
WebSheets: Web Applications for Non-Programmers

Riccardo Pelizzi
Stony Brook University
r.pelizzi@gmail.com

R. Sekar
Stony Brook University

sekar@cs.stonybrook.edu

ABSTRACT
Spreadsheets are a very successful programming paradigm.
Their success stems from user’s familiarity with tabular
data, and their previous experience in performing manual
computations on such data. Since tabular data is familiar to
users in the context of web applications as well, we propose
WebSheets, a new paradigm for developing web applications
using a spreadsheet-like language. WebSheets can enable
simple web applications to be developed without “program-
ming,” in much the same way that non-programmers create
budgets or expense reports using spreadsheets. More impor-
tantly, WebSheets enable users to express fine-grained pri-
vacy policies on their data in a simple manner, thus putting
them in charge of their own privacy and security concerns.

CCS Concepts
•Security and privacy → Web application security;
Usability in security and privacy;

1. INTRODUCTION
Spreadsheets represent a very successful programming pa-

radigm. Their success rests on the user’s ability to create
applications in a tabular format without needing traditional
programming skills. In fact, non-programmers do not even
think of them as applications [18, 22].

Spreadsheets were born out of necessity and convenience:
people already organized data in tables and ran computa-
tions on them (e.g., financial reports) using tools such as
desk calculators. A spreadsheet program greatly simplifies
this task by removing most of the manual work involved in
the calculation.

As far as commercial spreadsheets are concerned, the
spreadsheet paradigm has remained essentially unchanged
since the 1970s. In academia, most of the research on spread-
sheets addressed problems from a software-engineering or
programming languages perspective, to improve code reuse,
correctness, and so on [6, 16, 26, 5, 13, 24]. Other works were
concerned with extending spreadsheets to specialize them for
a particular task, such as mashups [15, 14] or system admin-

†This work was supported in part by grants from NSF (CNS-
0831298 and CNS-1319137) and ONR (N00014-07-1-0928).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NSPW ’15, September 08 - 11, 2015, Twente, Netherlands
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3754-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2841113.2841124

istration [10]. In a certain sense, previous work concentrated
on improving usability, instead of expanding their scope of
applicability. To our knowledge, no work has been done to
extend the applicability of the paradigm beyond tabular,
single-user applications.

The advent of the world-wide web did not change the
paradigm either: modern spreadsheets are collaborative ap-
plications in the cloud [9, 17], which should have stimulated
advancements into collaboration and access control. Yet, ac-
cess control mechanism have remained somewhat primitive:
from the early days of Excel attachments sent around by
email, to the modern days of cloud-based spreadsheets, their
capabilities are essentially the same: the ability to restrict
access to entire files, or individual sheets. Even if finer gran-
ularity control primitives, such as locking out individual cells
from modification, were included, these were not security
primitives: users can simply proceed to unlock cells and
then modify them. Thus, finer granularity access control,
e.g., at the granularity of individual cells or rows/columns,
has not received much attention.

In this paper, we argue that fine-grained security primi-
tives provide the key to unlocking a whole new class of col-
laborative applications on the web. We believe that our ap-
proach, based on such fine-granularity protection, represents
a whole new paradigm, where data owners are empowered
to create simple, customized web applications without re-
quiring a programming background. The upside of putting
data owners in charge is that they are the ones that best
understand the privacy and security requirements of their
data, and are hence motivated to express and enforce them
through policies. In contrast, developers of web applications
have other concerns — such as ease of development, ease of
(or even better, absence of) configuration, and extensibility
— concerns that tend to work against security, with its focus
on policy configuration and access restriction.

Just as tabular computations were ubiquitous before the
advent of spreadsheets and spurred the creation of the spread-
sheet paradigm itself, this paper is based on a parallel re-
alization that a lot of web pages present essentially tabular
data. Applications such as calendars, event schedulers, and
conference management systems present essentially tabu-
lar information. For many more applications, the HTML
user interface primarily serves a cosmetic purpose, and can
be stripped away to reveal a tabular representation. Ulti-
mately, most content-based web applications store their data
in database tables using a relational model, so the afore-
mentioned stripping process could be taken to the extreme,
allowing all web applications as operating on tabular data.

If tabular presentations of tabular data is common among
web applications, a natural question is whether this fact can
be exploited in the way they were exploited in conventional

http://dx.doi.org/10.1145/2841113.2841124

spreadsheets: can we leverage this familiarity to enable (sim-
ple) web applications to be developed without traditional pro-
gramming? To answer this question, we first need to under-
stand some of the reasons behind the success of conventional
spreadsheets. We believe that one of the main reasons for
the success of spreadsheets is their lack of abstractions. The
internal and externally visible representations are both tab-
ular. There are no variables, or functions as they exist in
conventional programming languages; instead, spreadsheet
formulas reference specific cells. Moreover, the value pro-
duced by a formula is simply thought of as a “derived cell,”
thus fitting within the overall paradigm of cells and tabular
data.

Projecting this train of thought in the web application
context, consider the popular way to design web appli-
cations, namely, the Model-View-Controller (MVC) design
pattern. “Model” represents the underlying data, typically
stored in a database. “View” refers to the presentation layer
that is ultimately responsible for the HTML pages viewed
by the user. A “Controller” updates the model or manipu-
lates data given by the Model to generate the information
to be displayed in a user-friendly manner. The core of the
application logic resides within the Controller.

The main source of abstraction and trouble for a non-
programmer is the split between the Model and the other
two components: non-programmers can perhaps prepare
HTML templates for the View, but they would have trouble
manipulating the Model through the Controller by using
ordinary programming languages. When viewing spread-
sheets through an MVC perspective, the abstraction is not
present: the cells are the Model, the View and (if they con-
tain formulas) the Controller (the user sees these “derived
cells” as a read-only part of the Model). This correspon-
dence, along with the simple, functional flow of data in
formulas is at the heart of spreadsheet’s accessibility for
non-programmers. Similarly, web applications with sim-
ple relationships between Model, View and Controller are
amenable for development by non-programmers. The classes
of web application with this property are manifold: calen-
dars, scheduling, surveys, employment screening, budgeting,
conference management, and many more.

It should be noted that when we say “non-programmers”,
we don’t mean naive users. Just as the development of
nontrivial spreadsheets requires a basic understanding of
mathematical formulas, we target WebSheets at an audience
that has sufficient mathematical background to understand
security and privacy requirements and express them using
logical formulas. We expect these users to have at least
a high-school level mathematical background, including a
basic knowledge of set notation. Our WebSheets paradigm
is built over this knowledge.

For such users, our goal in WebSheets isn’t one of outlaw-
ing all abstractions; rather, our goal is to present and use
abstractions that are based on the familiar tabular format
of data: we rely on named columns and rows in tables, as
well as named tables. In addition, our language allows each
cell to contain lists (“sets”) of items, and supports simple
operations for constructing new sets from existing ones.

Security and privacy concerns are paramount in a web
application setting, where data belonging to multiple users
are processed. In the WebSheet paradigm, users not only
enter data or formulas into a WebSheet, but also privacy

policies1. Such policies can be specified at the granularity
of individual cells, or more commonly, at the granularity
of columns, rows, or entire tables. These policies “follow”
data [25, 4]: when formulas are applied over data, the output
of the formula is normally subject to the same policies as the
inputs.

A second important component of the WebSheets security
model is the data validation policy. In addition to preventing
data entry errors, these policies play an important role in
security as well: by limiting the values that can be entered,
safe behavior of operations that use this data can be ensured.
For instance, consider a validation policy that requires that
a reviewer select no more than specified maximum number
of applications for review, and avoid reviewing applications
of their students and collaborators.

If this vision were to be successful, the benefits of Web-
Sheets are obvious: as spreadsheets ushered a new era of
end-user developed applications, WebSheets will allow non-
programmers to build web applications without having to be
full- fledged programmers. Cutting the middle-man is not
only more efficient, but also prevents a common mismatch
of security concerns that is all too common when a web
application is developed by a third-party: the creator of
the spreadsheet and the programmer are two fundamentally
different actors, and only the former understands the do-
main, knows which pieces of information are sensitive and
can create a privacy policy. We argue that unless the spread-
sheet user can directly control the privacy policy of the data,
data leaks are bound to occur. Indeed, in today’s world, web
applications are developed with almost no internal security
beyond the security checks scattered through the codebase:
all of the web application logic is able to access all of the
database, with no regard to the principle of least privilege.
Invariably, this leads to massive loss of sensitive data when
the web application is compromised.

In the rest of the paper, we provide an overview of the
WebSheets model and language (Section 2). We then illus-
trate it with several example applications (Section 2). We
follow with a description of the WF language (Section 3).
Then, we describe a preliminary implementation (Section 4).
We conclude the paper with background information on
spreadsheets (Section 5) and related work (Section 6). Be-
low, we summarize our key contributions:

•We present a new paradigm, based on spreadsheets, for
non-programmers to design secure web applications.

•We present WF, a simple formula language to uniformly
define operations on data, as well as privacy and security
policies on the data.

• A key benefit of our approach is that the security policies
are a function of the data. Such data-driven security poli-
cies are much more expressive than typical access-control
policies that enforce restrictions primarily based on the
user and the object being accessed.

• Another key benefit of our approach is that it enables data
owners to take control of their data. It is no longer neces-
sary to enlist an unwilling developer or administrator to
understand your security requirements, and express them
using the primitives provided by the underlying applica-
tion. Instead, users can directly set policies, and refine

1In this paper, we do not make a distinction between privacy and
security. Our policies can be thought of as security policies or
privacy policies.

them as and when them deem necessary.

2. OVERVIEW
In this section, we introduce WebSheets. Our goal here

is to present the core of the paradigm — a full-fledged sys-
tem would come with more refined presentation elements,
as well as a user interface. Indeed, user interfaces play
a central role in spreadsheets, as most users “understand”
spreadsheets in terms of their interactions with applications
such as Microsoft Excel. A good user interface can further
simplify a non-programmer’s tasks, e.g., most spreadsheet
users don’t have to think about the fact that the cell selec-
tions that go into formulas are interpreted as relative cell
addresses. However, the core system underneath the user
interface knows and distinguishes between relative and ab-
solute addresses, and indeed contains more “programming”
features than what is exposed to a casual user through the
interface. For similar reasons, the overview of the core Web-
Sheets system will seem to contain more programming than
what an user interface will expose to a (non-expert) user.

A focus on core capabilities also means that many presen-
tation as well as user-interaction elements are not going to be
described here. Just as presentation elements such as graphs
and charts can be easily added on top of spreadsheet data,
more accessible presentation elements can be implemented
in WebSheets over tabular data. The same can be said about
complex user-interaction elements, or control-logic. Indeed,
it is not at all our intent to outlaw programming in the
context of WebSheets; rather, our goal is that programming
not be mandatory for specifying and enforcing data privacy
policies. We leverage the familiar tabular data model to
enable data owners to express and enforce privacy policies
on their data.

Just as security policies are stated based on tabular data,
user interactions such as sending of email notifications or
reminders, can be provided as built-in functions. More
complex control logic can also “plug into” this tabular view:
such logic, potentially implemented using a conventional
programming language, can consume data from one or more
tables, and generate one or more tables. For instance, a vis-
itor meeting scheduler can make use of a constraint-solving
plug-in, with its input coming from tables representing avail-
abilities of different users and their preferences. Depending
on its generality, the same (or a similar) plug-in may be us-
able in other contexts, e.g., to assign papers to reviewers in a
conference management system. Note that many of today’s
web applications are based on a relational database, and
hence, this view of layering control logic over tabular data
is consistent with the design of today’s web applications.

Finally, there can be several choices regarding the archi-
tecture and implementation of WebSheets-based web appli-
cations. One option is to have a central server that hosts
the web applications of interest to a certain user or a certain
organization. In this case, all users of this server need to
trust it. A second option is one of distributed implementa-
tion, where the data belonging to each user is held within
an agent that enforces the user’s policies, and interacts with
other agents to achieve the functionality of a WebSheets-
application. Moreover, there are several choices in how much
of the application logic runs within a user’s browser, and
how much is located on a web server. Although all of these
choices are interesting and represent research avenues on
their own, we don’t explore them here. Instead, we opt

for a simple, centralized implementation, as described in
Section 4.

Below, we illustrate WebSheets with a few example ap-
plications. We start with a relatively simple TODO list ap-
plication, and progress to a moderately complex application
for faculty candidate evaluation. Through these examples,
we introduce the language WF that forms the core of our
approach. An interesting aspect of WebSheets illustrated in
these examples is that often, security policies are as impor-
tant as data transformations (“formulas”).

2.1 TODO-list
The first, simplest example is TODO-list, an application

which maintains a private TODO list for each user. Each
TODO entry has an author, a name and a “Completed”
tickbox. Optionally, entries can be shared with a set of
users, who can not only see the shared entry, but also check
the tickbox and mark the item as completed. However, they
cannot modify the name or assume authorship of the entry.

In WebSheets, this application is modeled using a single
data table, plus its accompanying permission table: the Task
table describes the data, while the Task Permissions table
specifies the associated privacy and data validation policies.
Unlike conventional spreadsheets, WebSheets applications
operate on named tables; columns are also named, while
rows are accessed using indexes. WebSheets cells contain
expressions in a functional language called WF, which is
described in Section 3. For example, cells can contain arbi-
trary lists. This allows convenient modeling of concepts such
as associating a task with a list of users, as shown below.
In addition, it is possible to represent and manipulate the
content of an entire row as a WF value, and its cells can
then be can then be accessed using WF’s selection oper-
ator, which is very similar to Java’s property access. For
example, given a row task containing a column Completed,
task.Completed retrieves a single cell. Finally, it is possible
to represent the entire content of a table as a list of named
tuples. This ability to represent entire tables means that
new tables can be generated using formulas in WF. While
simple applications won’t require this feature, we have found
that more advanced applications can benefit from it.

Figure 1 shows the expression view of the TODO-list ap-
plication. This view shows the input data (in the form of
WF expressions) entered by all users and the permission
table set up by the owner. The expression view is only
visible by the owner of the application. The Task table has
four columns, Author, Name, Completed and Shared. New
rows can be added to the table, and they will represent new
TODO items. Note that cell contents can be constants such
as "Mow Lawn", or lists, such as ["Frank", "Tom"]. They
can also be environment variables such as owner, which is
bound to the user that “owns” a cell during evaluation (the
user that creates a row will become the owner of all the
cells in the row), user, which is bound to the username of
whoever is evaluating the WF expression, and this, which
is bound to the value of the current cell being evaluated.

Figure 2 shows the value view of Task for Jim. The value
view is computed from the expression view, by evaluating
the WF expressions of all cells into values and censoring
all those values whose read permission evaluated to False.
Censorship semantics aside, this behavior is similar to that
of conventional spreadsheets, where the default is to show
values rather than formulas. Ordinary users will interact

Task
Author Name Completed Shared

owner "Mow Lawn" False ["Jim"]
owner "Manscaping" True []
owner "Meet Frank" False ["Frank", "Tom"]
owner "Homework" False ["Phil"]

Task Permissions
Author Name Completed Shared All Columns

Read user in Shared
or user == owner

Write False user == user in Shared user ==
owner or user == owner owner

Init owner "" False []
Validate Completed’ == True

or Completed’ == False
Add Row
Del Row user == owner

Figure 1: TODO List Application (Expression View)

Author Name Completed Shared

"Phil" "Mow Lawn" False ["Jim"]
"Jim" "Meet Frank" False ["Frank","Tom"]
"Jim" "Homework" False ["Phil"]

Figure 2: Jim’s Value View of TODO-list

with the list using this view. The content shown by the value
view is user dependent: users can not only see different per-
missions (e.g. user == owner evaluates to True only if the
current user is the owner of the table. When the expression
is used for a read permission, it roughly translates to “only
the owner of the table can see this cell”), but potentially also
different values.

The functionality of TODO-list stems from the ability
of different users to concurrently view and/or modify the
list. Thus, its logic resides almost entirely in the Task Per-

missions table. Note that while data tables can have an
arbitrary number of rows and columns, permission tables
follow a fixed schema: there are 6 rows and n + 1 columns,
where n is the number of columns in the data table, and
the extra column is the All Columns column. The schema
allows specifying a different policy for all cells along each
column (using the first n columns), and one for all cells
across every row of the table, using the All Columns col-
umn2. When permissions are specified at multiple levels
of granularity, the resulting permission is the intersection
of all permissions. It is helpful to think about permission
tables as a tabular representation for ACLs, where columns
represents sets of objects (e.g. all cells along a column) and
rows represent operations.

Read permissions are specified along the Read row. This
policy states that any user that is included in the Shared

column of a row is permitted to view the row. In addition,
row owners (i.e., users that created the row) are permitted
to view the row. WebSheets will omit any row that a user
cannot read. This is why Jim’s view of the Task table shows
only three tasks, while the table actually contains four rows.
(In a more complex case, where some cells in a row are
readable and others are not, unreadable cells will be grayed
out. This, of course, reveals to the user the he/she has been
denied access, and this, in itself, may leak some information.

2This fixed schema does not support specifying a policy at the
level of granularity of a single cell. This can be easily supported
by an additional shadow table with the same number of columns
and rows as the data table, but we leave it out of our description
for simplicity.

It is not our goal to eliminate all such covert channels.).
Unlike all other permissions, read permissions flow together
with their related cell values: the read permission of a cell
does not depend only on its read permission expression(s),
but also on the read permissions of all its dependencies.
This allows developers to attach policies to cells and not
worry about their value leaking through other cells with less
restrictive policies. The evaluation and propagation of read
permissions is detailed in Section 3.1.

Not surprisingly, write permissions are more tightly con-
trolled. The policy in Task Permissions indicates that no
one can modify the Author field. In addition, the Name and
Shared fields can be modified only by the owner, while the
Completed field can be modified by any one that is listed in
the Shared column. Note that our approach provides a very
simple and natural way to express access policies that are a
function of data contained in the tables.

In addition to reading and writing existing cells, users can
also add or delete rows from a table. Permissions for these
operations are also specified in Task Permissions. This
version of TODO-list permits any user to add new rows to
the table, while deletion of a task is possible only by the
task owner.

When users enter data into the list, they are subject to
validation policies specified in Task Permissions. In partic-
ular, when a user adds a new row, the content of the new row
are initialized using the Init row. When an existing row is
modified, the Validate row specifies the validation functions
that would be run on the row. In this simple example, we
only ensure that Completed fields have boolean values.

Note that invalid fields in permission tables are grayed
out. For example, add row permissions can only be defined
on entire rows: defining add row permissions on a single
column or init values for an entire row would not make sense.

Note that there are no formulas to deal with Denial-Of-
Service attacks (e.g. adding 10000 TODO items shared with
everyone, to pollute their view). In this paper we focus on
the problem of data privacy, and leave out both the issue
of how to protect against such attacks with the current
permission table format (e.g. a count check in the Add

Row permission) and the issue of how to extend the current
permission table format with dedicated fields.
Extensions. The central benefit of WebSheets is that it
enables many simple and varied customizations. This ver-
sion of TODO-list permits any user to add new rows to the
table. However, other choices, such a limiting to a specified

Event
Author Name Public Invitees Attendees
owner "Decimation" False ["Crassus", "Pompey"] Response[Name == EName

and Coming == True].User

Event Permissions
Author Name Public Invitees Attendees All Columns

Read user in Invitees
or Public == True
or user == owner

Write False False user == owner
Init owner "" False [] Response[Name == EName

and Coming == True].User
Validate this or

Invite != []
Add Row
Del Row user == owner

Response
User EName Coming
owner "Decimation" True
owner "Decimation" False

Response Permissions

User EName Coming All Columns
Read user in Event[Name==EName].Invitees

or Event[Name==EName].Public
or user == owner

Write False
Init owner "" False
Validate user in Event[Name==EName’].Invitees

or Event[Name==EName’].Public
or user == owner

Add Row
Del Row user == owner

Figure 3: RSVP Application (Expression View)

Event
Author Name Public Invitees Attendees
"Caesar" "Decimation" False ["Crassus", "Pompey"] ["Crassus"]

Response
User EName Coming
"Crassus" "Decimation" True
"Pompey" "Decimation" False

Figure 4: Caesar’s Value View of the RSVP application

list of users, is also possible. Note that such a list can also be
specified as another table, e.g., we could call it Task Users.
This list may be defined and modified in the same manner
as the Task table itself, thus providing another interesting
application of data-based security policies. In this simple
example, no validation policies are included. However, we
may want to include a policy that states that task status
can be modified from False to True, but not the other way
around.

Another possible extension is to add columns to indicate
whether a payment was made for a task (Paid), and a col-
umn to indicate acknowledgment of payment (Received).
This extension also needs another column, say, Selected, to
indicate the specific person from the Shared list that selected
and completed the job. Permissions would now be modified
so that only the person in the Selected column can modify
the Received column. In addition, row deletion would be
prohibited until the Received column is true.

2.2 Event RSVP
The second example is an Event invitation and RSVP web

application, RSVP. Users can either create public or private
events, and can RSVP to other user’s events. However, users
can only RSVP to private events they are invited to.

This application requires two data tables, Event and Re-

sponse. The Event table has the Author, Name, Public,
Invitees and Attendees columns. We omit other data
such as location, date, reason for refusal, etc to simplify the
example. The Attendees column is dynamically calculated
from the set of users who RSVPed using the Response Table,
which has the Author, EName and Coming columns. Figure
3 shows some initial data for one event and two responses,
plus the permissions required to implement the access con-
trol policy, while Figure 4 shows Caesar’s view of the web
application, the author of the sole event.

The permission metadata for Event uses formulas similar
to the TODO-List example: the Author column is fixed to the
author of the event with the same non-writable init value
owner. The Attendees column, which is fixed to a static
formula, uses list filtering: it returns the authors of all pos-
itive responses from the Response table that have the same
event name. Note how the cells are directly addressable by
their column names inside the brackets. While program-
mers are familiar with the idea of working with additional
variable bindings implicitly introduced in an inner scope,
it may appear that this notation is too complex for non-
programmers. However, note that the filtering expression is
no different from set construction notation that is familiar

in high-school mathematics:

{x|x ∈ Z and x is a multiple of two }

The primary difference is that the selector expression in WF
can make use of column names. We argue that while this
generalization may need an introduction, it is not too dif-
ficult to master. An appropriate user interface can further
simplify this task by providing a simple way to construct
these expressions.

The Read metadata enforces that events can only be seen
by the author, an invitee or, if the event is public, by every-
one. The Write row uses permissions from different levels
of granularity: the All Columns metadata only allows the
author of a row to edit any of its cells, while the Author and
RSVP columns further restrict the writable fields to Name,
Public and Invitees. The Validation metadata specifies
that an event should either be public or have at least one
invitee. Note how in the validation formula Public is also
bound as this because the formula is evaluated in the con-
text of a particular cell and is provided with bindings to
the current cell, row, column etc. Add Row and Del Row

have the same logic as the TODO-List example: anyone can
create events, but only the owner can delete them.

The permission metadata for Response involves more com-
plex formulas. The Read row mandates that users can only
see responses if they are the author of the response, if they
are invited or if the event is public. The Validate row and
the empty Add Row row specify that users can create new
empty responses, but can only set the EName cell (and thus
link their response to a specific event) to events that are
either public or to which they have been invited.

2.3 Faculty Candidate Review
To further illustrate the applicability of WebSheets using

a more involved example, we employ a scenario from our
experience in academia: admittance of new faculty into the
department. The admittance process is by nature collabo-
rative, since existing faculty can contribute to the process:
each candidate presents his research to the faculty body, who
can later grade the candidate. Finally, faculty picks the best
candidate, using the grades provided. However, because pro-
fessors are too busy or not familiar with web development,
our department currently passes around a spreadsheet file by
email to be filled out and returned to the department chair.
As the size of the faculty keeps increasing, this process gets
more and more unwieldy. The workflow is far from optimal
not only because of the lack of automation (how to merge
concurrent changes?), but also because there is no access
control (what about conflicts of interests?). WebSheets can
be employed not only to automate the grading process, but
also to enforce security policies. In particular, we seek to
enforce the following properties:

1. Applicants can only enter and view their own application,
while Faculty can view any application.

2. Each Faculty can enter at most one review per candidate,
and cannot enter a review for another Faculty.

3. To avoid being influenced by others, faculty should not
see each other’s grades for a particular student until they
have graded the student themselves.

4. If the candidate and one faculty have a conflict of interest,
the latter should be barred from grading and seeing the
applicant’s grades and average.

BestApplicant
Name Average

((Name=a.Name,Average=TRUST(a.Average)))

for a in Applicant when TRUST(a.Average)>3.5)

Figure 6: Dynamic Table with declassified averages

This WebSheet, shown in Figure 5, requires 3 tables, Fac-
ulty, Application and Review. The first table Faculty

is used to identify which users have faculty privileges. In
this simplified example, merely having an entry in the table
grants the user faculty privileges; any other user is assumed
to be an applicant. A more involved example would use
additional fields to assign roles to users. Read permissions
are blank, because the faculty roster is public; write permis-
sions on the rows are set to False, because we assume that
the Faculty roster has been pre-populated by the WebSheets
administrator.

The Application table has the columns Name, Conflicts,
AppReviews and Average. This table is used by applicants
to fill in their application: each applicant fills in the first two
fields, while the latter two fields are dynamically calculated
by read- only formulas which use the reviews submitted by
faculty. The Read formula for all the columns asserts that
applications are only visible by the applicant or by a mem-
ber of the faculty body. Note how no Read restrictions are
required for Grades and Average to prevent faculty with a
conflict to view the applicant’s grades: because permissions
follow data, it is sufficient to predicate on the grades them-
selves, which is done in the permission table for Review. Any
grade that violates the aforementioned security properties
would a) be omitted from the list of grades, and b) prevent
the faculty from seeing the average. Once all applicants have
been graded, the faculty body sorts this table and examine
the top applicants to select the most suitable faculty candi-
date.

The Review table has the columns Author, AppName and
Grade. This table is filled out by faculty after they have eval-
uated the applicants. The Read permission for all columns
restricts read access to faculty only. The Grade Read per-
mission predicates that to view a grade, a user must either
be the author of the grade or must have graded the same
applicant already, and should not have a conflict with the
applicant. Note that the Read policy from the All Columns

field still affects this field, and the resulting policy is the
intersection of the two policies. The Add Row permission
specifies that only faculty can write new reviews. This
permission works together with the All Columns Write per-
mission, which restricts review edits to the author of the
review. The Validate check for the AppName field restricts
which values it can contain: it specifies that the new value
entered into the cell should not be a) the name of an ap-
plicant that has a conflict with the current faculty and b)
the name of an applicant already reviewed by the current
faculty. The AppName’ variable is bound to the new value
of AppName which will be inserted into the table if the write
check succeeds.

Figure 2.3 uses a slightly different interpretation of the
properties above to present two additional features, namely
dynamic tables and declassification: while individual re-
views are still hidden from faculty in case of conflicts, we
want to allow all faculty to view averages.

To show averages to all faculty, we leverage dynamic tables
to generate an additional BestApplicant table, which will

Faculty
Name

"Bell"
"Murphy"

Faculty Permissions
Name All Columns

Read
Write False
Init ""
Validate
Add Row False
Del Row False

Applicant
Name Conflicts AppReviews Average

owner ["Bell", "Murphy"] Review[AppName==Name].Grade AVG(AppReviews)
owner [] Review[AppName==Name].Grade AVG(AppReviews)

Applicant Permissions
Name Conflicts AppReviews Average All Columns

Read
user == owner
or user in Faculty.Name

Write False False False user == owner
Init owner [] Review[AppName=Name].Grade AVG(AppReviews)
Validate
Add Row
Del Row user == owner

Review
Author AppName Grade

owner "Smith" 4
owner "Doe" 3.5

Review Permissions
Author AppName Grade All Columns

Read

user == owner
or user in Review[
AppName==row.AppName

].Author
and user not in Applicant[

Name==AppName

].Conflicts user in Faculty.Name
Write False user == owner
Init owner "" 0

Validate

user not in Applicant[

Name==AppName’

].Conflicts
and user not in Review[
AppName==row.AppName

].Author
Add Row user in Faculty.Name
Del Row user == owner

Figure 5: Faculty Admission Application (Expression View)

list all applicants with a good average grade. Note that
BestApplicant, being a dynamic table, has no permission
information of its own: the permissions of its dynamic con-
tent depend on the permissions of the data that is being used
to generate the table. The table builds its contents from a
single WF expression, in this case a list construction for-
mula. The result of evaluating the dynamic table expression
must always be a list of tuples with the same keys, which
is used to fill out the rows and columns of the resulting
table. From the user’s point of view, a dynamic table is
accessed transparently through rows and columns like an
ordinary static table, except that its fields are read-only
and cannot be evaluated individually, because their value
depends on one single formula. This particular table uses
the intermediate results from Applicants’s column Reviews

to simplify the calculation of the average.
Note that here we use the privileged function TRUST, be-

cause faculty members need to see the average even in case
of conflicts. In a sense, we trust the AVG function to have
properly anonymized the confidential data. We point out
that, although this seems to weaken the security of Web-
Sheets, the state of the art in textual web applications is
that every single operation is trusted and has full privileges
by default, while here it requires a special construct that can
be used sparingly.

3. THE WF LANGUAGE
WebSheets cell and permission formulas are written in

WF, a simple, functional, pure, strongly-typed language.
The target audience of the language is the same non-pro-
grammers who are able to write Excel formulas.

Figure 7 shows the grammar for the language, which starts
from the nonterminal <expr>. INT, FLOAT, BOOL, STRING and
ID are returned by the lexer.

<expr> ->
INT

| FLOAT
| BOOL
| STRING
| ID
| ’[’ (<expr> (’,’ <expr>)*)* ’]’ ## list
| ’(’ ID ’=’ <expr> (’,’ ID ’=’ <expr>)* ’)’

named tuple
| <expr> <bin_op> <expr>
| <expr <un_op> <expr>
| ’(’ <expr> ’)’
| <expr> ’.’ <expr> ## selection
| <expr> ’{’ <expr> (’,’ <expr>)* ’}’ ## projection
| ID ’(’ (<expr> (’,’ <expr>)*)* ’)’ # function call
| ’if’ <expr> ’then’ <expr> ’else’ <expr>
| ’(’ <expr> ’for’ ID ’in’

<expr> (’,’ ID ’in’ <expr>)* [’when’ <expr> ’)’]
list construction

| <expr> ’[’ <expr> ’]’ ## list filtering
<binop> ->
<expr> ’+’ <expr>
... standard math and logic operators ...
| <expr> ’++’ <expr> ## list & tuple concatenation
| <expr> ’in’ <expr>
| <expr ’not in’ <expr>
<unop> ->
’not’ <expr>
| ’-’ <expr>

Figure 7: EBNF Grammar for the WF Language

Although the formulas are statically analyzed for depen-
dency calculation, the evaluation is entirely dynamic, i.e.,
type errors or unbound identifiers will only cause an error
at runtime. Evaluation will turn WF expressions into WF
values, potentially requiring evaluation of other dependent
cells in the spreadsheet. Identifiers are first looked up in
the environment, a context- dependent (name, value) map
containing information such as the current user, the current
table or the current column (when applicable). When an
identifier is not found in an environment, the name is as-
sumed to be table name, which can be further refined to
select a particular row or column.

Besides the usual scalar data types (Int, Float, Bool,
String), it supports two composite types:

• Lists: A (possibly empty) ordered collection of WF ex-
pressions, Lists can be concatenated, sliced and accessed
with the operations defined below.

• Named Tuples: A (possibly empty) unordered (key, value)

map. Tuples can also be merged, sliced or accessed.

Lists and Named Tuples are not provided just to express
application logic: WF’s semantics define a dualism between
table operations and WF values. At runtime, a WebSheets
table is represented as a list of named tuples: each element
of the WF list represents a table row, and each row is repre-
sented as a WF tuple, a map of column names to WF values
for that particular row.

Besides the usual unary and binary operators from math
and logic, manipulation of data in WF is supported by four
main constructs, which also have a dualism with table op-
erations:

• Selection: access a single element from a list ([5,6,7].1
-> 6), a single key-value from a named tuple ((a=1,b=2).a
-> 1), or perform tuple selection on all elements of a list
of named tuples ([(a=1,b=2),(a=3,b=2)].a -> [1,3]).
This is the WF equivalent of selecting one particular row,
cell or column of a table respectively.

• Projection: returns a subset of elements from a list ([5,6,

7]{0,1} -> [5,6]), multiple key-values from a named
tuple ((a=1,b=2,c=3){a,b} -> (a=1,b=2)), or multiple
columns from a list of named tuples: ([(a=1,b=2,c=3),
(a=3,b=2,c=5)].{a,c} -> [(a=1,c=3),(a=3,c=5)]).
This is the WF equivalent of selecting multiple rows, cells
or columns of a table respectively.

• List Construction: combines one or more lists to create a
new list. For example:

((a=b, c=d) for b in [1,2], d in [3,4]
when b+d>4)

-> [(a=1,b=4), (a=2,b=3), (a=2,b=4)]

This is the most general operator in the language. The
expression (a=b,c=d) is evaluated using different bindings
for b and d for each iteration. For example, the environ-
ment for the first iteration binds b to 1 and d to 3. The set
of bindings to iterate on represents the Cartesian product
of the lists supplied, and the result is a list containing all
the evaluations of (a=b, c=d) using all the bindings from
the Cartesian product. If expression returns a tuple, then
this is the WF equivalent of building a new table from
existing tables. The when clause can be used to filter rows
from the resulting table. In this case, the first binding
does not appear in the result because it is filtered out by
the clause. Many languages have an equivalent construct
called list comprehension. Functional programmers will
note how it performs both map and filter.

• List filtering : returns the subsets of elements that satisfy
the condition in brackets ([(a=1,b=2)][a-b>0] -> []).
The construct evaluates the condition in the context of
each element, and only includes the element in the result
if the condition evaluates to True. Note how the keys of
the tuple are automatically added to the environment for
each element. List filtering is particularly useful when the
WF list is actually a WebSheets table: Table[cond] effec-
tively performs table filtering, returning a subset of Table
whose rows all satisfy the condition cond. List filtering is a
shorthand for the list construction operator: e[c] == (v

for v in e when c), except that list construction does
not automatically add the keys of v to the environment
upon evaluation of c.

3.1 Values and Read Permissions
Evaluation of formulas is interleaved with evaluation and

propagation of read permissions (other permissions do not
need to be propagated and can be evaluated as needed).
Intuitively, the permission propagation semantics are simi-
lar to taint-tracking semantics [11] for ordinary operations
(e.g. addition: perm(a+b) = perm(a) && perm(b). Poten-
tial falsy values come from the evaluation of cells, either
indirectly because the cell’s value formula depends on an
unreadable cell, or directly because their permission formula
does not evaluate to True. The following formula informally
captures the semantics for a cell cell in a table t, row r

and column c:

perm(cell) =
eval(cell).perm &&
eval(perm_row(t,r)) &&
eval(perm_col(t,c))

This formula only considers permissions at row and column
granularity, but can be extended to support other levels (e.g.
perm_cell(t,r,c) for cell-level granularity).

WF values store their read permission along with their
value, except for Lists and Named tuples: operation on these

container types maintain information about the permission
of each element. This allows converting tables into lists of
named tuples back and forth without losing any permission
information. This is especially important to support dy-
namic tables, which are compressed into a single WF value
(which must be a list of named tuples) before they are spread
over multiple fields.

4. IMPLEMENTATION
We are implementing WebSheets as web application which

communicates with a backend server written in Haskell
through a JSON API. Through the web application, users
use the backend as a central repository of applications to
collaborate with other users.

The implementation of the backend server is currently in
the advanced prototype stage. Most essential features have
been completed. In particular, the following features have
been implemented:

• an LR parser for the WF language, based on the grammar
shown in Figure 7.

• static dependency analysis for WF formulas, to build a
support graph and recalculate a minimal amount of cells
when formulas change.

• support for both static tables and dynamic tables, as de-
scribed in Section 2.

• evaluation of data and permissions according to the se-
mantics informally specified in Section 3.

• access control on the backend operations, including cen-
sorship of values with invalid permissions.

On the other hand, some features have not yet been im-
plemented:

• no concurrency : concurrent reads are trivial to imple-
ment, but the implementation of concurrent writes re-
quires more care.

• incomplete API : several API operations have not been im-
plemented yet. For example, it is currently not possible to
edit table permissions at runtime. For the time being, we
rely on importing table pre-filled with permission formulas
from XLS files, with a format similar to the examples seen
in Section 2.

• HTML interface under development : the WebSheets code-
base supports two different interfaces: a textual, command-
line interface and a web interface using a JSON API.
Currently, only the former is fully functional.

5. BACKGROUND
VisiCalc [1] introduced spreadsheets in their modern form.

Since then, spreadsheets have enjoyed tremendous commer-
cial popularity. Unarguably, their main contribution to
modern computing and the reason for their success is that
they enabled non-programmers (accountants, administra-
tors, secretaries, etc) to enter, process and visualize data
in a tabular format [18, 22], effectively allowing them to
create full-fledged data-driven applications. The major tes-
tament to their ease-of-use is that users rarely refer to their
spreadsheets as applications.

The success of spreadsheets can be traced to a handful of
key features:

• User Interface: while textual programs are developed by
editing text files which operate on abstract data struc-

tures, spreadsheets programs enable users to organize
their data visually into concrete rows, columns and tables.

• Concrete Programming : because spreadsheet formulas
can only be used to calculate a single cell value, the non-
programmer is not bogged down by abstractions: the re-
lationships that make up formulas are always about cells
instead of columns, rows and tables.

• Instant feedback : while textual programs must be restar-
ted (and possibly recompiled) after their code is changed,
spreadsheets have update semantics that only recalculate
cells as needed, returning an updated state almost in-
stantly.

As far as commercial spreadsheets are concerned, the
spreadsheet paradigm has remained fundamentally the same
since the 1970s, and researchers have eloquently argued their
weaknesses [3, 7]:

• Code Duplication: the lack of abstraction mentioned above
is mitigated through generous use of copy & paste. For
example, to sum the contents of two columns of size n in
a third column, because of the lack of a map primitive, the
formula for C1 =A1+B1 is copied n times all the way to Cn.
When the formula is updated (e.g due to a bug) the user
must find and update all copies manually.

• Brittle References: There are two sources of brittleness.
Firstly, most spreadsheet products handle the aforemen-
tioned copy & paste by interpreting A1 and B1 as relative
references, which become Ai and Bi respectively when
copied into the i-th row. Although convenient, the seman-
tics are confusing to users and are a source of bugs. Sec-
ondly, because tables can share worksheets, the addition
of rows and columns can often move the cell referenced,
causing the original formula to refer to a different cell.

• Formulas and Macros: The formula language is very sim-
plistic, and many operations can only be achieved using
macros (e.g. define a reusable function). However, macros
can only be developed by programmers, which defeats the
purpose of using a spreadsheet for most users.

WebSheets preserve all the benefits of the basic spread-
sheet model, while mitigating some of its drawbacks: fixed
table schemas with column names reduce the brittleness
of formulas, while the WF language reduces the need for
a general-purpose imperative language for macros. While
this paper focuses on the advantages of using the familiar
spreadsheet model for the development of web applications,
future work will investigate further on how to overcome the
limitations imposed by the model. Solutions might be non-
technical in nature and rely on user training: Reference
[19] presents a meta-analysis on spreadsheet errors, and de-
scribes how software engineering advancements have yet to
make their way into spreadsheet development.

6. RELATED WORK
Although the programming languages community in gen-

eral has largely ignored spreadsheets [3], the functional pro-
gramming community has attempted to improve the para-
digm. Functional programmers have a closer relationship
with spreadsheets, mainly because spreadsheet computation
is a form of pure functional computation [22].

The related work in this area falls roughly into three
categories: extension and specialization of the paradigm
for a specific use case (e.g. web scraping), backwards-

compatible or user-friendly improvements that cater to non-
programmers (e.g. define functions in excel formulas), and
backwards- incompatible improvements that cater to pro-
grammers (e.g. replace Excel’s language with a full-fledged
functional language).
Domain-Specific Spreadsheets: this research area is mo-
tivated by the idea that spreadsheets are an incredibly pro-
ductive tool, but cannot be used in specific domains because
they lack necessary features. Vegemite [15] and Reference
[14] focus on importing and interacting with web data within
the spreadsheet paradigm. The former runs within the
browser to closely interact with web pages and offer macro
recording capabilities, to avoid repetitive tasks and define
web scraping macros, while the latter is an Excel add-on
focused on pulling data from a multitude of web services.
A1 [10] is a spreadsheet tool to simplify system administra-
tion. Unlike traditional spreadsheets, cells can contain Java
Objects and other cells can invoke these objects to display
the result of a computation. The paper also introduces
the concept of events, making the spreadsheet reactive in
the face of updates, timer intervals, etc. XCelLog [23] in-
troduces Deductive Spreadsheets, namely spreadsheets aug-
mented with a DataLog engine for policy development. With
its instant updates and tabular representation, the authors
argue that spreadsheets are a great fit for exploratory policy
development.
Spreadsheets for Non-Programmers: this research area
focuses on improving traditional spreadsheets while main-
taining their ease-of-use. Ideally, the changes should be
backwards-compatible and introduced gradually to the user.
Reference [13] introduces reusable functions written in tab-
ular form into Excel: currently, users must abandon the
spreadsheet paradigm and resort to Visual Basic macros
to define even the simples of functions. Tabular functions
use cells for input, output and intermediate computation
and allow the user to define functions completely within the
spreadsheet paradigm.
Spreadsheets for Programmers: these works attempt
to repackage the spreadsheet paradigm with programmer-
friendly features. Reference [24] augments Excel with the
possibility of calling externally defined Haskell Functions by
communicating with an external Haskell interpreter. Ref-
erence [6] details the implementation of a Spreadsheet En-
gine and UI using the Clean Language, a lazy functional
language. Haxcel [16] presents a Spreadsheet-like interface
for Haskell development. Reference [26] describes Mini-SP, a
language for spreadsheets focused on supporting non- trivial
control flow and message passing among cells. Reference [5]
discusses how functional and object-oriented features can
come together in the spreadsheet paradigm.

Overall, none of the papers discussed above are similar
to WebSheets, because they focus on improving spreadsheet
usability (for a particular task, for non-programmers and
for programmers respectively), while WebSheets expand the
applicability of the spreadsheet paradigm to an entire new
class of applications, namely web applications.
Web Application Policies Another area of related work
is about retrofitting a more principled approach to security
in the textual web applications paradigm.

GuardRails [2] discusses modifying Ruby On Rails (RoR),
a popular MVC Ruby Web Application Framework, and
provides a source-to-source translator to add data-centric
policy enforcement in exiting RoR applications. Since the

Model in RoR is always accessed and manipulated through
ActiveRecord objects (Object-Oriented interfaces to the un-
derlying database), GuardRails allows attaching policies to
these objects, so that policy checks can be enforced by the
framework itself when application code operates on the ob-
jects. This separates the application logic from the security
policies.

Resin [25] also separates application logic from security
policies, but in a more generic way. It defines policy objects
(e.g. only readable by admin) and filters (e.g. HTML out-
put). Policy objects are attached to data; Resin modifies
the runtime to propagate policy objects along with data;
when data with a policy objects passes through a filter,
the filter and the policy object work together to perform
a policy check. The combination of policy objects, data
tracking and filters have similar capabilities to information-
flow control (IFC). Aeolus [4] and SAFEWEB [12] have sim-
ilar goals, but apply more familiar IFC concepts, propagat-
ing confidentiality and integrity labels. Besides performing
IFC on the server, Hails [8] also enforces privacy policies
on the browser against data leaks. Reference [20] also per-
forms IFC, but uses Erlang message-passing capabilities and
lightweight threads with an actor-based architecture to en-
force isolation and label tracking at the language level.

CLAMP [21] is a modification to the traditional LAMP
stack that enforces strong isolation between users, to limit
the damage from not only missing checks, but also malicious
code. The architecture uses Virtual Machines to serve each
user from a dedicated server, and a SQL proxy enforces a
different policy for each user.

The main contribution of these works in relation to Web-
Sheets is the realization that current security practices in
web applications have much to be desired, which stimulated
us to seek a more principled approach from the ground up.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented WebSheets, an extension

to the spreadsheet paradigm to allow non-programmers to
build web applications. We extended traditional spread-
sheets with data-centric policies expressed through meta-
data tables and presented WF, a simple functional language
tailored to non-programmers.

The paper uses 3 examples to claim that a) many web ap-
plications can be easily expressed with this paradigm, and b)
that policies can be easily developed by non-programmers.
Given that the prototype and the examples presented are
small scale, we cannot conclusively establish claim b). How-
ever, this remains one of our main motivations and one of
the primary directions for future work.

What this paper shows is that for simple web applications,
policies are not overly complex, and more importantly, the
functionality of the application is a direct consequence of
the policy.

8. REFERENCES
[1] D. Bricklin. VisiCalc: Information from its creators.

http://www.bricklin.com/visicalc.htm, 2014.

[2] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and
D. Evans. Guardrails: a data-centric web application
security framework. In USENIX WebApps, 2011.

[3] R. J. Casimir. Real programmers don’t use
spreadsheets. ACM SIGPLAN ’92.

[4] W. Cheng, D. R. Ports, D. A. Schultz, V. Popic,

http://www.bricklin.com/visicalc.htm

A. Blankstein, J. A. Cowling, D. Curtis, L. Shrira, and
B. Liskov. Abstractions for usable information flow
control in aeolus. In USENIX ATC, 2012.

[5] C. Clack and L. Braine. Object-oriented functional
spreadsheets. In Glasgow Workshop on Functional
Programming, 1997.

[6] W. A. De Hoon, L. M. Rutten, and M. C. D. van
Eekelen. Implementing a functional spreadsheet in
clean. Journal of Functional Programming, 1995.

[7] C. H. Q. Forster. Programming through spreadsheets
and tabular abstractions. J. UCS, 2007.

[8] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazieres,
J. C. Mitchell, and A. Russo. Hails: Protecting data
privacy in untrusted web applications. In OSDI, 2012.

[9] Google. Google Sheets.
https://www.google.com/sheets/about/, 2015.

[10] E. M. Haber, E. Kandogan, A. Cypher, P. P. Maglio,
and R. Barrett. A1: Spreadsheet-based scripting for
developing web tools. In LISA, 2005.

[11] D. Hedin and A. Sabelfeld. Information-flow security
for a core of javascript. In CSF 2012.

[12] P. Hosek, M. Migliavacca, I. Papagiannis, D. M. Eyers,
D. Evans, B. Shand, J. Bacon, and P. Pietzuch.
Safeweb: A middleware for securing ruby-based web
applications. In Proceedings of the 12th International
Middleware Conference, 2011.

[13] S. P. Jones, A. Blackwell, and M. Burnett. A
user-centred approach to functions in excel. In ACM
SIGPLAN, 2003.

[14] W. Kongdenfha, B. Benatallah, J. Vayssière,
R. Saint-Paul, and F. Casati. Rapid development of
spreadsheet-based web mashups. In WWW ’09.

[15] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau.
End-user programming of mashups with vegemite. In
International conference on Intelligent user interfaces.
ACM, 2009.

[16] B. Lisper and J. Malmström. Haxcel: A spreadsheet
interface to haskell. In Workshop on the
Implementation of Functional Languages, 2002.

[17] Microsoft. Office 365.
https://products.office.com/en-US/, 2015.

[18] B. A. Nardi and J. R. Miller. The spreadsheet
interface: A basis for end user programming.
Hewlett-Packard Laboratories, 1990.

[19] R. R. Panko. What we know about spreadsheet errors.
Journal of Organizational and End User Computing,
1998.

[20] I. Papagiannis, M. Migliavacca, D. M. Eyers,
B. Shand, J. Bacon, and P. Pietzuch. Enforcing user
privacy in web applications using erlang. W2SP,
Oakland, CA, 2010.

[21] B. Parno, J. M. McCune, D. Wendlandt, D. G.
Andersen, and A. Perrig. Clamp: Practical prevention
of large-scale data leaks. In IEEE S&P, 2009.

[22] P. Sestoft. Implementing function spreadsheets. In
ACM Workshop on End-user software engineering,
2008.

[23] A. Singh, C. Ramakrishnan, I. Ramakrishnan, S. D.

Stoller, and D. S. Warren. Security policy analysis
using deductive spreadsheets. In ACM workshop on
Formal methods in security engineering, 2007.

[24] D. Wakeling. Spreadsheet functional programming.
Journal of Functional Programming, 2007.

[25] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow
assertions. In ACM SIGOPS, 2009.

[26] A. G. Yoder and D. L. Cohn. Real spreadsheets for
real programmers. In International Conference on
Computer Languages. IEEE, 1994.

https://www.google.com/sheets/about/
https://products.office.com/en-US/

	1 Introduction
	2 Overview
	2.1 TODO-list
	2.2 Event RSVP
	2.3 Faculty Candidate Review

	3 The WF Language
	3.1 Values and Read Permissions

	4 Implementation
	5 Background
	6 Related Work
	7 Conclusions and Future Work
	8 References

