
V-NetLab: A Cost-Effective Platform to Support

Course Projects in Computer Security

Kumar Krishna, Weiqing Sun, Pratik Rana, Tianning Li and R. Sekar

Department of Computer Science, Stony Brook University.

Abstract— Network and computer courses need dedicated
laboratories for students to carry out hands-on assignments
and course projects. Typically, these projects require each
student to be given administrative access to an entire, isolated
network of computers. The obvious approach of creating one
dedicated physical network for each student is prohibitively
expensive, both in terms of hardware costs, as well as the
management overhead in setting up and administering these
networks. We have therefore developed a platform where
logically isolated virtual networks of computers can be set up
very easily. The platform greatly simplifies administration
of virtual networks by automating the startup and shutdown
of these networks. In addition, our platform simplifies cus-
tomization of the configurations of different computers on
a virtual network, and moreover, provides features to per-
mute these configurations across different student groups. A
novelty of our approach is that these networks are realized
on a modest size physical networks consisting of commod-
ity PCs. In our experiments to date, classes of 50 students
have been supported with a hardware platform costing un-
der $30K, where each student has access to a dedicated,
logical network of 6 to 8 (virtual) computers.

I. Introduction

Students and faculty involved in computer and network
security courses require laboratory setup to carry out prac-
tical assignments and hands-on projects. Typically, these
projects require a student to have complete access to an
entire network of computers. For instance, a firewall con-
figuration project requires a student to be given access to a
network that consists of one or more hosts that model com-
puters on the Internet, one or more computers that model
the hosts on the internal network protected by the fire-
wall, and the firewall itself. To complete the assignment,
students will first need to configure the firewall with appro-
priate rules. Following this step, the student needs to run
tests to determine if the firewall permits access to autho-
rized services, while denying access to others. To complete
these steps, the student will need administrative access on
the firewall itself, as well as the internal hosts that run
services accessible from outside. She may also need admin-
istrative access to run testing tools on the “outside” hosts.
Network monitoring, network forensics and intrusion de-
tection are other obvious examples of projects that require
a similar level of access for all students in the course.

There are several challenges in providing the type of ac-
cess described above. First, students may make configu-

This research is supported by NSF grant DUE-0313858 and ONR
grant N000140110967.

ration errors that have the potential to damage the entire
operating system, and hence render a computer unusable.
Thus, it is necessary to rely on techniques that can restore
damaged operating system installations without any sig-
nificant effort on the part of the course staff (Throughout
this paper, we use the term “course staff” to refer to in-
structors, teaching assistants or dedicated system staff that
are involved in setting up and administering the laboratory
and assignments for a course.)

A second challenge is that some students may misuse
administrative privileges to carry out activities that harm
other students in the class (or others on the Internet) by
snooping on their traffic or carrying out active attacks. To
eliminate this threat, the networks used by each student
should be disjoint and isolated from that of the others.
However, the cost of developing such physically isolated
networks can be prohibitive for moderate to large classes.
For instance, to support a class of 50 students, the above
experiments will require in the neighborhood of 300 com-
puters. Thus, the hardware costs alone will amount to
hundreds of thousands of dollars.

The third challenge is due to the cost of administering
these networks. Most institutions cannot afford dedicated
system staff to support a single course, with the result that
the job falls on a teaching assistant or the instructor. In
this case, it will be next to impossible to offer these projects
if the course staff need to manually configure and admin-
ister one network for each student.

In this paper, we describe a new approach to address
these challenges and present our virtual network laboratory

software (V-NetLab) that implements this approach. It is
realized over physical hardware that is a small fraction of
the sum of the sizes of virtual networks used by all students.
In our experiments, we have supported as many as 250 vir-
tual hosts, partitioned into 30+ networks, using a physical
hardware of 6 dual-processor PCs. These virtual networks
can be accessed remotely by students over any broadband
connection using SSH and X-Windows software.

The virtual networks are isolated from each other and
the Internet so as to provide the necessary level of security.
The virtual networks can be set up easily and quickly, in
a small fraction of the time needed for setting up physi-
cal networks. The hardware platform can be simultane-
ously used by multiple students, while ensuring that the
use by one student will not unfairly impact others. V-

NetLab provides a number of software tools that ease its
configuration and management to the point where its op-
erational costs become a very small fraction of that needed
with a real testbed. Based on our experience to date, we
estimate that virtual networks can reduce acquisition and
operational costs for such laboratories by an order of mag-
nitude.

The use of virtual machine software (such as VMware
and User-Mode Linux) to provide administrative access to
individual computers is well-established in OS and security
courses. However, to the best of our knowledge, there has
been no previous approach that can provide the same kind
of access to entire networks of computers in such a way
that these networks can be easily replicated for different
students. The work presented in this paper addresses this
problem.

A. Overview of Approach and Salient Features

Our virtual networks comprise of virtual machines
(VMs) interconnected by virtual network devices such as
hubs and switches that are implemented in software. We re-
fer to emulated hubs and switches as v-hubs and v-switches
respectively. Network virtualization is implemented at the
datalink layer, which provides the added benefit that the
same IP address may be used in different virtual networks,
which in turn simplifies the set up of assignments. (Net-
work configurations, including IP addresses, can be blindly
copied across all student networks.) Virtual networks faith-
fully duplicate the behavior of physical networks with the
same topology. Specifically, our V-NetLab platform pro-
vides the following features:

• Isolate virtual networks from each other. V-NetLab en-
sures that the operation of one virtual network does not
affect the operation of any other networks, except possibly
due to resource contention issues that arise as a result of
sharing the same underlying hardware.
• Faithfully simulate network configurations. Since net-
work security projects often involve tasks such as packet
sniffing, it is necessary that networks be emulated accu-
rately after they are overlaid on physical workstations, so
that all and only those packets that are supposed to be
visible at any network node become visible there.
• Cost-effective and scalable. The software design provides
good performance and scales well.
• Ease of setup and management. The software allows vir-
tual networks to be configured and operated very easily.

Our design enables virtual networks to be accessed re-
motely, so that they may be accessed by students without

requiring physical access to the hardware platform. More-
over, it offers the possibility that a lab in one institution
be accessed by students in a different institution that lacks
the requisite facilities.

Fig. 1. V-NetLab Hardware Platform

II. Hardware Platform

At one extreme, we can build our virtual network envi-
ronment over a single powerful multiprocessor server. The
benefit of this approach is that commercial virtual machine
software for such platforms already provides some of the
management functions needed to support virtual networks.
However, it may not support large networks due to the
limitation of resources such as disk space, processor speed
and virtual network performance. Moreover, the desired
degree of isolation among different networks may not be
supported. Finally, large multiprocessor server hardware
tends to be much more expensive as compared to a collec-
tion of PCs providing comparable computing power, and
is inherently not scalable. As a result of this analysis, we
concluded that the most cost-effective approach would be
to build virtual networks using a hardware platform con-
sisting of networked workstation-class PCs.

Our current hardware platform shown in Figure 1 con-
sists of dual-processor workstation class PCs connected to-
gether by a switched gigabit network. To simplify develop-
ment of virtual network control and management software,
we are using Linux as the host OS. The virtual machines
themselves may run Linux, Windows, or any other OS sup-
ported by the VM software, although our course projects
so far have been based only on Linux. The components of
our setup are the following:

Fig. 2. Logical View for V-NetLab Laboratory

• One PC-based NFS Server. The server provides storage
for all virtual machine disk images. Our server currently
uses 6-way RAID to provide excellent I/O performance and
a disk storage of 600GB, which is enough to store 200 to
500 distinct virtual machine images.
• 9 PC-based workstations. Each of them has 3 to 4 GB
memory and 2.8 to 3.0 GHz dual-processor Intel CPUs
running Linux operating system and virtual machine soft-
ware from VMware Inc. [1]. Currently, these workstations
are partitioned into 6 PCs that are used in “production
mode,” supporting courses, and 3 PCs in “development
mode,” supporting continued development and testing of
V-NetLab software.
• A gateway host. Users access their virtual network by
logging into this machine. It provides a management in-
terface through which students and course staff access the
V-NetLab. The gateway host does not forward packets, so
there is no direct connectivity between the V-NetLab and
the Internet.

The testbed also includes gigabit Ethernet switches and a
management console, as shown in Figure 1.

Overall, this hardware platform can host between 130 to
300 virtual machines simultaneously, which translates to
a lab session for 30 to 60 students, each running his/her
own virtual network. The entire setup shown in Figure 1,
together with software, cost about $29,000 last year.

III. Student’s View

The operating environment in the V-NetLab, as viewed
by students, is illustrated in Figure 2. The laboratory is
hosted in an isolated network. The only entry to the net-
work is through a gateway host named Gateway in Figure 2.

This gateway does not forward packets, so there is no net-
work connectivity between the testbed (and hence the vir-
tual networks) and the external world. Users (students
as well as course staff) need to first log into the gateway,
from which they can access their virtual networks. Stu-
dents cannot directly access the machines that are part of
the testbed. They can only use management software on
the gateway to start or control their virtual networks.

A user can access V-NetLab from any computer con-
nected to the Internet, as long as this computer runs an
X-Windows server and Secure Shell (SSH) software. The
user needs to first log into the gateway using SSH, and then
start up the virtual network. The consoles of the VMs are
displayed on the user’s computer, as shown in Figure 3.

Figure 3 shows screen shot of VMs for a network topol-
ogy. Each visible console corresponds to a VM. Depending
on the configuration of these machines, students may be
given a normal user or administrative account on them.
The user’s home directory on the NFS server can be
mounted on one or more of the virtual machines to fa-
cilitate movement of data into the virtual network from
outside or vice-versa.

The details of the interface provided to the users are de-
scribed below. The interface is implemented using scripts
that run on the gateway machine and it provides the fol-
lowing functions:

• Registration. A user should first register his/her network
by submitting the network definition in a configuration file.
A network is defined in terms of VMs and interconnecting
entities. Our system validates the network definition by
performing lexical, syntactical and semantical checks on it.
After validation, this network is associated with the user.

Fig. 3. Sample Virtual Network Topology and its Screen Shot

The registration step may not always be done by a student
— instead, course staff may preregister the network that is
supposed to be used by each student.
• Startup. A user is permitted to start his network only if
it has been previously registered. If the network is started
for the first time then a mapping of virtual machines onto
physical network hosts is computed. This mapping at-
tempts to (a) minimize copying of large VM disk images
(of the order of GBs), and (b) balance the load across phys-
ical machines. Optimal allocation algorithms turn out to
be computationally expensive, so simple heuristics are em-
ployed in our current implementation. After computing the
mappings, any VM disk images that may need copying are
copied from the file server to the workstations, the VMs

started up and their console displays tunneled to the user’s
desktop.
• Shutdown. This command shuts down the user’s net-
work. Depending upon the configuration of the virtual ma-
chines, their states (disk images) may be saved or simply
discarded.
• Query. This command displays user’s virtual network
status (running, registered or unregistered) and available
capacity of hardware platform (estimated) in terms of num-
ber of VMs.

IV. Instructor’s view

In this section, we present the procedure for setting
up virtual networks for course assignments using our V-

NetLab. Before a student is able to use virtual network
setup, the instructor needs to define the virtual network
for students. It consists of following steps:
• Network definition
• Preparing VM images
• Randomizing mapping/services

A. Network Definition

For preparing the network topology for a particular ex-
periment, the course staff needs to define the configuration
of each virtual machine, and the overall network topology.
For instance, the configuration file for the network shown
in Figure 3 is given below. The definitions of some virtual
machines and hubs are abbreviated with “...” to conserve
space. (The complete configuration file has 50 lines.)

vm ExtFW {

os : LINUX
ver : "7.3"
src : "/mnt/qinopt/vmnetwork/vmSrc/assgn1"

eth0 : "200.200.100.162"
eth1 : "200.200.100.65"
eth2 : "200.200.100.130"

}
vm Nfs {

os : LINUX
ver : "7.3"
src : "/mnt/qinopt/vmnetwork/vmSrc/assgn1"

eth0 : "200.200.100.195"
}

vm IntFW { ... }
vm DefaultGW { ... }
vm Dmz { ... }

vm Gemini { ... }

hub hub1 {

inf : DefaultGW.eth0, ExtFW.eth0
subnet : "200.200.100.160"

netmask : "255.255.255.224"
}
hub hub2 { ... }

hub hub3 { ... }

switch s1 {

IntFW.eth1, Gemini.eth0, NFS.eth0
}

Virtual machines are specified in terms of their IP ad-
dresses, host names and the file containing their disk im-
age. Hubs are specified in terms of the host interfaces or
other hubs/switches that they are connected to, as well as
the range of network addresses associated with the hub.
Switches are specified in a similar manner.

B. Preparing VM Images

As described above, the virtual network configuration
file references one or more VM disk images which store the
contents for the virtual machine’s hard disk drive. These
images need to be prepared by the course staff. In order
to minimize students’ effort in non-essential administrative
activities, these VM images should include all the software
required for the course assignment.

Typically, VMs in a virtual network differ in many ways
from each other. For instance, they will have distinct IP
addresses and host names, and run different services. One
approach to support this diversity is to create a unique disk
image for each VM. This requires the course staff to manu-
ally configure each VM separately, and then save the result-
ing VM images. The primary benefit of this approach is its
generality. Its drawback is that it increases the workload
on course staff, as they have to manually configure many
distinct VMs. Even worse, this approach complicates the
mapping of virtual network onto physical network, since
there are many different VM images to deal with. A non-
optimal mapping can easily require many VM images to
be copied from the file server to the workstations, thereby
greatly increasing the startup time.

To overcome the above problem, we typically use the ex-
act same image (master image) for all VMs, but modify the
boot scripts (which are part of this image) so that different
sets of services can be started up on different VMs. Note,
however, that this approach is specific to a given guest OS.
In our implementation, this feature has been implemented
for Linux, but not Windows. The modified boot scripts also
take care of routine network configuration aspects such as
the set up of IP address, host name, DNS server, and de-
fault gateway, based on the contents of the virtual network
configuration file.

C. Randomizing IP addresses and Services

Some assignments may require different configuration of
virtual network in terms of IP addresses of VMs and ser-
vices running on VMs. For instance, in a network map-
ping assignment, it would be preferable that the networks
given to different students will “look” different, so that so-
lutions cannot be copied. Yet, creating distinct network
topologies for different students can greatly increase the
administrative work to set up the assignments. To address
this problem, we have developed an approach where the
same network topology can be given to different students,
but the IP address and hostname assignments to these net-
work nodes can be randomized at boot time. As a result,
the work of the course staff remains the same as if they were
setting up one network for all students, but the students
will not be able to easily copy the assignments.

The randomization feature is also built into boot scripts
(and is hence specific to guest OS), and hence can be used
to randomize network services run by different hosts.

V. Sample Assignments

This section describes a few sample assignments that
have been used successfully in the V-NetLab.

A. Configuring a Network

This assignment is designed to introduce students to set-
ting up networks, routing tables, and a few network servers.

Applications Policies

SSH
Allow ssh from internal network to any remote SSH server.
Allow ssh from remote clients to internal firewall.

FTP Allow ftp clients in the internal network to access external servers.

HTTP
Allow internal hosts to access external web servers.
Allow public access to web server on DMZ.

DNS Allow DNS request from any machine to DNS server available on DMZ.

Fig. 4. Sample Firewall Policies Corresponding to Topology in Figure 3.

We used the network shown in Figure 3. When network is
started, VM consoles will be tunneled through ssh and ap-
pear on user’s screen. A screen shot of the virtual network
is shown in Figure 3, where each window corresponds to
a VM. The students were asked to set up routing tables
on the firewall, DMZ and internal machines. In addition,
they were asked to configure NFS. Other possibilities in-
clude configuration of alternative services such as DNS and
HTTP.

B. Firewall Configuration

In this assignment, students were given the virtual net-
work of six VMs shown in Figure 3. Students used the
IPtables software on Linux to construct firewall rules. In
this exercise, students learned to setup stateful as well as
stateless firewall rules using IPtables, with the goal of en-
forcing a specified high-level security policy. Sample poli-
cies for the network of Figure 3 are shown in Figure 4. The
students need to configure the firewalls and then carry out
tests to verify that the specified high level policy is being
enforced.

C. Network Discovery and Surveillance

In this assignments, students are given console access to
one or two hosts on an unspecified virtual network, and
asked to discover the rest of the hosts on the network, and
identify the network topology. To ease their task, the stu-
dents were given additional information such as the range
of subnetwork addresses and the total number of hosts on
the network. They use tools such as ping, traceroute and
nmap for network discovery.

The surveillance part of this assignment dealt with ana-
lyzing network activity using tcpdump. Students learn and
use various options of the tcpdump tool to zoom in on the
traffic of interest to them, and discover what is going on
in the network. In particular, they were asked to identify
the services running in the network, the hosts involved in
the services, and provide some details of the service such
as the contents of the most common request from a client
to a server.

D. Network Intrusion Detection

In this project, students experimented with the open-
source intrusion detection tool snort. The experiment con-

sists of configuring snort on one of the VMs of the network,
launching different types of attacks and analyzing the re-
sults. The students were asked to write a critique of the
tool that addresses aspects such as the ease of setting up
and using the tool, understanding and/or creating signa-
tures, analyzing the quality of selected signatures available
on the Internet, and developing evasion attacks.

VI. Related Work

A number of previous works have addressed the prob-
lem of providing safe and convenient administrative ac-
cess to individual hosts. Such access is required in OS
courses, as well as security courses. They allow students
to experiment with building custom OS kernels or kernel
modules, as well as experiment with server configuration
and administration. These experiments require support
for booting systems from a customized disk image, and
providing console access to users of these systems. Mayo
and Kearns [2] describe a laboratory for advanced under-
graduate and graduate students that provides automated
support for copying disk images (stored in files on an NFS
server) into hard drives of dedicated client machines, and
booting these clients. With the advent of low-cost virtual
machines such as VMware and User-Mode Linux, focus has
shifted to using virtual machines, rather than dealing with
copying hard disks. For instance, Yasinac et al. [3] suggest
this approach for simplifying the setup of machines for se-
curity experiments. The IWAR lab [4] uses a combined
approach, using virtual machines as well as dedicated PCs.

Although the above approaches have simplified the
preparation and setup of individual hosts for security ex-
periments, creation of entire networks is still a cumbersome
task. This can be particularly problematic for experiments
involving large networks. Planetlab [5] is a distributed
laboratory that provides convenient management tools to
start up and/or control a large collection of hosts that run
identical software. Emulab [6] is another similar approach
that provides such facilities. Emulab supports light-weight
virtualization, based on FreeBSD Jails, but this approach
does not provide the degree of flexibility needed for our ap-
proach, where computers running different OSes may need
to be hosted on the same physical machine. An alternative
mode supported in Emulab is one where physical nodes on
the testbed can be dedicated to run a custom OS image.

This approach provides the desired degree of flexibility to
support security course assignments, but does not allow
sharing of underlying hardware across multiple OSes.

In contrast to these approaches, our work provides an
approach that combines flexibility and versatility with low
hardware and administration/management costs.

VNET [7] and VIOLIN [8] have some similarity with our
work in that they also use virtual networks. VNET is con-
cerned with distributed computing applications, and their
virtual networks span a wide-area network. Their approach
is based on tunneling Ethernet packets over TCP/IP. VIO-
LIN uses an application-level virtual network architecture
built on top of an overlay infrastructure such as Planetlab.
They use UDP tunneling in the Internet domain to emulate
the physical layer in the VIOLIN domain.

In contrast with VNET and VIOLIN, our approach
achieves network virtualization at the Ethernet layer. This
provides better performance, as it eliminates the need for
higher layers of the protocol (such as TCP, UDP or IP)
from having to process the same packet twice. Moreover,
our approach provides accurate reproduction of hubs in an
efficient way. Finally, our approach allows for easy and
unlimited replication of identical virtual networks so that
essentially the same environment can be given to all stu-
dents in a class. In this aspect, our approach differs from
all of the previous works discussed in this section.

VII. Conclusion and Future Work

V-NetLab provides a platform to experiment in a net-
worked environment similar to that of a physical network.
Our approach relies on the concept of virtualization. In
particular, we use virtual machines to create arbitrary net-
works on the fly. It involves minimal management over-
head and is very cost effective. With a single network con-
figuration file, we can create as many virtual networks as
supported by the host machines. All the virtual networks
are totally isolated from each other — one network cannot
sense the existence of other networks. Lastly, our approach
is scalable in the context of course projects, i.e. by adding
hosts we can support more virtual networks.

So far, we have used it in a graduate as well as under-
graduate course in network security, with the sample as-
signments described earlier in the paper. In an informal
survey after the course, students have expressed very pos-
itive views of V-NetLab. They were able to access it from
both campus and home using a high bandwidth network
connection such as the campus LAN, DSL, and Cable.

Presently, we use virtual machine software from VMware
Inc. in our system. In the near future, we plan to experi-
ment with lower-cost alternatives such as User-mode Linux.
We are also working on mapping algorithm that overlays
virtual networks over physical workstations to make it more
flexible and scalable.

References

[1] “Vmware.” http://www.vmware.com/.
[2] J. Mayo and P. Kearns, “A secure unrestricted advanced systems

laboratory,” in SIGCSE ’99: The proceedings of the thirtieth
SIGCSE technical symposium on Computer science education,
pp. 165–169, ACM Press, 1999.

[3] A. Yasinsac, J. Frazier, and M. Bogdanov, “Developing an aca-
demic security laboratory,” in NCISSE ’02: 6th National Collo-
quium for Information System Security Education, 2002.

[4] S. D. Lathrop, G. J. Conti, D. J. Ragsdale, and W. Schepens,
“Information warfare in the trenches: Experiences from the fir-
ing range,” in WISE3: 3rd World Conference on Information
Security Education, 2002.

[5] “Planetlab.” http://www.planet-lab.org/.
[6] “Emulab.” http://www.emulab.net/.
[7] A. I. Sundaraj and P. A. Dinda, “Towards virtual networks for

virtual machine grid computing,” in USENIX-VM ’04: 3rd Vir-
tual Machine Research and Technology Symposium, pp. 177–190,
2004.

[8] X. Jiang and D. Xu, “Violin: Virtual internetworking on over-
lay infrastructure,” in International Symposium on Parallel and
Distributed Processing and Applications (ISPA) 2004, 2004.

