call, and only modifies the data buffer arguments to I/Qmsgstiés. As a result, persistent
interposition attacks, by design, cannot be detected by any I/O data aislivionitor.

We comment that although the intent of the IOM definition was to rule out vewegal monitors that
could exactly predict application outputs (or more generally, its future atiag a function of its inputs,
it has the effect of ruling out more practical techniques such as thasslen signature-based filtering or
statistical profiling of input contents. However, other researchilisHave already developed techniques that
are orthogonal to ours in order to evade existing content-based IESeTbchniques rely on encoding attack
inputs in a such a manner that their characteristics (e.g., byte frequenglutisn) conform to the normal
profile used by the IDS. These techniques can easily be combined withtack sechnique since it gives the
attacker full control over the contents of attack inputs as well as all ougtite victim server.

3 Design of Persistent Interposition Attacks

In this section, we describe the design steps that are common acrosssatquerinterposition attacks, and
outline how these steps may be implemented for different applications. Thdicmhoices made in our
implementation are presented in Sectibn

Our starting point for persistent interposition attack is an exploit built on E&ygode-injection vulner-
ability that enables execution of injected code without making additional systdls) e.g., a typical stack-
smashing, heap-overflow or format-string vulnerability. Such an explojtimpose fairly stringent limitations
in the size of exploit code, which may be much smaller than the code size needagdport sophisticated
attacks, e.g., stealing of credit card information from a web server. Forgason, we design persistent inter-
position attack to proceed in three steps:

e Initial exploit phase:In this phase, &ootstrappingshim is inserted on the victim’s normal execution path.
Relatively small amount of code (about 100 bytes in our experiments) thede® carry out the exploit
phase, so that it can be used as a payload for most code-injection attacks

e Bootstrapping phaseln this phase, additional attack code is sent by the attacker within legitimatawpok
requests to the victim application. The bootstrapping code identifies thasestegassembles them into the
code needed for the operational phase of the attack, and trangfigrsl ¢o the assembled code.

e Operational phaset.ike the bootstrapping code, the operational code is also hooked into tha'sinormal
execution path. It examines every input and output, and modifies the oatpdesired by the attacker. The
attacker may also upload additional code to change the attack over time.

Like previous works on mimicry attacks, our implementation assumes no defaga@st memory corruption
attacks. A defense such as address-space randomization (ASR) kapensistent interposition attacks harder
to develop, but they will remain possible as long as there are code injectioarabilities. Specifically, with
ASR, exploit code cannot hard-code the addresses of data or bpetdsothat it wants to target. However,
since most ASR techniques only randomize the base addresses ofrdiffegmory regions, it is possible to
develop scanning attacks to compute these addresses. Specificallypltiemde can scan the stack for return
addresses and data pointers. By comparing the addresses of ondiegpobjects (say, a specific global array
or a return address pointing to a location within the executable) between victnateacker’'s systems, it is
possible to “derandomize” the locations of all objects within a memory region @le@bal area or executable
code area).

As noted in 2], mimicry attacks against stack-inspecting gray-box IDSs must not leaueaae of attacks
on the call stack. In particular, the attack code needs to yseqarather than @al | so that its address won't
be saved on the stack. This means that the attack code cannot get edrérobystem calls (or any of the
application’s function calls) return, and hence it cannot immediately examergetia returned by a system call
such as ead. Instead, it has to wait for a subsequent function call that has béep $er interposition by the
attack code.22] develops a sophisticated static analysis to automate the identification of fupotiders that
could be hijacked for this purpose, and the same techniques could bedapptee However, in practice, we
have found that persistent interposition attacks require very few furectm be interposed, and those can be
easily identified by dynamically tracing the sequence of function calls madeshyidtim application. This is
the approach we used in our implementation.

3.1 Phase I: Initial Exploit Phase

In this phase, persistent interposition attack uses a code-injection \ilitgra install the bootstrap code. It
consists of the three steps described below.

Step I.1. Storing Bootstrap Code. The bootstrap code must persist long enough to upload the operational

code, so we need to find a safe place to stow it. We considered the folloamuidate locations:

e Stack. If the victim application consumes only a limited amount of stack memory, the regitive stack
beyond this space could be used by the attack. We need to ensure thaémhet &0 use this space does
not cause a signal due to an invalid memory access. Some operating syistidoding Linux, allocate
stack space on demand and inspect the application stack pointer to detetmihema page-fault should be
handled by extending the stack. To deal with this problem, our technigirepadarge amount of data onto
the stack and then pops it off, and then copies the code into stack spazediby the kernel as a result of
these pushes.

e Global buffers.It is common for programs to use buffers that are much larger than the fstaganlikely
to be stored in them. Alternatively, certain global arrays may hold rarelg data that can be overwritten
without a significant chance of affecting program behavior. Note tleat#mory location of global variables
is statically known, and hence the attack code knows the locations of stiahlea.

e Heap. Instead of global buffers, we can use heap-allocated buffers dimdaio rarely used data, or contain
more memory than is typically needed. Pointers to such heap buffers anestufted in global variables, and
so the exploit code can find them.

While one may need to choose among the three alternatives on other O&as)qithe stack is likely to be the
location of choice for storing bootstrap code: it can be used without signifrisk of overwriting application
data. Moreover, exploit-code doesn't need to know the locations oaftmbheap-allocated variables, which
may be hard to obtain if defenses such as address-space randomiratieplayed.

Step I.2. Interposing Bootstrap Code. After copying itself to a safe location, the initial exploit code modifies
one or more pointers to functions that would be invoked during the victim'miaboperation. To identify a
suitable function pointer, the following choices need to be considered.

e Application-specific support for plug-ins and modulédodern server and client software often provide
extensibility features in the form of plug-ins or modules. Calls to module-peavidnctions (as well as
some functions called by the module) are made using tables of function poiRtargistance, the Apache
web server uses theod_ssl module in order to support SSL. This module registers two functions with
Apache that the web server can use to read and write encrypted datse flimction pointers are an obvious
target for a persistent interposition attack.

e Virtual table pointers in C++ programsVirtual methods in C++ programs are implemented usintgale
i.e. an array containing pointers to each virtual method implemented by the shjts. The bootstrap
code can interpose on virtual method invocations by all objects in this classdmwriting these pointers
in the vtable. This is particularly easy because C++ compilers usually dermra vtable, stored at a fixed
location, for each class, and place a pointer to this table in every instativat afass.

e Global Offset Table (GOT) entrie§he global offset table is used in Linux to dispatch calls made from the
main executable to shared libraries, suchlasbc, and from one shared library to another. Every externally-
visible shared library function has an entry in the GOT. The dynamic linkeisrttemname of each shared
library function into the corresponding address, and fills the correipgrentry. By default, Linux uses
a lazy approach for resolving shared library functions, i.e., the asladriea function is resolved the first
time it is invoked. To support this, the GOT remains writable throughout thgrano's execution. Given
this fact, and the fact that shared library functions are used by appfisdito performing all of their I/O
operations, GOTs are an obvious choice for interposition — a fact thatisdged commonly in attacks such
as heap-overflow exploits, as well as previous mimicry attacks su@ghs [

Once the target function pointers are identified, the exploit code modifigstthpoint to the bootstrap code.

Step I1.3. Cleanup. The last step of the initial exploit phase is to cleanup any damage resultimgtifr®
exploit so that the victim application will continue executing without making amyraaious system calls. The
technique for accomplishing this is dictated by the nature of the underlyingratolifigy:

e Heap overflowHeap overflow exploits typically overwrite a GOT-entry for a function thakmormally be
invoked by a victim application immediately after the overflow takes place. In #se,cexploit code can
resume normal execution by simply transferring control to the beginningeodtiginal function called by
the victim program. In our experiments described in Sectidnwe were able to identify the location of the
original function without any problefn

% Some compilers store vtables in read-only data section. To cope with thimmweodify the vtable pointer in a single object so
that it points to a table constructed by the attack code. Typically, a suitablet chje be identified by scanning the stack.

“Itis usually quite easy to identify the location of the original function — the locatibthe function is usually identical between
the attacker’s machine and the victim machine. Even if there are diffeseray., due to ASR, the relative distances between functions
in the shared library will remain the same. As such, the exploit code capute the location of the overwritten function from the
location stored in the next GOT entry.

e Stack-smashing vulnerabilityA typical stack smash results in the corruption of the return address in the
stack frame containing the vulnerable buffer, and possibly some lodables of the caller’s frame. Since
the attack code gains control when the vulnerable function attempts to retitsndaller, we only need
to ensure that the caller continues normal execution. If the attacker editipthe values of the caller’'s
corrupted local variables, then the attack can easily restore them. If dotime corrupted values can'’t be
predicted, the attack code can return an error code to the caller, céusirgturn early without using the
corrupted variables. The attacker can evaluate these options on his §gftee settling on a specific choice.

An alternative technique is to modify the exploit so that it does not write eb¥lom return address targeted
by the attack. This may reduce the size of the payload, but still, most stadtisrgaulnerabilities involve
moderate to large arrays, and hence can be expected to be sufficiefd théninitial exploit.

e Format-string attacksFormat-string attacks may overwrite a return address or a function pantdras an
entry in the GOT. Typical format-string attacks cause a small amount of callatl@mage, especially to the
stack or the GOT. Possible techniques for recovering from such dawergealready discussed above.

As the above discussion shows, heap overflows are especially suitpdriistent interposition attack since
the cleanup phase is very easy. In our implementation, we have also deswuhstisuccessful cleanup after a
stack-smashing attack on Samba server.

3.2 Phase Il: Bootstrapping Phase

Once the initial exploit phase is complete, the bootstrapping code is invokiedjthormal operation of a victim
application. Typically, the bootstrapping code may be invoked on eaal andwr i t e operation. After the
bootstrap code finishes execution, it uses a jump to transfer contrebtborwr i t e °. As pointed out earlier,
it is important to use a jump (rather than a call) instruction to effect this conamoséter, so that a system call
monitor will not see any trace of the attack code on the stack. Specificallggiditer values, including those
of the stack pointer and base pointer, need to have the same values asai¢hton of the attack code.

Since a jump is used, control does not return to the bootstrap code akedaor wri t e. In order to be
able to read the data returnedibyad, the bootstrapping code uses the following strategy:

e Store the address of the buffer being used to read input data
e Intercept the nextinterceptable function call, and read and (optionallghifyrithe contents of the input buffer

Obvious choices for the subsequent interception are (a) the nextrsgatkinvoked by the victim, (b) &ar ee
call that may be used by the victim to free a buffer used for reading the olafe) utility functions such as
strt ok, strcpy or mencpy that may be used to process the input data. In our experiments, we cadity re
identify the appropriate function call by examining the source code of thienvapplication, or by dynamically
tracing the function calls made by it.

To upload additional code, the attacker sends specially marked inputs tectime. vihe exact format of
these inputs will need to be adapted to the victim application. Conceptually,itipge contain (a) a marker
that identifies a request from the attacker, (b) the code that is senttasfhis input, and (c) an op-code
that indicates what the bootstrapping code should do with this code. Whenaitker is recognized by the
bootstrapping code, it will copy the code into the memory region chosen inrév@ps step (or another free
area of memory). Note that the marker could be implicit, e.g., the bootstrappitegneay include logic that
treats inputs from certain IP addresses as coming from the attacker. aiitety, it could be a byte sequence
that is explicitly included in the input. In this case, the attacker will aim to minimize the li&etirthat other
inputs accidentally contain the marker, but such accidents can be toler#teg dre rare: they would simply
cause the current bootstrapping phase to fail, and require the attackéytthe attack.

Note that the attack code contained in the input could be encoded in some keayite the likelihood that
it would be identified by a content-based IDS. For instance, binary cogieomancoded into ASCII data, and
converted back by the bootstrapper.

The bootstrapping code should recognizes two op-codes: one thatiegle copy operation, and another

®Henceforth, when we refer toead andwr i t e, we are referring to all input and output system calls respectively.

that indicates the bootstrap code should transfer control to the beginhitng @ode uploaded during the
bootstrap phase. The bootstrapping phase ends when the secodd @pemcessed.

3.3 Phase lll: Operational Phase

The operational code uploaded during the bootstrapping phasemerfioe real work of the attack. Note that
it is possible for this code to interpose on a different set of functionsdagpared to the bootstrapping phase)
by appropriately modifying function pointers in the process memory.

From now on, the operational code gets to see and modify all outgoing gessdtuses the same strategy
as the bootstrapping code to examine input messages. The operatioaaacodccomplish several attacker
objectives using these two capabilities:

e Extract client secretsAn attacker can use a persistent interposition attack to obtain client crediita@abers
or other personal data from an e-commerce web server.

e Redirect clientsThe attacker can redirect clients to attacker-controlled hosts by modifyengetiponses to
name-lookup queries, or even by modifying the target address of linkelnpages served to them. Once
clients have been redirected, the adversary can attack them usingveis ser
Even if the redirection involves a cryptographically protected servich asdHTTP over SSL, the attacker
may be able to combine redirection with stealing of server’s private key ty oat a successful attack.

e Corrupt clients. An attacker can use a subverted file-server to corrupt clients by gthieign modified
executable binaries. Alternatively, servers may compromise vulnerabigschy sending them malicious
data, such as image or multimedia files that can exploit buffer overflows er wiiinerabilities in clients.

e Drop messagesA system call monitor may prevent the attack code from dropping an incomisgage
completely, but the attack can still alter the output actions that result from his.iRor example, an attack
on an email server could allow it to save a different email message in the stiensyfrom the one that was
received.

e Extract system secretdlany servers read in the system passwordfi&t,c/ shadow, to authenticate users.
The attack code could embed the contents of this file in responses to the atackeing her to perform an
off-line dictionary attack.

e Extract server secretsServers that support the SSL protocol have a private key that istasedhenticate
the server during connection negotiation. Since the key is used during @enection, most servers keep
it in memory all the time. The attack code can look up the server key and embetthé responses to the
attacker’s subsequent messages.

e Extract arbitrary memory.In general, the attack code could monitor incoming messages for commands of
the form(a, n), and return the contents afmemory locations starting with the address

Standard root-shell attacks could accomplish these goals as well, but thag be detected by an I/O data

oblivious IDS. Persistent interposition attacks show how to accomplish gfeede while remaining stealthy.

4 Implementation and Evaluation

In order to focus our implementation efforts on aspects that are centratablishing practicality of persis-
tent interposition attacks, we organized this section into three parts. In ®dcliowe present a complete
persistent interposition attack on the Apache web server. Settxonsiders the attack phases described in
the previous section and evaluates the feasibility of different alternativgggested for implementing them. In
Section4.3, we provide a theoretical rather than an empirical analysis of how persisterposition attacks
can be implemented on a few more server programs.

4.1 Apache Server with OpenSSL Vulnerability

OpenSSL versions before 0.9.6d contained a buffer overflow in thélihgrof client-provided keys, known
as the KEYARG overflow. Solar Eclipsel] developed a code-injection exploit against this overflow. This
exploit overwrites the GOT entry fdrr ee with the address of the injected code. When the server subsequently

callsfree, it ends up executing the injected code that spawns a shell. We modified thig espdescribed
below to construct a persistent interposition attack.

4.1.1 Initial exploit phase

In our implementation, the initial exploit code was about 100 bytes, small éntouge accommodated in the
payload of typical code-injection exploits.

To decide where to store the exploit code, we performed a dump of thd giebaory, and noticed that there
were three large and mostly unused buffeys:ser ver _r oot , ap_ser ver _conf nane, andap_cor edunp_di r.
These character arrays are 8KB each, but the path names stored iarthgrpically only a few tens of bytes.
We chose to copy our code to an offset of 100 bytes from the base o&r ver r oot .

Apache includes an extensive plug-in architecture that enables dyriigni@aed modules to override
built-in functionality. The SSL extension to Apache overrides the basic mpdibutput functions by registering
two of its functions,ssl i o_.hook_r ead andssl _i o_.hook wri t e, as the read and write hooks. Our attack
targets thess| i o_hook wr i t e function pointer for interposition. It saves the current value of this poamte
then overwrites it with a pointer to the attack code.

There are two benefits to interposing on the above two functions. Firsalilenthe attack code to access
messages in plaintext rather than encrypted form. Second, the attack ntitiu® to workeven if GOT were
made read-only.

It turned out that we did not need to interpasa _i o_hook_r ead at all, since the data returned by a read
operation is made available by Apache in a client request argumest tbo_hook wri t e. We relied on this
fact to implement the attack entirely by interposing just a single function call, lyag® i o_hook wri t e.

The initial exploit overwrites the GOT entry corresponding t@e. Thus, the cleanup phase in our attack
consisted simply of restoring this GOT entry to point to the locatiofirafe function ingl i bc. Since the
shared libraries were loaded at the same address on the victim and therdtacchine, it was easy to predict
the value needed for restoration.

4.1.2 Bootstrapping Phase

The bootstrapping code installed by the initial exploit phase now intercejidd@as! .i o_hook wri t e and
can inspect and change its arguments. As mentioned previously, an atguaseed to this function also con-
tains the data read from the client. The interposed code checks the irifartfbua special opcode indicating
that a message contains the operational attack code. In this case, ittbegesoming operational attack code
into theap_ser ver _r oot , while being careful to avoid overwriting itself. If the opcode indicates the @&f
operational code, then the bootstrap code updates the write hook to pthiatdperational code.

4.1.3 Operational phase.

The operational code uploaded by the attacker during the bootstrap pbakl be very large in principle,
and could perform the attacks described in SecBoiowever, since the focus of our evaluation was on the
initial exploit and bootstrap phases, we could do with a code size of al@ubytes for a proof-of-concept
operational phase. Our operational code simply monitored the numbeyuests handled by the compromised
server. The attacker can query this number by sending specially crafjedsts with an opcode recognized by
the operational code.

Apache forks off several child processes to handle incoming requesitsh poses some challenges to the
operational phase of our attack. A successful completion of this attacgrooises only one of these children.
If subsequent attacker command packets are processed by a ditfeildrprocess, then our attack code will
not see them. This problem is overcome either by repeating the attack to aois@nmultiple children, or
by resending command messages until they reach the compromised child.tedl iglablem is that Apache
dynamically adjusts the number of running servers based on the numbeaoaiiitg requests. If server load
drops for a long period, Apache may kill some children processes.tH@attompromised children are killed as
a result, then the attacker needs to repeat the attack in order to comprootiserame of the child processes
that are still alive.

In summary, we successfully implemented a persistent interposition attack dipaicbe server and were
able to utilize the operational code to query the number of requests Apadh@dcessed.

4.1.4 \Verifying evasion of an I/O-data-oblivious monitor

By design, persistent interposition attacks aren’t detectable by IOMseriheless, it would be useful to
experimentally verify this. However, a direct verification, i.e., running tit@c& on an application monitored
by an IOM, is not feasible since no implementations of IOM are available taafear¢ likely to be available in
the future). Consequently, we need to rely primarily on manual reasorisgdon the definition of IOMs to
establish that an attack can't be detected by an IOM. Specifically, wethiséollowing combination of manual
reasoning and experimentation to verify that the attack presented abolteeaetected by an IOM.

We usedst r ace to log all system calls made by Apache. The system calls made by differiahtech
are logged into separate files using a command-line option providedriace. First, we started the Apache
server, and used a client to carry out the above attack, and loggessteenscalls. We then restarted the Apache
server, and used the same client to send benign requests. We rettmdgdtem calls in this case. These two
steps were repeated several times to obtain multiple logs, each corregptmaine (benign or attack) run.
We then usedi f f to compare that r ace logs for each run. We observed that across the benign runs, there
were small differences in the logs, such as the the positisbok andmmap calls (both used for memory
allocation), file descriptor numbers and process ids. Since this variatioagsrm in benign runs, an IOM, by
definition, must accept these variations. We then compared benign runattaitk runs and verified that the
differences between the two runs were the same as those observedrbbem@n runs, or were due to the data
arguments to ead andwr i t e calls. Thus, an IOM would accept the attack run as well.

4.2 Implementing Persistent Interposition Attack on Other Applications

In this section, we consider each of the steps in persistent interpositioksatiacl evaluate the ease with which
they can be implemented. We chose a collection of applications (rather thagl@@ire) for this evaluation,
so that we can independently evaluate each of the implementation choices reeii&ectiors.

4.2.1 Initial Exploit Phase

Storing Bootstrap Code. Several alternatives were discussed in Sec3idor this step. Of these, the feasi-
bility of storing data in global buffers was already established by the Apaabke study. We also verified the
feasibility of copying attack data into the stack. We used a test programifovetification, but the details
won’t change across applications. Our implementation pushes data ondkevgtan a loop, and pops off this
data. To ensure that the attack code won't be clobbered by the victimgdtsinormal operation, the amount
of data pushed should be more than the total of the maximum stack ever utieel\agtim and the memory
needed by the attack code. Since our implementation could allocate hunéiidBs of space in this manner
without triggering any system calls, we did not pursue storage of attaalodethe heap.

Interposing Bootstrap Code. Our Apache implementation demonstrated the feasibility of interposing on
application-specific function pointers used to support module and plugactibnality. Interposing on GOT is
perhaps most convenient, since it works reliably across all applicatiom®atice. We used interposition on
GOT entries for two server programs, naméliynd andl sh. Interposing on virtual functions (or pointers to
virtual function tables) is also likely to be quite easy. However, we did ne¢ acess to working exploits on
real-world C++ applications, and hence didn’t evaluate this choice empptally.

Cleanup. Three common exploit types are prevalent today: stack-smashing piwedfsw and format-string
attacks. We obtained working exploits for the first two types, but couldindta fully-working exploit of a
format-string vulnerability. Nevertheless, as described before, thaitpafor recovery from a format-string
exploit is similar to that of heap-overflow or stack-smashing attack, dépgrh the nature of “collateral
damage” resulting from a format-string attack.

Our Apache case-study has already demonstrated the ease of thaglglaase on a heap-overflow exploit,
so we consider stack-smashing exploits here. Specifically, we examinedahe2open vulnerability in the
Samba server. This attack overflows a 1024-byte buffer on the stemyiating the return address on the stack

10

frame above that of catrans2open. We used an available exploit that launches a shell wheRdsem returns
to its caller. As with any stack-smashing attack, the value of the saved ebjempaird the return address on
the stack are modified, causing the victim to crash when the shell-code §inis¥e modified this attack so
that the process could recover. Specifically, the length of the overflasvreduced so as to avoid clobbering
the local variables of the caller. Next, as soon as control was traedfesrthe attack code, it computed the
expected value of ebp register from the value of the esp register atodeckshis value. It then executed a
ret instruction. These changes added about 20 bytes to the shell-codeeemdulfficient to allow the samba
process to continue normal execution after the attack without making aitjoadtisystem calls.

4.2.2 Bootstrap Phase

The bootstrap phase remains essentially the same across all applicatwes]isanot pursue additional feasi-
bility evaluation of this step beyond the Apache server.

4.2.3 Operational Phase

Since our intent is to demonstrate what can be accomplished by interposiigaaitee during normal operation

of a victim, we simplified our evaluation task by interposing at the sourcelevdérather than using the more
labor-intensive binary-code interposition. We ensured that we udgdlmse capabilities that were available
to code that would be injected in binary form into a working process, e.galitiey to examine and alter input
parameters to an interposed function, or to change global data. Usingpitisagh, we verified thaii nd

(a popular DNS server) aricsh (a GNU implementation of the ssh version 2 protocol) could be successfully
attacked using a persistent interposition attack. We describe these resolts b

BIND. DNS is a lightweight, connectionless, query-response protocol, so nidSt4ervers use a single
process but may be multi-threaded. We examiniead- 8. 2. 2_p5 for targets for code interposition. The GOT
entries forsendt o andr ecvfromare very convenient targets for an interposition attack. Specifically, our
attack worked by interposing arendt o. Using documented DNS record formats, we were able to identify the
location of the IP address (which is the most important piece of data within tt&r$ponse) within the buffer
argument tasendt o. We simply modified this data to redirect clients to our server. It is possible te ik
attack stealthier by doing this substitution selectively, e.g., when the quepmsaficertain IP address.

LSH. We inspected sh- 1. 4. 2 for interposition targets. After authenticating a usehd does arexecve

on thel sh- execuv program with command-line arguments that specify the user-id and the-gtdapthe
shell to be spawned. Itis thish- execuv program that executes the acteat ui d andset gi d calls. In our
attack, we targeted the GOT entrysfecve. It was simple to modify the argument data at the entry of the
execve call so as to set the userid to an arbitrary, attacker-chosen value n@iegaipon the configuration
of the LSH server, the attacker may still not be able to get a root shell thisbuahe/she can easily assume
any other userid. (Note that although this attack involves changing a systémrgument, the change is
undetectable to an IDS, in the sense that the new value that we use woulélxt\alue in a different run of
the server, where the user corresponding to this userid authenticasetf h€he only difference between such
a run, corresponding to valid authentication, and the attack sequence,asttientication data itself, which
appears as the data argument to an input system call — a differenceytidafjrition, can't be detected by an
I/0 data oblivious monitor.)

4.3 Attacking other servers

In this section, we discuss (rather than experimentally verify) possibsspent interposition attacks on a few
additional servers.

DHCP Servers. On most networks, DHCP servers provide clients with their IP addresse isarver, and
IP gateway, and may be configured to supply even more configuratiampéers. An attacker could use a
compromised DHCP server to redirect client DNS requests to a server bigdcontrol, or to redirect client
packets through his computer, acting as a gateway.

The Internet Systems Consortium DHCP server handles all requests,itoog-lived process, making a
persistent interposition attack against the DHCP server relatively edgyoaverful.

11

Sendmail. Sendmail forks a new process to handle each incoming mail message,rsistepeinterposition
attack against sendmail’s message reception code will be of limited use — theoroisgd server will exit soon,
anyway. Sendmail can also forward messages, though, and, in itdtdefafiguration, uses a single process
to handle all the messages queued up for later transmission. If an attadseafbug in sendmail’'s message
forwarding routines, he can mount a persistent interposition attack orotiariding process by inserting
malformed messages in the forwarding queue. The attacker’'s code caretiteand modify all subsequent
messages processed from the same queue. This enables attackerdaoradteled emails, misdirect them, or
read the emails intended for arbitrary users.

5 Implications for Existing Defenses

System-call Learning Based IDS. Our work was motivated by the long series of research works in this area
[17,30,36,9, 11,5, 21, 32]. All of them use /O data oblivious models, and hence aren’t able to tietesistent
interposition attacks. The range of objectives that are achievable usisgient interposition attack suggests
that one shouldn't rely on these IDS to protect against injected codksittdevertheless, these techniques
can be used to detect various other types of attacks such as race e¢mdémp file bugs, and so on. More
generally, due to its reliance on learning, these techniques have the daierd&tect attacks that involve
unintended uses of an application that wasn'’t captured in training.

Static-Analysis Based IDS. A number of system call monitoring IDS have been based on static analysis of
application code. Some of these techniques rely on source-code arj@ijsig/hile others can operate on
binaries [L5, 8, 14]. They construct I/O data oblivious models, and are hence susceptitle aitack.

The main advantage of this class of techniques is that they don’t prodlseefdositives. This is because
they rely on static analysis techniques thatsarendwith respect to the semantics of the programming language
(namely, C or C++) of the victim application. As a result, these techniques etilatl only those attacks that
cause the victim's code to behave differently from the semantics specifiéd language. Many kinds of
attacks, including race condition attacks due to TOCTOU vulnerabilities, temgiti#leks, and various types of
injection attacks, do not involve any violation of the semantics assumed by tleeastalysis, and hence aren't
be detected by these techniques. Memory corruption attacks do involvéatonaf the language semantics
and hence fall within the scope of these techniques. However, ourige@sshow that it is possible to modify
typical memory corruption exploits so as to evade detection by these IDSdiBhisssion highlights the need
for additional research to determine if there are classes of attacks thdeceeliably detected using static
analysis based system-call monitoring IDS.

Policy-Enforcement Techniques and Specification-Based IDS.Some specific security objectives could be
achieved using appropriately configured and enforced policies aarsysalls made by applications, and our
results do not dispute this fact. For instance, Systrace and SELinux gblige the primary objective of
limiting damage to system resources and other applications that can resultaytretected application is
compromised. Their policies do achieve this objective. However, a ugeesé defensive mechanisms may
incorrectly assume these policies actually protect the victim application itself yngé very difficult to
carry out attacks that provide any significant benefit to attackersré3uit shows thait is practical to carry
out successful attacks that subvert the logic of applications confinpdllmy-enforcement engines.

Techniques for Checking Integrity of Control Transfers. Recently, techniques have been developed that
are related to system call monitors, but go beyond it in that they monitor mosbttransfers rather than just
system calls. Control-flow integrityd] transforms binaries to introduce integrity checks on targets of control
transfers before any jump or call. Such a technique can disrupt the irttitlod-hijack step of code injection
attacks. PAID 24] is a hybrid approach that incorporates a limited degree of integrity chgdkino a system
call monitor. In particular, it uses source-code transformation to inseitf y system calls before each indirect
function call to report the target of the indirect branch to a system calltoroilthough this was designed as

a measure to resolve nondeterminism in the automata model extracted fronodin@nproy PAID, it has the

8SELinux policies aren't stated in terms of system calls, but are closegarfon our purposes, so we discuss them together with
system-call based techniques.

12

effect that the monitor will come to know about any jump into injected code repididata segment.

Injected code attacks seem virtually impossible with these techniques, sstgrariterposition attacks
aren't effective against them. However, there are simpler attacks éimasucceed against these techniques
by simply modifying system call arguments. Chen et/ldemonstrate several powerful memory corruption
attacks that operate by corrupting only data values, while providing thekattadgth capabilities similar to
those of code injection attacks. Although PAID can detect some of thes&satigexamining system call
arguments, due to the difficulty of accurate data flow analysis in languagbss C, there will likely be plenty
of opportunities to craft successful data attacks.

Defenses against memory corruption attacks. The results of this paper, together with the above discussion,
reinforce the idea that effective defenses against memory corrugtacks need to focus on the corruption
step itself, rather than attempting to contain the damage that follows memorytoancufphe best defenses are
provided by techniques that detect a memory error before it happaets as those described i€, 19, 29.
However, these techniques may cause performance or compatibility prolimenisch case one might rely on
techniques designed to detect memory error exploits such as addaessrapdomizatior] 6].

Network IDSs and Payload Anomaly Detection Techniques. Network IDSs, such as Snort and Bro, rou-
tinely scan the content of packets in search of known attack signatuoasvdr, signatures aren’t available for
unknown exploits, and hence a successful persistent interpositiok attade crafted based on such exploits.

Several techniques have emerged recently that detect intrusions lifyidgranomalies in protocol pay-
load data 85, 23]. Such content-based intrusion detection systems have been basetisticatanalysis of
input requests to a server, and recognizing anomalies such as bitargiddata with other unusual character-
istics. These systems fall outside our definition of I/O data obliviousneasetr, other researched] have
already developed techniques that are orthogonal to ours in ordeade existing content-based IDS. These
techniques rely on encoding attack inputs in a such a manner that theictemestics (e.g., byte frequency
distribution) conform to the normal profile used by the IDS (e.g., PASH). These techniques can easily be
combined with our attack technique since it gives the attacker full conteglttae contents of attack inputs as
well as all outputs of the victim server.

6 Related Work

We limit our discussions in this section to mimicry attacks and other related workasatt previously been
discussed in this paper. Wagner and S8} pioneered the concept of mimicry attacks. They suggest several
strategies for constructing mimicry attacks, but ultimately choose one that igackrol-flow of the victim
application, and executes a system call sequence that is consistent vafiptioation model used by the IDS.
The attacker’s objectives could still be achieved by altering the argumetitede system calls, since the IDS
they considered didn’t monitor system-call arguments. All subsequeaktwoa mimicry attacksdl, 12, 22, 16]
have relied on this strategy that couples control-flow hijack with modificatiosgdtem-call arguments.

Wagner and Soto pose the problem of generating such an attack se@seadinite-state automata inter-
section problem, and generated a mimicry attack consisting of over 100 sgatisnthat achieves the effect
desired by an initial exploit consisting of 8 system calls. However, they alidghmplement a working mimicry
attack. This problem was addressed by Tan e84, but their focus was on black-box IDS. Ours is the first
working mimicry attack against real-world applications protected by grayHds.

Gao et al L2] coined the terngray-box anomaly detectoand developed an elegant framework that unified
previously known system-call anomaly detectd, [30, 9, 36], and further generalized them. They evaluate
these anomaly detectors in terms of their resistance to mimicry attacks. Foamguch asu- ft pd and
Apacheht t pd, they show that the minimum possible length of mimicry attacks is between 5 andst&dnsy
calls, with the sequence length increasing with the precision of models.

Recent research has targeted the two main problems in developing the kim@wiofy attacks described
above. First, manual generation of these mimicry attacks is hard, givetypiedl attack sequences consist of
several tens to hundreds of system calls. Second, as described imrtithuttion, it is difficult for the attack
code to make a series of system calls against a gray-box IDS.

13

Giffin et al [16] formulate the problem of generating mimicry attack sequences as a moaéirterob-
lem. The input to the model checker includes a (manually developed) spéoifiof OS behavior, the program
behavior model used by the IDS, and a specification that characternZessafe” OS state desired by an at-
tacker. By using the OS model, their technique can generate all possible mattacks that achieve the OS
state desired by the attacker, instead of being limited by an initial exploit thatdseas the starting point for
previous works. Moreover, the OS model enables the generationwhargs to system calls used in a mimicry
attack. Although their formulation can handle push-down models, their gi@ueonsidered the finite-state
models generated by the Stide techniqlid.[They did not consider gray-box IDS.

A significant problem in generating mimicry attacks against gray-box IDSaisdysstem calls cannot be
made directly by attack code, since the IDS can then detect the preseacetafn address on the stack that
falls outside of the program text. To cope with this problem, Gao et3lduggest that the attack code must
jump to existing code in the victim application that will then make the system call calftadtihe application.
However, this means that after the execution of system call, control willrrdsack to the application rather
than the attack code. To regain control, they suggest modification of gpoaater used by the application code
following the system call so that it points back to the attack code. They ghthedeasibility of this technique
on a small example program, but manual development of mimicry attacks baskd technique for realistic
programs poses a daunting challenge.

Kruegel et al 2] address the above challenge with a novel technique that automates thaeateled for
regaining control. Specifically, they use symbolic code execution to comglateonships between the memory
(and register) contents at the point where the attack code jumps into theagipplicode, and the code pointers
used subsequently by this code. By analyzing these relationships, tladysiaridentifies if control can be
regained, and if so, the memory locations that need to be modified and thentonThey demonstrated their
technique on three example programs (about 30 lines each), as well agpications such as Apache, showing
that about 90% of the time, control could be successfully returned to trek attale. However, the focus of
their evaluation was to demonstrate the ability of their symbolic execution techtugemerate configurations
that can return control back to the attack code. As mentioned beforerasedditional problems that need to
be addressed before constructing working mimicry attacks against cetl-applications were left open.

7 Conclusion

It is well known that no intrusion detection system can precisely captudesiations from an application’s
correct behavior, but our research shows that, with relatively little eaging effort, adversaries can execute
powerful attacks while blending in almost undetectably with the sequen@®staEm calls normally executed
by an application. Our attack can evade all system-call-based intrusiactideteystems with which we are
familiar. The need to work against powerful system-call monitors that exaatimost all system-call arguments
will typically prevent persistent interposition attacks from achieving anlyitgials such as gaining a root-
shell, but we showed that typical end-goals of attackers such as steaduligcards or hijacking/impersonating
servers can be achieved.

Whereas previous mimicry attacks required static analyses to discovensyatesequences that can com-
promise an IDS, and to regain control between these system calls, onigigelside-steps these problems by
“co-opting” the vulnerable application into invoking the attack code at coieve points during its execution.
As a result, persistent interposition attacks are practical for todaykehato implement using skills and tools
they already have, making them perhaps a more realistic threat as cortgppraa mimicry attacks.

Persistent interposition attacks demonstrate the limits of system-call monitoringsdefan general, as
any defense that could detect our attack would begin to emulate the monitotied application. They call
into question the feasibility of ever developing system-call monitors that d@ablsedetect the most common
type of attack prevalent today, namely, code-injection attacks; and silge future research in system-call
monitoring IDS should be focused on other classes of attacks.

Our results also highlight the importance of deploying dedicated defegs@ssapowerful attack vectors
such as memory errors, rather than relying on the secondary line afsgefovided by intrusion detection
systems. They also add to the body of evidence showing that control-flmitaring has significant benefits

14

over system-call monitoring.

References

[1] OpenSSL Vulnerabilityht t p: / / www. phr eedom or g/ sol ar/ expl oi t s/ apache- openssl /.
[2] Dyninst: An API for runtime code generatioht t p: / / www. dyni nst . or g/ .

[3] PaX Project, The PaX team. http://pax.grsecurity.net.

[4] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrigCM CCS 2005.

[5] S.Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow anomaly deteditEE S&P, 2006.

[6] S.Bhatkar, R. Sekar, and D.C. DuVarney. Efficient technidaesomprehensive protection from memory error expldtSENIX
Security 2005.

[7]1 S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. lyer. Norirobdata attacks are realistic threat$SENIX Security2005.

[8] H.Feng, J.T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. MilleorrRalizing sensitivity in static analysis for intrusion detection.
IEEE S&P, 2004.

[9] H. Feng, O. Kolesnikov, P. Folga, W. Lee, and W. Gong. Anomaiedtion using call stack informatiofEEE S&P, 2003.
[10] Polymorphic blending attack§&JSENIX Security2006.
[11] D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of exiecugraphs for anomaly detectioACM CCS$ 2004.
[12] D. Gao, M. K. Reiter, and D. Song. On gray-box program tragkar anomaly detectionJSENIX Security2004.

[13] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegatindhdecture for secure system call interposititiSENIX Security
2003.

[14] J.T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller. Envir@mtisensitive intrusion detectioRAID, 2005.

[15] J.T. Giffin, S. Jha, and B. P. Miller. Efficient context-sensitivieuision detectionNDSS 2004.

[16] J.T. Giffin, S. Jha, and B. P. Miller. Automated discovery of mimiattacks RAID, 2006.

[17] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detectigingisequences of system callsof Computer Security1998.

[18] T.Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and ang/ Cyclone: A safe dialect of @ISENIX Annual Technical
Conference2002.

[19] R. Jones and P. Kelly. Backwards-compatible bounds checkingrfays and pointers in C progranhst’| Workshop on Auto-
mated Debuggingl997.

[20] C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities iivigged programs by execution monitoringCSAGC
1994,

[21] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the detection @fimalous system call argumeni&SORICS2003.

[22] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Au&timg mimicry attacks using static binary analydisSENIX
Security 2005.

[23] C. Kruegel and G. Vigna. Anomaly detection of web-based attad&d/1 CCS 2003.

[24] L. Lam and T. Chiueh. Automatic extraction of accurate applicatimeesic sandboxing policyRecent Advances in Intrusion
Detection, 2004.

[25] P. Loscocco and S. Smalley. Integrating flexible support fousgcpolicies into the linux operating systerARREENIX 2001.
[26] G. Necula, S. McPeak, and W. Weimer. CCured: type-safefitting of legacy code POPL, 2002.

[27] N. Provos. Improving host security with system call policlBSENIX Security2003.

[28] J. L. Rrushiand E. Rosti. Function call tracing attacks to kerbger@d MVA, 2005.

[29] O. Ruwase and M. Lam. A practical dynamic buffer overflow dite NDSS 2004.

[30] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automatased method for detecting anomalous program behaviors.
IEEE S&P, 2001.

[31] K. Tan, K. Killourhy, and R. Maxion. Undermining an anomaly-dsntrusion detection system using common expld&AID,
2002.

[32] G. Tandon and P. Chan. Learning rules from system call argtsv@d sequences for anomaly detectigvorkshop on Data
Mining for Computer Security (DMSE(3003.

[33] D. Wagner and P. Soto. Mimicry attacks on host based W&V CCS 2002.

[34] D. Wagner and D. Dean. Intrusion detection via static analyBEE S&P, 2001.

[35] K. Wang and S. Stolfo. Anomalous payload-based network intnusédection.RAID, 2004.

[36] A. Wespi, M. Dacier, and H. Debar. Intrusion detection using \deidength audit trail patternsAID, 2000.

15

	1 Introduction
	2 Input/Output-Data-Oblivious System-Call Monitors
	3 Design of Persistent Interposition Attacks
	3.1 Phase I: Initial Exploit Phase
	3.2 Phase II: Bootstrapping Phase
	3.3 Phase III: Operational Phase

	4 Implementation and Evaluation
	4.1 Apache Server with OpenSSL Vulnerability
	4.1.1 Initial exploit phase
	4.1.2 Bootstrapping Phase
	4.1.3 Operational phase.
	4.1.4 Verifying evasion of an I/O-data-oblivious monitor

	4.2 Implementing Persistent Interposition Attack on Other Applications
	4.2.1 Initial Exploit Phase
	4.2.2 Bootstrap Phase
	4.2.3 Operational Phase

	4.3 Attacking other servers

	5 Implications for Existing Defenses
	6 Related Work
	7 Conclusion

