
Model-Carrying Code (MCC):
A New Paradigm for Mobile-Code Security∗

[Extended Abstract]

R. Sekar, C.R. Ramakrishnan, I.V. Ramakrishnan and S.A. Smolka
Department of Computer Science
SUNY at Stony Brook, NY 11794

{sekar,cram,ram,sas}@cs.sunysb.edu

ABSTRACT
A new approach for ensuring the security of mobile code is
proposed. Our approach enables a mobile-code consumer
to understand and formally reason about what a piece of
mobile code can do; check if the actions of the code are
compatible with his/her security policies; and, if so, execute
the code. The compatibility-checking process is automated,
but if there are conflicts, consumers have the opportunity
to refine their policies, taking into account the functionality
provided by the mobile code. Finally, when the code is ex-
ecuted, our framework uses runtime-monitoring techniques
to ensure that the code does not violate the consumer’s (re-
fined) policies.

At the heart of our method, which we call model-carrying
code (MCC), is the idea that a piece of mobile code comes
equipped with an expressive yet concise model of the code’s
(security-relevant) behavior. The generation of such mod-
els can be automated. MCC enjoys several advantages over
current approaches to mobile-code security. Succinctly put,
it protects consumers of mobile code from malicious or faulty
code without unduly restricting the code’s functionality. More-
over, the MCC approach is applicable to the vast majority of
code that exists today, which is written in C or C++. This
contrasts with previous approaches such as Java 2 security
and proof-carrying code, which are either language-specific
or are limited to type-safe languages. Finally, MCC can
be combined with existing techniques such as cryptographic
signing and proof-carrying code to yield additional benefits.

General Terms
Security, Information assurance

∗This research is supported in part by a ONR University Re-
search Initiative grant N000140110967, and NSF grants EIS-
9705998, CCR-9876242, IIS-0072927 and CCR-0098154.

Keywords
Mobile code security

1. INTRODUCTION
Mobile code has become an integral part of the Internet. It
appears in many forms, such as “active pages” (e.g. pages
with Java, Javascript, VBScript, or ActiveX content), con-
tent that invokes plug-ins or helper applications (e.g. Word,
Excel, Postscript and Powerpoint documents or email at-
tachments), or software that is explicitly downloaded from
a freeware or commercial site. Since mobile code gets ex-
ecuted with the privileges of the user who downloaded the
code (henceforth referred to as a consumer of the mobile
code), the risk of damage due to malicious or faulty mobile
code is very high. In this paper, we are concerned only with
the risk to the code consumer, and do not address the issue
of risks to the producer due to a (malicious) consumer.

1.1 State-of-the-Art in Mobile Code Security
Many of the techniques currently deployed in computer se-
curity are not effective when it comes to mobile code. Ap-
proaches such as sand-boxing can provide security, but only
at the cost of unduly restricting the functionality of mobile
code (e.g., the code is not permitted to access any files).
Cryptographic code-signing can certify the origin (i.e., the
producer) of mobile code and its integrity, but does not ad-
dress the fundamental risk inherent to mobile code, which
relates to mobile code behavior. This leaves the consumer
vulnerable to damage due to faulty code (if the producer
can be trusted), or malicious code (if the producer cannot
be trusted).

To address these inadequacies, several new approaches have
recently been developed to tackle mobile-code security. The
Proof-carrying code (PCC) approach [12] enables safe exe-
cution of code from untrusted sources by requiring a pro-
ducer to furnish a proof regarding the safety of mobile code.
A consumer can mechanically check the correctness of this
proof, and execute the code only if the proof is correct. The
main practical impediment in using this approach is the dif-
ficulty of developing proofs, especially when they have to
be machine-checkable, and moreover, operate on a binary
representation of code. Therefore, they propose that such
proofs be automatically generated by a compiler from the
source code representation of the code [13]. While auto-
matic generation of proofs is possible for simple properties



such as memory safety, automatic proof generation for more
complex properties is a daunting problem. Apart from this
practical difficulty, there is a more fundamental difficulty
with PCC: since the producer needs to send the safety proof
together with the mobile code, the PCC approach assumes
that the code producer knows all the security policies that are
of interest to consumers. We believe that this is an unrealis-
tic assumption, since security needs vary considerably across
different consumers and their operating environments.

Whereas PCC places the burden on the producer to iden-
tify and prove safety properties of interest to consumers,
the Java security model [5] shifts the burden entirely to the
consumer side. Specifically, Java 2 provides an access con-
trol mechanism that can limit resource access based on the
identity of the code producer, and possibly the identity of
code consumer [10]. However, the policies themselves are
decided solely by the code consumer without any involve-
ment of the producer. Thus, this model assumes that the
consumer can determine the access requirements of a mobile
application based on its origin, even without any knowledge
about the application. This assumption either leads to an un-
due restriction in functionality of the mobile code, or leads
to a situation where some applications are given more ac-
cess than what they need. For example, a consumer would
clearly be willing to allow a data-visualization program to
read the (possibly sensitive) files containing the data to be
visualized. On the other hand, the consumer would be un-
willing to let a different program, such as one that collects
customer feedback using a form and sends it back to the
code producer, to read such files.

1.2 Need for New Approach
The main difficulty with existing approaches is that neither
the producer nor the consumer can unilaterally determine
the security needs of a mobile program. A producer of mo-
bile code cannot anticipate the security requirements of the
consumer, since each consumer may have his/her own se-
curity requirements and policies. Similarly, the consumer
cannot anticipate the access needs of a piece of mobile code
as these will depend on the functionality of the code and on
how it is implemented.

An ideal mobile-code security framework would enable a
consumer to formally reason about the security-relevant ac-
tions of a piece of mobile code; check if these actions are
compatible with his/her security policies; and, if so, execute
the code. The compatibility-checking process would be au-
tomated, but if there are conflicts, consumers would have
the opportunity to refine their policies, taking into account
the functionality provided by the mobile code. Finally, when
the code is executed, the framework would assure that the
code does not violate the consumer’s (refined) policies. We
propose a new approach, called model-carrying code (MCC),
that seeks this ideal.

MCC is not proposed as an alternative to techniques such
as PCC or Java security. Rather, MCC fills a void that
is not addressed by previous approaches. It enables both
the consumer and producer to coordinate in determining
the security needs of mobile code. Techniques such as PCC
are currently limited to low-level security properties such as
memory safety, and the MCC framework can continue to

exploit PCC for establishing such properties.

2. OVERVIEW OF APPROACH
The key idea in our approach is the introduction of program
behavioral models to bridge the semantic gap between (very
low-level) binary code and high-level security policies. These
models capture security-related properties of the code, but
do not capture aspects of the code that pertain to its func-
tional correctness. These models are then sent by the code
producer to the code consumer, together with the program
(mobile code). Since these models are much less complex
than programs1, it is feasible for a consumer to mechani-
cally determine whether a model conforms to security poli-
cies of interest. Based on the outcome of this check and
the intended functionality of the code, the consumer can
then refine his/her security policies and retry. Moreover,
the producers no longer have to know or guess the security
policies of interest to consumers. Instead, they provide mod-
els of security-relevant program behaviors that can be used
to reason about most security properties of interest to any
consumer. The models themselves may be developed either
manually, or by using automated techniques that operate on
programs.

The use of models enables us to decompose the security-
assurance argument into two parts:

• policy conformance: check whether the model con-
forms to the policy

• model soundness: check if the model represents a safe
approximation of program behavior. Our notion of
soundness will be based on the particular execution of
the program that takes place at a consumer site, rather
than being based on all possible executions.

Note that the second part is necessary because the consumer
does not necessarily trust a producer. In particular, the
producer may provide an incorrect model (i.e., a model that
does not correspond to the security-relevant behavior of mo-
bile code) either due to malice, or due to errors in the model
generation process.2

The above decomposition of security assurance argument
broadens the choice of techniques that can be used to assure
security. For instance, a consumer may rely on formal ver-
ification to assure policy conformance. Models being much
simpler than programs, such automated verification is feasi-
ble. For establishing model soundness, a consumer may rely
on one of the following techniques:

• runtime-checking: the consumer can monitor execu-
tion of the mobile code, and affirm that its behavior is

1For instance, our model for a large program such as the
Washington University FTP server, contains about 200
states, as compared to the source code size of several thou-
sands of lines.
2Such errors may arise due to human error or bugs in an
automated procedure for model extraction. They may also
occur because the environment in which the code is run may
differ between the producer and consumer, thereby mani-
festing behaviors at the consumer that are different from
behaviors observed/expected by the producer.



Run-time
Monitor

Producer

Consumer

Enforcement
Model

Conflict
Feedback

Consistency
ResolverGenerator

Model

Mobile

Model

Code

Consumer-sideProducer-side

Policy

Figure 1: The Model-Carrying Code Framework

consistent with the model. Efficient runtime checking
is feasible when policies are specified in terms of ex-
ternally observable events, such as system calls made
by a program to access OS resources [19].

• model-signing: the code and the model may be crypto-
graphically signed by the producer to ensure their au-
thenticity and integrity. The consumer may then trust
the producer’s representation that the model is sound.
Although such model-signing bears some similarity to
code-signing, there is an important difference. The
notion of trust is much more clearly defined and nar-
rower in the case of signed models: that the consumer
trusts the producer to provide a model that faithfully
captures the security-relevant actions of the code.

• proof-carrying code: a producer may provide a formal,
machine-checkable proof that the model is sound. This
proof can be checked by a consumer before the model
is accepted as being accurate.

Of these techniques, the first and third allow a consumer to
accept and execute code from untrusted producers, while the
second technique works only with producers that are trusted
by the consumer. A combination of these techniques may
also be used.3

Figure 1 illustrates our approach. In the figure, the model
generator is responsible for generating a model of security-

3We note that some classes of properties are more easily
supported using one of these techniques as compared to an-
other. For instance, runtime-checking can easily support
properties involving resource usage (e.g., CPU time used),
whereas model-signing and possibly PCC approaches can
provide better support for information flow properties. We
also note that resource usage policies cannot be verified at
the consistency resolution stage, but can be easily enforced
at runtime.

relevant behavior of the program. Such a model would cap-
ture all of the security-relevant operations made by the pro-
gram, as well as the temporal relationships between these
operations. The model may also capture information flows
in the program, although this aspect is not explored further
in this paper. Both the code and the model are then sent
to the consumer side, where a consistency resolver checks
whether the model conforms to security policies selected by
the consumer. When a model does not conform to a policy,
the consistency resolver generates a “difference” between the
model and security policy, which will then be presented to
the consumer for further resolution, as shown in the “conflict
feedback” loop in the figure. Alternatively, this difference
may be combined with the model to produce an enforce-
ment model that is given to the runtime monitor. The run-
time monitor is responsible for confining the execution of
mobile code so that it conforms to the enforcement model.
At the first instance when the program deviates from the
model, it may be terminated. Alternatively, the consumer
may be prompted about the deviation, and queried whether
the deviation is to be permitted. The runtime monitor may
provide recovery capabilities to undo the effects of partial
execution of the mobile code.

We expect the runtime enforcement to be a deterrent mech-
anism against attacks where a producer supplies an invalid
model. Knowing that such attacks would be thwarted dur-
ing the execution of mobile code, attackers would look to-
wards other ways to attack a consumer. This means that
in practice, models would be sound, and hence the primary
decision point for acceptability of mobile code is the consis-
tency resolver.

3. AN EXAMPLE SCENARIO
Consider the mobile application webstat, a freeware pro-
gram that is obtained from an untrusted source. webstat

gathers and presents usage statistics from Web-server log



local_read(icon file) remote_read(icon file)

! exists(icon file)

local_read(config files)

exists(icon file)

local_read(log file)

Figure 2: Model of webstat

files. For displaying the results, it downloads platform-
dependent icons and/or plugins over the network. In the
rest of this example, we assume that the security policies
of the consumer are defined on a site-wide basis, and hence
refer to “site policies” as opposed to “consumer’s policies.”

The consumer site considers the contents of Web-server log
files to be private and wants to protect them from being
exported. In our example, this security requirement is ini-
tially stated as policies that classify mobile applications as
file-only or communication-only. File-only applications can
read all files but have no network access, and are very limited
in terms of write operations on files. Communication-only
applications have network access but cannot access any files.

In the MCC approach, the code for webstat comes equipped
with a behavior model. In our example, the model is the
automaton shown in Figure 2. The model is expressed as an
extended finite-state automaton (EFSA), i.e. a finite-state
automaton whose states are annotated with data variables
and values, and whose transitions are annotated with events
and conditions on event arguments. The model in the figure
is an abstract version of the producer-supplied model. The
full model is given in terms of lower-level events such as
system calls, and also has transitions on other events such
as writes to temporary files. We have chosen to present
an abstract, high-level version of the model to simplify our
presentation.

Clearly, webstat is neither a file-only nor a communication-
only application, and hence violates the security policies.
The consistency resolver detects this violation and informs
the consumer that a violation of the policy arises due to the
fact that webstat makes a network access. The consumer,
at this point, has the option of getting further information
from the consistency resolver regarding the conflict, such as
a complete scenario that illustrates the conflict. This in-
formation can be used to revise the policy. A less sophisti-
cated consumer may choose to rely on a hierarchy of security
policies that have been pre-defined by a local security ad-
ministrator to aid in policy refinement. Suppose that this
hierarchy provides several refinements to the “file-only” pol-
icy, one of which is no access to security-critical files, and no
external network access after read from sensitive files. Note
that the revised policy reduces access to certain operations
(e.g. reads on security-critical files), while increasing access
to certain other operations (e.g. send operations over the
network).

Also, in the revised policy, the notions of which files are con-
sidered sensitive (or security-critical), and which hosts are
considered external, is site-specific. In this case, the Web-
server log files are considered sensitive, while a file that con-
tains access permissions for remote access
(e.g. /etc/hosts.deny) may be considered security-critical.
In addition, the revised policy illustrates the ability of our
approach to capture temporal behavior. Our language for
representing security policies will also be based on EFSA,
but this automaton will typically operate over higher level
events (e.g., “read from sensitive files”) than those used in
the model EFSA. Each high-level event will itself be defined
in terms of an EFSA on low-level events such as system
calls, and hence it is possible to translate the policy EFSA
into one that operates on low-level events used in the model
EFSA.

The model of webstat satisfies the refined policy and hence
webstat can be run. In general, however, the consistency
resolver may be able to prove the property only with ad-
ditional constraints on the producer-supplied model. For
instance, the producer supplied model may suggest that the
program may read arbitrary files from the /var/log/ direc-
tory, while the security policy may allow only reads from the
/var/log/httpd directory. In this case, the consistency re-
solver would indicate that the model satisfies the policy, pro-
vided the file accesses are restricted to
/var/log/httpd directory. In the worst case, the consis-
tency resolver may not be able to verify the policy at all.
In either case, the consumer may wish to run the code. In
order to make sure that the code cannot violate the secu-
rity policy, the consistency resolver generates an enforce-
ment model, which captures behaviors that are permitted
by the producer-supplied model as well as by the consumer-
selected security policy. By monitoring runtime behavior
using the enforcement model, we can ensure that a run of
the code cannot violate the consumer’s security policy.

3.1 Features of the MCC Framework
As illustrated in Figure 3, the model-based approach en-
forces security in three steps: (1) by verifying that the model
of the mobile code satisfies the security policies, (2) by gen-
erating an enforcement model as a result of the verification
run, and (3) by ensuring that a run of the code conforms
to the enforcement model. The satisfaction relation, repre-
sented in the figure as “|=”, means that every run of the
model is consistent with the policy. The conformance rela-
tion which talks only about particular runs of the code is
represented in the figure as “⇒”. A more direct approach is
to ensure, by runtime monitoring, that a run of the mobile
code conforms to security policies. Several key advantages of
MCC over existing technology as well as a direct-monitoring
approach, are apparent from the above scenario.

• A mobile application such as webstat cannot be se-
curely run using current technology. For instance,
proof-carrying code is not applicable since the prop-
erty to be proved is site specific (e.g. what are sensitive
files?); hence the proof cannot be provided by a pro-
ducer oblivious to the consumer’s requirements. The
Java security architecture, as well as a number of other
proposals on mobile-code and mobile-agent security,



Mobile
Code

Generator
Model

Model

Enforcement
Model

Enforcement
Model

Enforcement
Model

Consistency

Policy

Monitor
Run-time

Resolver PolicyModel

Model
Policy

Code

Code

Policy

run(

run(

)

)

Figure 3: Logical view of the Model-Carrying Code Framework

are based on a refinement of traditional access-control
mechanisms. They cannot express the temporal as-
pects of permissions (e.g. no network access after read
from. . .). Moreover, the access-control decisions are
made based on the wishes of the code producer and
consumer, with no regard for the functionality pro-
vided by the mobile code.

• If runtime monitoring is used as the sole means of en-
suring security, an application must be run “in iso-
lation” so that its effects are observable to the out-
side only when its execution satisfies the security poli-
cies. Isolation, rollback, and commitment are difficult
to achieve when applications communicate with the
external world.

• The feedback offered by the model-based approach is
crucial for refining security policies. It should be noted
that security policies may be refined in different ways,
depending on the application at hand. For instance,
the same site in the above scenario may want to run
a SATAN-like application to look for system vulner-
abilities. For such applications, it is conceivable that
the policy to be enforced would allow read access to
the entire file system, but disallow writes of any kind
except to the screen and/or to a specific output log
file.

4. REALIZING MCC
In this section, we outline our technical approach for real-
izing each of the components of the MCC framework. A
comprehensive treatment of each of these areas is outside
the scope of this paper. What we attempt here is to try
to convince the reader that each of the components can be
realized.

The starting point for model-carrying code is our work on
specification-based intrusion detection [1, 19]. This approach
is based on specifying security-relevant behavior of programs
in a high-level language called Behavior Monitoring Specifi-
cation Language (BMSL). We model behaviors of programs
in terms of systems calls made during execution. At run-
time, the execution of these programs is monitored, and any
deviations from specified behavior are flagged as intrusion
efforts. Since system calls can be observed externally from
a program, the approach can be used for COTS software

without modification. Our research to date has shown that
(a) BMSL enables convenient and concise specification of
security-relevant program behaviors, and (b) runtime mon-
itoring can be performed with very low overheads (5% or
less) [1, 19]. Many of the techniques described for realizing
the different components of MCC are based on this research.

4.1 Modeling Language
As described in the example, we use extended finite-state
automata (EFSA) to represent program models [19]. EFSA
are simply standard finite state automaton (FSA) that are
augmented with the ability to store values in a fixed number
of state variables, each capable of storing values over a finite
or infinite domain. The state of the EFSA is thus charac-
terized by its control state (which has the same meaning as
the notion of “state” in the case of FSA), plus the values
of these state variables. (Henceforth, the term state will
be used to refer to the control state of an EFSA.) Transi-
tions in the EFSA are each associated with an event, an
enabling condition involving the event arguments and state
variables, and a set of assignments to state variables. For
a transition to be taken, the associated event must occur
and the enabling condition must hold. When the transition
is taken, the assignments associated with the transition are
performed.

The event alphabet of the EFSA will consist of system-call
names. Since all access to resources is mediated by the
operating system, and all applications obtain resource ac-
cess through the operating system’s system-call interface,
expressing security-relevant behaviors in terms of system
call sequences is a good choice. This hypothesis has been
validated by many research efforts in intrusion detection,
including our own.

While system calls are a natural choice for the event alpha-
bet, this choice does not preclude other possibilities. For
instance, in the context of Java, we may choose to model
security-relevant behaviors in terms of higher-level opera-
tions, such as those that operate on I/O streams. Even
within the context of programs written in C, one may choose
to represent security properties in terms of operations on a
higher-level API, such as the functions defined in libc.

Note that regular expressions, FSA, or ω-automata based
approaches [15] can also express behaviors in terms of system-



call sequences. However, they lack the power to refer to
system call arguments, e.g., they cannot capture the differ-
ence between the opening of a file in the /tmp directory or
the opening of the password file. In contrast, EFSA can
represent such distinctions. They can also represent prop-
erties that require system-call arguments used in the past,
e.g., a program opens a file whose name was provided as
a command-line argument (i.e., as an argument to an exec

system call executed in the past).

4.2 Security Policies
Security policies will also be represented using EFSA. The
primary difference between security policies and models is
the alphabet over which they operate. Security policies will
refer to much higher-level events than models, which would
enable consumers to describe their policies at a higher level
of abstraction than system calls. Moreover, the policies will
be parameterized, so as to accommodate site-specific cus-
tomization via instantiation of these parameters. For in-
stance, we intend to capture a concept such as “read from
a sensitive file” as a high-level event. This event is parame-
terized with respect to the set SF of sensitive files.

4.3 Runtime Monitoring
Runtime monitoring consists of intercepting security-relevant
events, and matching them against models of expected be-
havior of mobile code. We have previously developed a sys-
tem for runtime monitoring that operates on EFSA models
and takes system calls as input [19, 1]. Our experiments
show that runtime monitoring can be performed very effi-
ciently, adding less than a 5% overhead to the execution
time of most programs. We expect to be able to use this
system for runtime monitoring for MCC.

Note that even if a program does not deviate from its model,
it may still not have performed the computation expected by
the user. For instance, a malicious program purporting to
do file compression may remove its input file without pro-
ducing a useful compressed file output. To deal with this
problem, we can isolate the operations of mobile code in an
environment where no other program can view the results
of its computation. (If the mobile code executes as multiple
processes, the unit of isolation includes all such processes.)
After the mobile code completes execution, the user may
check that the program performed as expected, and then
commit the changes made by the code so that they are vis-
ible to the rest of the system. Clearly, such isolation may
not always possible, e.g., the mobile code may communi-
cate with remote sites. But for the more common case of
removing or updating files, such isolation is achievable by
intercepting system calls that open a file for writing and
transparently redirecting that operation to a different file.

Although our existing runtime monitoring system operates
on system calls, our approach is by no means restricted by
this. It is relatively easy, for instance, to develop runtime
monitoring techniques for Java programs by adding hooks
into the JVM to intercept arbitrary function calls made by
Java programs and feeding them into a monitor. Alterna-
tively, the monitor could be used to replace the security-
management related classes within the JVM.

4.4 Model Generation

Observe that model generation process has to balance the
conflicting requirements of ease of consistency resolution
(which argues in favor of “throwing away” as much infor-
mation from the programs as possible) and the danger of
leaving out information of interest to a consumer (which ar-
gues in favor of retaining as much information in the model
as possible). We propose a trade-off that captures most of
the security-relevant information of interest to consumers,
while still being amenable to automated verification. We
propose to express models of program behavior using (non-
deterministic) EFSA. One way to generate such models is
to abstract the source code of a program so as to retain only
those portions that relate to system calls made by the pro-
gram. An approach for deriving finite-state models using
program analysis is described in [20], where these models
are used for intrusion detection.

A drawback of approaches based on static analysis is that
they are language-specific, thus necessitating redevelopment
for each programming language. Moreover, for conventional
languages such as C and C++, this approach suffers from
the fact that we may not have source code access to libraries,
especially those that are loaded dynamically. Finally, ex-
tending the approach to produce EFSA models (rather than
FSA models) that can capture relationships between system
call arguments is very difficult, due to limitations of pro-
gram analysis. Therefore, we consider an approach based on
machine-learning to be a more promising alternative. This
approach has the additional benefit that it is obtained by
observing the execution of a program under typical condi-
tions, and as such, can be more accurate than compile-time
techniques.4

We have already developed an approach for learning pro-
gram behaviors as finite-state machines in the context of
our previous work on anomaly intrusion detection [18]. Our
approach generates compact models (containing a few to
several hundred states, even for complex programs such as
FTP and Apache web server). A limitation of our current
approach is that it does not capture system-call argument
values. An extension of our technique to address this limi-
tation is currently under way.

4.5 Consistency Resolution
As described in the example, the consistency resolver is con-
cerned with (a) verifying whether a model satisfies a policy,
and (b) presenting the “difference” between them to the
user, and help him/her refine the policy as appropriate. In
this section, we concern ourselves only with (a). A possible
technique to simplify user choices in (b) using a policy hi-
erarchy was outlined in the example, but we do not discuss
this any further in this section.

We rely on formal verification to determine whether a model
satisfies a policy. Our techniques will be based on model-

4It must be noted, however, that the models learnt by run-
time monitoring are not conservative. Thus, even if the
model of a program satisfies a security policy, the program
may in fact violate the policy. However, this factor does
not negate the safety guarantees provided by the MCC ap-
proach. Through runtime monitoring, we would discover
that the program is exhibiting behaviors inconsistent with
the model, and abort it.



checking [2], a popular technique, originally proposed for
verifying temporal properties of finite-state systems. Since
the policies as well as the models are captured in the form of
state machines, our techniques will draw on the automata-
theoretic formulation of model-checking [9].

If M denotes the model of a mobile program, and P de-
notes a security policy, then verification amounts to check-
ing if M ⇒ P . Noting that M and P are represented as
state machines, we can think of the languages L(M) and
L(P ) accepted by these machines. Now, implication check-
ing amounts to determining whether L(M)∩L(P )′ is empty.
(Here, L(P )′ denotes the complement of the language L(P ).)
Note, however, that we are interested in the “difference” be-
tween P and M , as we wish to present this information to
a user as part of conflict resolution. This difference is given
by L(M)∩L(P )′, so we will simply present this to the user.
We discuss the computation of this difference below.

IfM and P are represented using FSA (rather than EFSA),
then operations such as intersection and complementation
are straightforward. In the case of EFSA, we face the prob-
lem that such complementation and intersection problems
may be undecidable in general. We tackle this problem in
two steps. For complementation, we note that the security
properties of interest are usually safety properties, which are
of the form that “certain bad things do not happen.” (In
the example, we considered the property “a network write
operation does not occur after a read of a sensitive file.”) It
is thus easier for users to specify an EFSA corresponding to
the occurrence of the “bad thing” and state that this should
not happen. Such an EFSA directly captures the negation
of the property we require, and hence complementation is
no longer an issue.

To tackle the problem posed by intersection of EFSA, we
make use of the following approach. We simply use the
standard FSA intersection algorithm on EFSA. Let M and
P ′ be the two EFSA corresponding to the model and the
complement of the security policy respectively. The EFSA
D corresponding to their intersection is constructed as fol-
lows. The state variables of D consist of the union of state
variables for M and P ′. The initial state of D is the state
(mi, p

′

i), where mi and p′

i are the initial states of M and
P ′ respectively. Now, we add new states and transitions to
D as follows. For each state (s1, s2) in D such that there
exists a transition on an event e from a state s1 to s3 of M

and s2 to s4 of P ′, we add the state (s3, s4) to D (if this
state is not already there). We also create a transition from
(s1, s2) to (s3, s4) on e whose enabling condition is the con-
junction of the corresponding enabling conditions in M and
P ′. The assignment operations associated with this transi-
tion are simply the union of the assignment operations on
the corresponding transitions in M and P ′.

The catch with this simple algorithm is that it may gen-
erate an EFSA that contains unrealizable paths. Thus, we
may not be able to tell whether D accepts a nonempty lan-
guage or not. At this point, we do not know whether this
is a problem that is likely to be encountered frequently. For
instance, this problem does not occur in several examples
we have studied to date, including the one presented in this
paper. When it does occur, the downside will be that the

user is given the impression that the mobile code may vio-
late a security policy when it does not. Clearly, this is much
less serious than the case when a user is told that a model
does not violate his/her policy when it does. Even so, we
are currently investigating techniques to minimize such in-
stances, by pruning away paths in D that are unrealizable.
This research is based on our current work in infinite-state
model checking.

5. IMPLEMENTATION STATUS
Of the components mentioned in the previous section, we al-
ready have prototype implementations of (a) the languages
for expressing security policies and program models, (b) run-
time monitoring, and (c) model generation. These imple-
mentations were taken from our previous research in intru-
sion detection [19, 7, 1, 18].

We have only recently begun the implementation of the con-
sistency resolver, using our XMCmodel-checker [3, 16] based
on the XSB system [21, 14]. So far, we have succeeded in
verifying security properties for simple examples, such as the
one described in this paper. We do not envision any prob-
lems scaling these results to larger examples, as the runtimes
are adequate (in the range of tens to hundreds of millisec-
onds in our initial prototype), and because the algorithms
in use are designed to provide good performance, possibly
at the cost of being approximate.

We have also prototyped an implementation of the conflict
resolver, where the technical problem is one of presenting
the conflicts identified by the verifier in a user-friendly form.
Our prototype is based on our earlier research in proof jus-
tification [17].

6. SUMMARY
In this paper, we presented a new approach that promises to
lead to a comprehensive solution to the problem of mobile-
code security, providing the following features:

• Support for mobile code from untrusted sources. The
ability to enforce behaviors at runtime enables safe
execution of code from untrusted sources. The run-
time monitor can provide isolation capability so that
changes made by a mobile application can be undone
in the event of a policy violation, provided the appli-
cation does not communicate with other applications
or sites.

• Secure mobile code “here and now.” PCC technol-
ogy appears to be still far away from universal deploy-
ment, mainly due to source-language restrictions and
the classes of properties that can be verified automati-
cally. Java security is not applicable to the vast major-
ity of mobile code that is written in other languages.
In contrast, our approach is directly applicable to ex-
isting mobile code. Even in the absence of models from
the producer, we can ensure security by enforcing the
policies on the code directly at runtime.

• Expressive language for specifying consumer security
policies. Our approach provides a high-level language
in which security policies can be expressed concisely
and conveniently. The language is expressive enough



to specify not only invariant properties, but also tem-
poral properties such as “mobile code can overwrite
or delete only those files it created previously,” and
“no operations to send data over a network are per-
mitted after read operations on certain sensitive files.”
Such policies, which rely on sequencing relationships
between different operations, cannot be expressed in
existing frameworks for mobile code security such as
Java.

• Synergy with existing approaches. As mentioned be-
fore, our approach can be combined with existing ap-
proaches such as cryptographic signing (for authentic-
ity and integrity), and proof carrying code. With such
combination, the role of runtime monitoring may be
superceded by these mechanisms. The elimination of
runtime checks can improve performance, but perhaps
more importantly, will allow our approach to deal with
properties that cannot be efficiently checked by moni-
toring security-relevant operations, e.g., properties re-
lating to information flow. (Such properties would re-
quire us to reason about every assignment in the pro-
gram.)

These capabilities are achieved in our approach without plac-
ing an undue burden on either the code producer or the
consumer.

7. REFERENCES
[1] R Bowen, D Chee, M Segal, R Sekar, P Uppuluri,
and T Shanbag. Building survivable systems: An
integrated approach based on intrusion detection
and confinement. In DARPA Information Security
Symposium, 2000.

[2] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
TOPLAS, 8(2), 1986.

[3] B. Cui, Y. Dong, X. Du, K. Narayan Kumar, C. R.
Ramakrishnan, I. V. Ramakrishnan,
A. Roychoudhury, S. A. Smolka, and D. S. Warren.
Logic programming and model checking. In Static
Analysis Symposium. Springer Verlag, 1998.

[4] S Forrest, S Hofmeyr, and A Somayaji. Intrusion
detection using sequences of system calls. Journal of
Computer Security, 1998.

[5] L Gong. Inside Java 2 Platform Security:
Architecture, API Design, and Implementation.
Addison-Wesley Pub Co, 1998.

[6] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Engineering,
23(5):279–295, May 1997.

[7] K Jain and R Sekar. User-level infrastructure for
system call int erposition: A platform for intrusion
detection and confinement. In ISOC Network and
Distributed System Security, 2000.

[8] C Ko, G Fink, and K Levitt. Automated detection
of vulnerabilities in privileged programs by

execution monitoring. In Computer Security
Application Conference, 1994.

[9] R Kurshan. Computer Aided Verification of
Coordinating Processes: The Automata-Theoretic
Approach. Princeton University Press, 1994.

[10] C. Lai, L. Gong, L. Koved, A. Nadalin, R. Schemers.
User Authentication And Authorization In The Java
Platform. Annual Computer Security Applications
Conference, 1999.

[11] R. Milner. Communication and Concurrency.
International Series in Computer Science. Prentice
Hall, 1989.

[12] G Necula. Proof carrying code. In ACM Principles
of Programming Languages, 1997.

[13] G Necula and P Lee. The design and implementation
of a certifying compiler. In Programming Languages
Design and Implementation, 1998.

[14] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V.
Ramakrishnan, S. A. Smolka, T. L. Swift, and D. S.
Warren. Efficient model checking using tabled
resolution. In Proceedings of the 9th International
Conference on Computer-Aided Verification
(CAV ’97), Haifa, Israel, July 1997. Springer-Verlag.

[15] F. Schneider, Enforceable Security Policies, ACM
Transactions on Information Systems Security, 3(1),
2000.

[16] C.R. Ramakrishnan, I.V. Ramakrishnan, S.A.
Smolka, Y. Dong, X. Du, A. Roychoudhury, and
V.N. Venkatakrishnan. XMC: A
logic-programming-based verification toolset. In
Computer Aided Verification (CAV), 2000.

[17] A. Roychoudhury, C. R. Ramakrishnan, and I. V.
Ramakrishnan. Justifying proofs using memo tables.
In ACM Conference on Principles and Practice of
Declarative Programming (PPDP), 2000.

[18] R. Sekar, M. Bendre, P. Bollineni and D. Dhurjati,
A Fast Automaton-Based Approach for Learning
Program Behaviors, IEEE Symposium on Security
and Privacy, 2001.

[19] R. Sekar and P. Uppuluri. Synthesizing fast
intrusion prevention/detection systems from
high-level specifications. In USENIX Security
Symposium, 1999.

[20] D. Wagner and D. Dean, Intrusion Detection via
Static Analysis, IEEE Symposium on Security and
Privacy, 2001.

[21] XSB. The XSB tabled logic programming system.
Available from http://xsb.sourceforge.net.


