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ABSTRACT
The ability to analyze and modify binaries is often very useful from
a security viewpoint. Security operations one would like to per-
form on binaries include the ability to extract models of program
behavior and insert inline reference monitors. Unfortunately, the
existing manner in which binary code is packaged prevents even
the simplest of analyses, such as distinguishing code from data,
from succeeding 100 percent of the time. In this paper, we propose
SELF, a security-enhanced ELF (Executable and Linking Format),
which is simply ELF with an extra section added. The extra sec-
tion contains information about (among other things) the address,
size, and alignment requirements of each code and static data item
in the program. This information is somewhat similar to traditional
debugging information, but contains additional information specif-
ically needed for binary analysis. It is also smaller, compatible
with optimization, and less likely to facilitate reverse engineering,
which we believe makes it practical for use with commercial soft-
ware products. SELF approach has three key benefits. First, the
information for the extra section is easy for compilers to provide,
so little work is required on behalf of compiler vendors. Second,
the extra section is ignored by default, so SELF binaries will run
perfectly on all systems, including ones not interested in leverag-
ing the extra information. Third, the extra section provides suffi-
cient information to perform many security-related operations on
the binary code. We believe SELF to be a practical approach, al-
lowing many security analyses to be performed while not requiring
major changes to the existing compiler infrastructure. An applica-
tion example of the utility of SELF to perform address obfuscation
(in which the addresses of all code and data items are randomized
to defeat memory-error exploits) is presented.

1. INTRODUCTION
Attacks which exploit programming errors, such as buffer overflow
and format-string attacks, are one of today’s most serious security
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threats. Security advisories from the CERT coordination center in-
dicate that such exploits constitute a majority of the attacks on the
Internet, and the number of these attacks continues to grow rapidly.
Several techniques have been developed to address the problem of
finding vulnerabilities in systems and ensuring the safe execution
thereof. We briefly describe the most common techniques below:

� Run time monitoring. In this approach, whenever an oper-
ation is performed, an interceptor is invoked which decides
whether the particular operation is safe or not. The intercep-
tor looks at the run-time state of the system and blocks any
unsafe operation. Examples of this include modern intrusion
detection systems, the Java runtime system, inline reference
monitors, and so on.

� Static analysis. The program of interest is statically ana-
lyzed by a system which checks the program for security
vulnerabilities before it is executed. Once certified by the
analyzer, the code is usually not subjected to run-time check-
ing, and is guaranteed to be safe. Proof-carrying code [30]
and the JVM byte-code verifier adopt this approach to verify
memory-safety properties.

� Program transformation. In this approach, an application
to be executed is transformed into a program which has in-
lined security checks. Naccio [16] and SASI [14] use code
transformation to ensure security.

All these techniques have been used successfully to ensure secure
execution of programs. However, all of them require access to the
program’s source code, with the lone exception of SASI, which is
dependent on the code-generation strategy of a particular compiler
(gcc). Having access to source code is not practical for consumers
of commercial applications outside of the open-source community,
yet these are the largest group of users, and hence any security
paradigm which ignores them is bound to fail. What is needed is
the ability to take the security techniques mentioned above and em-
power users to apply them directly to binary code in a turnkey fash-
ion. Furthermore, the new approach must not overburden producers
of code with a host of restrictions and/or difficult tasks which must
be performed, or it is unlikely to be adopted. Finally, the new ap-
proach must be sufficiently powerful enough to provide the ability
to perform many useful security-related operations, such as the in-
sertion of monitor code.

Unfortunately, existing binary formats offer very little support for
analysis (and modification) for security vulnerabilities. Although



binary files typically have less program structural information than
source programs, this does not preclude binaries from being suc-
cessfully analyzed for security vulnerabilities. For any kind of
analysis or transformation on binaries, it is important to be able
to retrieve information from binaries and also to manipulate them.
However, many practical difficulties arise in statically analyzing a
binary file.

1.1 Problems with existing formats
Some of the difficulties encountered with current binary formats
are:

� Distinguishing code from data: The fundamental problem
in decoding machine instructions is that of distinguishing
code (i.e, instructions) from data within an executable. Ma-
chine code in the text segment often contains data embed-
ded between machine instructions. For example, in the C
programming language, typical compilers generate code for
case statement as an indirect jump to an address loaded from
some location in a jump table. This table, which contains
the target addresses, is also placed along the instructions in
the text segment. Another example is that of the data in-
serted in instructions for alignment purpose, presumably to
improve instruction-fetch hit rates. Such data causes disas-
sembly problems in architectures such as Intel x86, which
has dense instruction set. Thus, most data bytes are likely
to appear as valid beginning bytes of instructions. This is
a major source of problem for disassembly based on linear
sweep algorithm [37], which in the process of decoding bytes
sequentially misinterprets the embedded data as instructions.

� Indirect jumps/calls: One of the ways to avoid misinterpreta-
tion of data as instructions is to use recursive traversal disas-
sembly algorithm [37] in which disassembly starts from the
entry point of the program, and whenever there is a jump in-
struction, it continues along the control-flow successors of
the instruction. However, this approach fails to obtain com-
plete disassembly in presence of indirect jumps because of
the difficulty involved in identifying the targets of the instruc-
tions. A similar difficulty to statically predicting the targets
of function calls is presented by indirect call instructions.

� Variable-length instruction sets: Unlike RISC architectures,
in which all instructions are fixed-sized, CISC architectures
(such as x86) often have variable-length instructions, which
complicates their disassembly. In presence of variable-length
instructions, a single disassembly error increases the like-
lihood of errors in disassembly of many of the subsequent
instructions. On the other hand, a disassembly error in fixed-
length instructions does not propagate to subsequent instruc-
tions.

� Distinguishing address and non-address constants: It is dif-
ficult to distinguish between addresses and non-address con-
stants. Making the distinction is necessary in order to per-
form any modification to a binary which causes code or data
to be relocated. For existing binary formats, there is no gen-
eral mechanism to correctly make this distinction in every
case.

� Instructions generated through non-standard mechanisms:
Sometimes executables contain instructions generated through
non-standard mechanisms (such as hand-written assembly

code). Such instruction sequences may violate high-level in-
variants that one normally assumes hold true for compiler
generated code. For example, in many mathematical libraries
it not uncommon for control to branch from one function into
middle of another, or fall through from one function into an-
other, instead of using a function call. This kind of code
complicates analysis of binaries considerably.

1.2 Security applications
The ability to perform analyses on binaries is very useful from a
security viewpoint. Some of the applications for which binary anal-
yses could be useful are:

� Intrusion Detection. The ability to derive program behavior
models from binaries is useful for detection of anomalous be-
havior of programs. Such models have been generated from
the program source [43], or from runtime traces [17, 39].
However, the application of binary analysis techniques in in-
trusion detection has been limited due to the difficulties cited
above.

� Retrofitting binaries for memory safety. To prevent mem-
ory related errors in programs written in type-unsafe lan-
guages like C/C++, source transformation techniques have
been proposed [31]. Similar techniques for rewriting bina-
ries are desirable.

� Static verification of binaries. Binaries could be statically
checked for temporal safety properties. In fact, proofs of
such temporal safety properties (and memory and type safety
properties) could be generated if a sound analyses of binaries
is possible.

From this discussion, it is clear that the analysis of binaries is
needed for various security analyses, however, in their current form
it is not practical. Hence, there is a clear need for a mechanism
that can address the above-mentioned problems and enable a sound
analysis of binaries. However, proposing a standard that is radi-
cally different from existing standards will only make the job of
transitioning to the new standard difficult, and unlikely to have a
broad impact.

Several attempts have been made to perform analysis and transfor-
mation of binaries (see Section 2 for more details). Unfortunately,
due to the difficulties involved, the resulting analyses are incom-
plete and do not provide the strong guarantees required for security.

To summarize, the ideal standard for a security-enhanced binary
framework must possess the following properties:

� Suitability for analyses. It should clearly address all the prob-
lems listed above, thereby making the binary suitable for
sound analysis, such as generation of models of security rel-
evant behavior of the code for static checking.

� Compatibility with existing formats. It should be seamlessly
inter-operable with existing binary standards. This way the
format will allow an easy and gradual migration from exist-
ing standards.

� Less stress on existing compiler infrastructure. The new for-
mat should introduce very little work on the part of compiler



infrastructure so that it is easily adaptable by existing com-
piler developers.

The standard we propose in this paper is a first-step towards achiev-
ing these objectives.

2. RELATED WORK
There has also been a significant amount of work done in the area
of tools to support binary editing. Of these, QPT [25], alto [29]
and OM [42] and EEL [24] target RISC architectures. PLTO [12],
and LEEL [46] target x86 ELF binaries. For the Windows environ-
ment, Etch [36] is a tool that targets x86 binaries and Vulcan [13]
works with x86, IA64 and MSIL binaries. Dyninst [4] supports
analysis and instrumentation of code at runtime. UQBT [8] is an
architecture-independent binary translation framework. Unfortu-
nately, none of these tools can distinguish code from data in all
cases, so they are not guaranteed to work for every binary. This
latter restriction applies to all the existing work, in particular for
the x86 architecture, it is not possible to distinguish code from data
unless the compiler obeys certain code generation restrictions, or
provides some auxiliary information.

Typed Assembly Language (TAL) [27] adds type annotations and
typing rules to assembly language. While TAL is an extensive body
of work that produces verifiably safe code, it is an entirely different
target platform, that requires whole scale rewriting of existing com-
piler infrastructure. On the other hand, we target existing systems
and target platforms to trade-off between practicality and strong
verifiable guarantees.

There are also a number of other approaches to preventing low level
memory related programming error exploits. Static analysis has
been used to detect memory errors at compile-time. Work in this
area includes Splint [23, 15], CQual [41] and BOON [44]. Most of
these techniques are limited by the availability of source code for
the programs that are analyzed.

In addition, static analysis and verification have been used to prove
safety properties of programs. Proof carrying code [30], MOPS [6],
and metacompilation [20] are all examples of techniques that en-
sure program properties through static analysis and verification.
Most of these approaches depend on availability of source code
or using a type safe language. Model carrying code [40] could be
used to verify program properties by generating models from bi-
naries, but the accuracy of such models depends very much on the
auxiliary information that is provided along with SELF.

Runtime checking uses inserted checks to detect memory errors be-
fore they can be exploited. Work in this area for low level memory
safety includes bcc [9], Purify [21], Safe-C [2], CCured [31] and
runtime type checking [26]. Also in this category is the CodeCen-
ter interpretive debugger [22]. These approaches all introduce high
runtime overheads of at least 100%, making them useful for debug-
ging and testing, but not for incorporating into production binary
releases.

In addition, runtime monitoring for safety has been used to en-
sure access control, resource access and temporal safety properties.
Java [19], Naccio [16], and SASI [14] are all examples of systems
that perform runtime checks. SASI operates on binaries and per-
forms code transformation. However, as mentioned earlier, its suc-
cess is largely dependent on the presence of invariants obeyed by

the code generation strategy of the gcc compiler. The modifica-
tions we suggest to ELF would be beneficial to SASI and similar
techniques, as they could leverage the information in the extra sec-
tion while performing the analysis for the transformation.

3. SELF – AN ENHANCEMENT TO ELF
In this section, we describe the enhancement to the ELF binary
file format which will enable the analysis and transformation of
binary code. The extension is simple; yet, it enables a wide range
of sound program analyses to be performed simply by addressing
the drawbacks that were presented in Section 1.

Our discussion is centered around the ELF file format and we shall
exclusively describe it in the context of the x86 architecture. How-
ever, the general principles behind this discussion are applicable to
other formats and architectures.

Before describing our extension, we shall briefly describe the ELF
format. (See [32] for a detailed discussion.)

3.1 ELF format
ELF files fall into the following three types:

� Executable files containing code and data suitable for execu-
tion. This specifies the memory layout of the process image
of program.

� Relocatable (object) files containing code and data suitable
for linking with other object files to create an executable or a
shared object file.

� Shared object files (shared library) containing code and data
suitable for the link editor (ld) at the link-time and the dy-
namic linker (ld.so) at runtime.

A binary file typically contains various headers that describe the
organization of the file, and a number of sections which hold vari-
ous information about the program such as instructions, data, read-
only-data, symbol table, relocation tables and so on.

Executable and shared object files (as shown in the execution view
of Figure 1) are used to build a process image during execution.
These files must have a program header table, which is an array of
structures, each describing a segment or other information needed
to prepare the program for execution. An object file segment con-
tains one or more sections. Typically, a program has two segments:
(1) a code segment comprised of sections such as .text (instruc-
tions) and .rodata (read-only data) (2) a data segment holding
sections such as .data (initialized data) and .bss (uninitialized
data). The code segment is mapped into virtual memory as a read-
only and executable segment so that multiple processes can use the
code. The data segment has both read and write permission and is
mapped exclusively for each process into the address space of that
process.

A relocatable file (as shown in the linking view of Figure 1) does
not need a program header table as the file is not used for program
execution. A relocatable file has sufficient relocation information
in order to link with other similar relocatable files. Also, every relo-
catable file must have a section header table containing information
about the various sections in the file.
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Figure 1: Format of a typical SELF object file.

By default, an ELF executable file or a shared object file does
not contain relocation information because it is not needed by the
loader to map the program into process memory. Relocation infor-
mation identifies address dependent byte-streams in the binary that
need modification (relocation) when the linker re-maps the binary
to different addresses. A single entry in a relocation table usually
contains the following: (1) an offset corresponding to either the
byte-offset from the beginning of the section in a relocatable file, or
the virtual address of the storage unit in an executable file, and (2)
information about the type of relocation (which is processor spe-
cific) and symbol table index with respect to which the relocation
will be applied. For example, a call instruction’s relocation entry
would hold the symbol table index of the function being called.

Many binary tools rely on relocation information for analysis and
transformation of binaries. Transformation of a binary file often
requires modifications in which the subsequences of the machine
code are moved around. When this is done, the data referenced
by relocation entries must be updated to reflect the new position
of corresponding code in the executable. In the absence of reloca-
tion information, binary tools resort to nontrivial program analysis
techniques [24, 8, 46, 34]. These techniques are inadequate and
hence the tools adopt conservative strategies, thereby restricting the
their efficacy in performing various transformations. Also, due the
fact that relocation information is not required for execution, many
linkers do not have option flags to retain the information in the
executables. In addition, even the presence of relocation informa-
tion does not help in certain kinds of binary transformations. In
particular, the relocation table does not give sufficient information
about the data and instructions used in the machine code. Hence,
certain transformations which require complete disassembly of in-
structions and modification of data are not possible. The SELF ex-
tension, described in the following section, is specifically intended
to deal with this problem.

3.2 SELF extension
The SELF extension will reside in a section named .self which
will be indicated by the section head table in both execution and
linking views as shown the Figure 1. The purpose of the exten-
sion is to provide additional information about instructions and data
used in various sections. As discussed before, much of the infor-

mation is available in relocation tables and symbol table. An object
file compiled with debug flag option, contains debug information
which can also provide useful information such as type and size
of data, addresses of functions, etc. However, in a typical soft-
ware distribution model, binary files are compiled with optimiza-
tion which renders debug information incorrect. Also, binaries are
stripped, which means that they do not have a symbol table. Here,
the objective is to distribute slim and efficient binaries containing
no superfluous information and which are not easy to reverse en-
gineer. The SELF extension is designed with these objectives in
mind. It concisely captures only the relevant information required
to perform post-link-time transformations of binary code. This
information is described in the form of a table of memory block
descriptors. A memory block is a contiguous sequence of bytes
within a program’s memory. Each memory block descriptor has
four fields, as shown in Figure 2. The fields are interpreted as fol-
lows:

1. Memory Tag - type of the block of memory. This includes
various kinds of data and code and their pointers. Also in-
cludes a bit which indicated whether or not it is safe to relo-
cate the block.

2. Address - the virtual address of a block of memory within
the data or code of the shared object/executable. This field is
meaningful only for executable or shared object files where
locations of code and data of the program have been final-
ized.

3. Alignment - this indicates alignment constraints for certain
type of data or instructions.

4. Width - size of data for the entries that correspond to certain
data related memory tag.

During code generation, the compiler adds entries to the table de-
pending upon the memory tag of data or instructions. The memory
tags fall into the following categories:

� Data stored between instructions. This memory tag corre-
sponds to data used in the code, either in the form of jump
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Tag Summary of block contents
Address Starting address of block
Alignment Alignment requirements of block
Width Block size in bytes

Figure 2: Layout and interpretation of a SELF memory block descriptor.

tables or padding bytes which are used to enforce alignment
restrictions. This helps to identify and disassemble all of the
machine instructions in the program.

� Code address. Code addresses appear in the program mainly
in the form of operands corresponding to targets of jump or
call instructions. The addresses could be used in instruc-
tions either as relative displacements or as absolute values
stored in register or memory. Also, there could be other types
of instructions which use code addresses. Typical examples
are (1) a PUSH instruction used to pass a constant function-
address as a parameter to a callback function and (2) code
addresses contained in jump tables. During transformation
of binaries, the code at these addresses might be relocated.
Therefore, such operands or locations must be changed to
point to the new address.

� Data address constant. Static data in the program is refer-
enced using data address constants in the instructions. En-
tries of these types are required if the data segment of the
binary undergoes reorganization.

� Offset from GOT (global offset table). This corresponds to
the constant offsets which are used to access static data in
position independent code (PIC). Such offsets will be modi-
fied if the GOT or the data is relocated.

� Offset used to obtain base address of GOT. This pertains
mainly to x86-specific position independent code generated
for shared objects. For this purpose, the code is generated
in such a way that the %EBX register is assigned the value of
the GOT’s base address. During the generation of this code,
a constant value is used which corresponds to the relative
offset of the program counter from the GOT. This constant
requires modification if the GOT or the code containing the
program counter undergoes relocation during binary trans-
formation.

� PLT (procedure linkage table) entry address. In an executable
or a shared library, a position-independent function call (e.g.,
a shared library function) is directed to a PLT entry. The PLT
entry in turn redirects it to its absolute location, which is re-
solved by dynamic linker at run time. Code addresses associ-
ated with these function calls need different memory tags as
some binary transformation may require relocation of only
the PLT.

� Offset from frame pointer. This memory tag identifies the lo-
cations of constant offsets from the frame pointer (%EBP) that
are used by instructions which access stack-allocated objects.
These constants have to be changed if there is a binary trans-
formation that relocates stack-allocated objects.

� Routine entry point. This memory tag identifies the entry
points of all the routines in the code segment.

� Stack data. Stack data is mainly associated with the local
variables of functions in the program. Memory for such data
is allocated on the stack dynamically during function invoca-
tions. Therefore, the virtual memory addresses of stack data
can not be determined statically. However, each stack datum
is allocated on the stack at a fixed constant negative offset
from the frame pointer.The address field in an entry of this
tag contains this offset instead of the virtual memory address.

� Static data. Static data corresponds to different storage units
allocated in the code segment for global or static variables
used by the program. This memory tag is used to identify the
locations of each such storage unit in the code segment.

Apart from these, there are other memory locations which contain
data required for dynamic linking. The entries of these types are
retained in the binary file and hence we do not require to save them
separately. The above types are all that is needed to effectively
disassemble the executable and thereby make program analysis and
transformation of the executable possible.

For static or stack-allocated data, additional information is avail-
able through the fields alignment and width of the entries. A com-
piler generates the memory layout of program data depending on
their types. Data could either have scalar or aggregate types. A
datum of a scalar type holds a single value, such as an integer, a
character, a float value, etc. An aggregate type, such as an array,
structure, or union, consists of one or more scalar data type ob-
jects. The ABI of a processor architecture specifies different align-
ment constraints for different data types in order to access the data
in an optimum way. Scalar types align according to their natural
architectural alignment, e.g., in the Intel IA-32 architecture, the in-
teger type requires word (4 byte) alignment. The alignment of an
aggregate type depends on how much space it occupies and how
efficiently the processor can access the individual scalar members
objects within it. The data entries hold alignment and width of only
the scalar and aggregate objects and not for the members inside the
aggregate objects. Thus, relocation can be performed only on the
scalar or on the aggregate objects as a whole.

4. SELF GENERATION
Figure 3 shows the distribution model for SELF binaries. Notice
that there are two paths in the distribution mechanism. The shorter
path represents the case where a modified compiler is used to gen-
erate SELF binaries at compile-time, directly from the source code.
The longer path refers to the binaries generated through a standard
(i.e., not modified) compiler, as occurs when a provider is unable
or unwilling to use an augmented compiler, and the source code
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Figure 3: Model for the distribution of SELF binaries.

is not available at the consumer end. In this case, binary analysis
techniques are used to generate the SELF section. There are three
primary reasons for the dual-path approach:

� It allows externally supplied and pre-existing legacy binaries
to be supported to as great a degree as possible.

� It allows for complete support of SELF-compiled binaries.

� The SELF-analysis and generation is decoupled from the bi-
nary transformation, resulting in better performance in cases
where programs are transformed multiple times (e.g., as is
the case with address obfuscation, discussed in Section 5).

The rest of this section describes these two paths in greater detail.

4.1 Compile-time SELF generation
Generating SELF from within a compiler is a straightforward pro-
cess, as most of the information required can be gleaned directly
from the compiler’s internal symbol tables. Also required will be
a .rel.self section, which will contain the relocation entries
used by the linker to update the .self section when the program
layout is finalized. A good implementation strategy for adding a
SELF generation option to a typical compiler is to modify the code
used to generate debugging information, since there is much over-
lap between the debugging information and SELF. The .self sec-
tion contents can be viewed as a copy of the debugging informa-
tion with unneeded information removed, such as variable names
and types, and extra information added, such as information about
pointers embedded within machine instructions.

4.2 Post-compilation SELF generation
Post-compilation SELF generation poses a much greater challenge,
since the binary file must be analyzed. In particular, the analysis
must identify the following:

� Data embedded within the code segment

� Pointer values (within both the data and code segments)

� The size of each data object

4.2.1 Identifying data within the code segment
Data embedded within the code segment is identified by starting
with a set of known instructions (i.e., the set of known entry points),
analyzing each known instruction to find its set of successors, and

repeating this process until the transitive closure is reached. As
mentioned earlier, on the x86 architecture this analysis is actually
somewhat difficult, primarily due to indirect calls and jumps, the
use of runtime-generated code on the stack, and variable-length in-
structions.

One tool which already does a fairly good job of distinguishing
code from data is LEEL [46], although there is still some room for
improvement. In particular, in cases where some branches and/or
entry points are uncertain, the set of feasible disassemblies can be
computed (i.e., those disassemblies which don’t branch out of the
address space or collide with a known data value). If more than
one disassembly is feasible, then each byte can be marked based on
how it is utilized in each disassembly, according to the following
rules:

� A byte is definitely code if it can be executed under every
feasible disassembly.

� A byte is definitely data if it cannot be executed under every
feasible disassembly.

� A byte is indeterminate (either data or code) if exactly one
of the above two conditions does not hold.

This approach yields the most information possible without making
any assumptions about the behavior of the code generator, given the
difficulties inherent in disassembling x86 machine code.

4.2.2 Identifying pointer values
Identifying pointer values within the code and data segments is
done by flow analysis. Instructions which dereference pointer val-
ues are traced backwards to discover the origin of the pointer value.
This process can essentially be viewed as a type inference prob-
lem. Values which are loaded from code or text segment and then
used as pointers along every execution path can be inferred to def-
initely be pointers; and similarly values which are used solely as
data along every execution path can be marked as definitely data.
Values which propagate only through static memory and registers
are easy to correctly type using this approach; values which prop-
agate through the stack are slightly harder; and values which prop-
agate through the heap are rather difficult. The end result of the
analysis is that every data value is typed as being either a definite
pointer, definite scalar, or indeterminate/both.



4.2.3 Identifying data size
Upper bounds on the size of each data object are computed by ana-
lyzing the instructions which access them. The challenge is to dis-
tinguish structure fields from atomic variables. This can be done
by first analyzing every pointer argument to all routines in a call-
path-insensitive manner to determine the range of offsets that are
accessed via the pointer. The second step is to use the function ar-
gument information in an analysis to determine the potential range
of each pointer.

Values stored over the access range of a pointer are likely to be
part of the same array or structure (since it’s highly unlikely that
any linked data structures would be stored in static memory) and
should not be relocated except as a block. On the other hand, even
if a value is an array or structure, as long as its components are
accessed individually and not via pointer arithmetic, then it is okay
to split up the aggregate into separate components. The problem
lies with pointer dereferences whose range can’t be determined. To
help with this, for each pointer dereference operation, the range of
the values that could be accessed is expressed as one or more of the
following:

��������� – the pointer points somewhere on the heap.

�	��
����������������������� ��!"��# – the pointer points to some range of
local (stack) storage.

�	��
��$
���%�&�������������'� ��!"��# – the pointer points to some range
of static (data or code) storage.

This approach allows pointers which point only to stack and/or
heap locations to be identified and safely ignored. Greater preci-
sion can be achieved by making the analysis call-path sensitive,
and/or incorporate additional constraint analysis, which would al-
low for discovering properties such as the fact that bzero(x, n)
overwrites values from x to x + n - 1. A reasonable compro-
mise is to encode such constraints for known libc calls such as
bzero.

5. EXAMPLE: ADDRESS OBFUSCATION
Memory-error exploits, such as buffer overflow, and format-string
attacks, are the one of the most common classes of attack on the
Internet today. The prevalence of these attacks is due to several
factors. First, memory errors are commonplace, due to the preva-
lence of non-memory safe languages (primarily C and C++). These
languages are popular to due the fine-grained control they give the
programmer over a system’s memory, but unfortunately, they also
leave the burden of performing safety checks on pointer and ar-
ray accesses up to the programmer. Second, memory errors such
as unchecked array accesses often result in security vulnerabilities
which enable an attack to be remotely launched from across a net-
work. For example, it is common for a fixed size, stack-allocated
buffer to be used to hold data transmitted from the network. If
the programmer forgets to include runtime checks to ensure that
incoming data is not larger than the array, then the incoming data
may overflow the buffer, going past the end of the array and even-
tually reaching the stored return address of the current function.
This is the mechanism by which the infamous buffer overflow at-
tack works [33, 28].

An observation that one can make about the buffer overflow attack
is that it is absolute address-dependent: the attacker must know the

absolute address at which the injected code will reside (typically
the starting address of the buffer), and then overwrite the return
address with the injected code address.

An additional observation that is important to keep in mind is that
buffer overflows are not the only possible memory-error exploits.
In fact, there are many other possible attacks, which can target any
region of a program’s memory, and may in some cases only depend
on the relative distances between two items. Some examples of
these include:

� Overflowing from a buffer onto a string which will be passed
to an execve system call. This only depends on knowing
the distance between the string and the buffer, and is hence
relative address-dependent. Such attacks could potentially
occur on the stack, on the heap, or in static storage.

� Using a format-string attack to replace the address stored in
a function pointer [38, 35]. The attack is absolute address-
dependent, since it requires knowing the absolute address of
the function pointer and the called code. The function pointer
itself could be stored in any of the program’s data regions,
and the code could be library code, program code, or injected
code.

� Due to the lack of adequate checking done by malloc on the
validity of blocks being freed, code which frees the same
block twice corrupts the list of free blocks maintained by
malloc. In the case where the doubly-freed block contains
an input buffer, this corruption can be exploited to overwrite
an arbitrary word of memory with an arbitrary value [1]. This
attack is absolute-address dependent.

The point of these examples is to illustrate that the classic buffer
overflow attack is just one of many possible attacks, and that solu-
tions which only protect against a limited number of exploits, such
as overflowing onto the return address [11, 10] are only partial so-
lutions which will simply force attackers to be more resourceful in
their search for other memory errors to exploit [5]. Instead what is
needed is an approach which protects against the full spectrum of
potential memory-error exploits.

One way of achieving something close to full-spectrum protection
from memory error exploits is to make it impossible for an at-
tacker to reliably know any absolute or relative address within a
program, thereby thwarting attacks which are absolute or relative
address-dependent. That is the essential idea behind address ob-
fuscation [3], a technique in which the memory locations of the
data and code of a program are randomly relocated prior-to and
during each execution. The only available option address obfusca-
tion leaves attackers with is to make random guesses. Furthermore,
it has been shown in [3] that address obfuscation can be imple-
mented in a fairly lightweight manner (requiring no compiler or
kernel modifications), while requiring an attacker to make of the
order of (�)+* attempts before success is likely to occur, with failed
attempts resulting in conspicuous program crashes, making intru-
sion detection fairly easy.

The largest obstacle towards the wide adoption of address obfus-
cation is the difficulty of applying it to shrink-wrapped binaries.
Work to date has either required source code access [18], or has
been restricted from performing the full subset of possible obfus-
cations due to the intractability of analyzing binary code [3, 45,



7]. However, with SELF binaries, complete address obfuscation of
binaries is feasible, providing the following benefits:

� All attacks which exploit memory errors will become non-
deterministic, with a small chance of success (dependent on
availability of virtual address space, but ( in (�) * can be eas-
ily achieved [3]). Failed attacks will typically result in sys-
tem crashes which, will make the attack attempts easily de-
tectable.

� In addition to buffer overflows, attacks which target other
regions of memory will be prevented, including many attacks
which haven’t been discovered yet, but are likely to become
popular as the techniques which prevent the return address
from being overwritten [11] become widely adopted.

� For additional security, the obfuscation can be combined with
other runtime security techniques, such as stackguard [11].

� The runtime overhead will be low, requiring an initial startup
cost, but very little cost after that. In cases where the startup
cost is unacceptable, the obfuscation can be done once stati-
cally on the binary file, and the file can be re-obfuscated on
a regular basis to deter attacks.

� Minimal changes to existing compilers are required. All that
is needed is that the compiler create the extra .self section
containing information similar to what is already provided to
the linker; no changes in code generation are required.

� The augmented SELF binaries will execute transparently on
systems which don’t support obfuscation (since they are
backwards-compatible with ELF binaries).

� The degree of obfuscation can be tailored according to the
desires of the user, as can the time when the obfuscation oc-
curs (load time or statically prior to execution). Statically
obfuscated binaries can be re-obfuscated as often as desired.

� The obfuscation can be done by a special loader which runs
on top of the kernel, so no kernel modifications are required;
however, integration with the kernel is still possibility for
those who desire it.

The obfuscation is achieved as follows. First, the organization that
produces and/or distributes a program (henceforth the code pro-
ducer) uses an augmented compiler to generate a SELF binary. The
SELF binary is now ready for widespread distribution.

Next, the host/person using the program (henceforth referred to
as the code consumer), downloads the SELF binary and runs it
through the obfuscation transformer. The transformer reads the
.self section and randomly relocates the program’s data while
inserting code to perform additional relocations as the program exe-
cutes. The consumer may run the software through the transformer
as often as desired to deter persistent attackers (this might be setup
as a regular job via the cron daemon).

5.1 The obfuscation transformer
The transformer first reads the .self section. It then performs the
following transformations:

� Stack base address randomization. This transformation is
done by inserting code before main is called which subtracts
a large random value (to insert a large gap) from the stack
pointer at runtime. This consumes virtual address space, but
not much actual memory. Additionally, this gap is made
un-writable in order to prevent very large buffer overflows
(see [3] for details as to why such overflows are a concern).

� Stack relative address randomization. This transformation is
done by increasing the size of each stack frame (by simply
changing the constant added to the stack pointer in the func-
tion preamble), then randomly moving all variables within
the frame. Furthermore, arrays are located to addresses higher
than non-arrays, to reduce the number of potential targets of
an overflow. All instructions which fetch and store values
from/to the stack are patched to reflect the new offsets of
each variable within the frame.

� Code base address randomization. This transformation is
done by changing the virtual address at which the code is
loaded, then relocating all absolute addresses within the code
to reflect the new base address.

� Data address randomization. This transformation is done by
changing the address at which the the data segment is loaded,
then randomly reordering the variables, and finally introduc-
ing a random amount of padding between variables. All in-
structions which access a static datum are patched to use the
new address of that datum.

� Heap address randomization. This transformation is achieved
as a side-effect of the data segment base address randomiza-
tion, since the heap’s starting address follows the end of data
segment on Linux systems. Additionally, code is inserted to
increase heap allocation requests by a small random amount,
thereby randomizing relative addresses within the heap.

The effect of these transformations is to make the absolute address
of all code and data objects unpredictable. Furthermore, the rela-
tive distance between any two data items is unpredictable as well,
regardless of which region the data is stored in. As explained ear-
lier in this section, the unpredictability provides protection from
absolute- or relative-address dependent attacks, such as buffer over-
flows.

5.2 Other techniques
In addition to address obfuscation, a number of other analyses and
transformations are possible with SELF binaries. These include the
ability to extract control-flow graphs, call graphs and other models
of program behavior; the ability to correctly insert inline reference
monitors, such as monitors which use a finite-state automaton to
enforce restrictions on temporal orderings of system calls; the abil-
ity to perform post-compilation optimizations; and translation into
other languages/architectures, such as converting x86 code into
SPARC code. All of these techniques require the ability to dis-
tinguish a program’s code from its data, and hence cannot be done
soundly on ordinary binary files, but with SELF binaries they are
tractable.

6. CONCLUSION
As we have shown, SELF is a relatively simple extension to the
existing ELF binary distribution format which enables a number
of security techniques to be applied in the absence of source code.



Previous work on program security has almost exclusively focused
on the analysis and transformation of program source code; this has
been due to the impossibility of soundly analyzing existing binary
file formats. Rather than accepting this limitation, SELF provides
the information required to apply many of the existing techniques
to binaries, thereby allowing them to have a much broader impact.
Our hope is that this approach will allow advanced language-based
security techniques to be applied in the real-world user environ-
ment, where source code is unavailable.
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