
Securing Web Applications

A Dissertation presented

by

Riccardo Pelizzi

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

May 2016

Stony Brook University

The Graduate School

Riccardo Pelizzi

We, the dissertation committe for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

R. Sekar - Dissertation Advisor
Professor, Department of Computer Science

Scott Stoller - Chairperson of Defense
Professor, Department of Computer Science

Nikolaos Nikiforakis - Committee Member
Professor, Department of Computer Science

William E. Robertson - External Committee Member
Professor, Department of Computer Science, Northeastern University

This dissertation is accepted by the Graduate School

Charles Taber
Dean of the Graduate School

ii

Abstract of the Dissertation

Securing Web Applications

by

Riccardo Pelizzi

Doctor of Philosophy

in

Computer Science

Stony Brook University

2016

Over the past decade, web application vulnerabilities have become far
more common than vulnerabilities in conventional applications. To mitigate
them, we approach the problem from two extremes: one that requires no
changes to existing applications but is limited to a few well-defined vulner-
ability classes, and the second that provides a comprehensive solution but
requires a re-thinking of web applications.

Our first approach mitigates specific vulnerabilities using policies that
do not depend on the application logic, and thus require no developer in-
volvement or effort. We target two of the most common high-profile vul-
nerabilities, namely, cross-site scripting (XSS) and cross-site request forgery
(CSRF). The solutions we have developed are very effective, efficient, and
represent significant advances over previous research in these area.

Unfortunately, some of the more subtle and complex vulnerabilities arise
due to a lack of specification of security policies, and due to the ad-hoc way
in which they are enforced within application code. We therefore propose a
new way to develop web applications that separates and decouples security
policy from application logic. Our proposal, called WebSheets, provides a
simple and intuitive language for policy specification, based on the familiar
spreadsheet paradigm. A spreadsheet model is natural because web appli-

iii

cations typically operate on tabular data. As a result, we show that the
logic of many simple web applications is nothing more than a specification
of security policies, and hence a WebSheet security specification is all that is
needed to realize them. This dissertation presents the WebSheet model, and
describes proposed work aimed at developing and implementing the model,
and demonstrating its ability to secure a range of significant web applications.

iv

Dedicated to

My fiancée Lisa, who supported me through this journey and gave me the
strength and the motivation to overcome all obstacles and finish

&

My parents Roberto and Grazia, who taught me to aspire to greatness and
set the foundations for my success

v

Table of Contents

1 Introduction 1
1.1 Black-Box Automatic Defenses 2
1.2 Towards a principled approach 4
1.3 Contributions . 7

1.3.1 XSSFilt . 7
1.3.2 jCSRF . 8
1.3.3 WebSheets . 9

I Black-Box Defenses 10

2 XSSFilt: Protection, Usability and
Improvements in Reflected XSS Filters 11
2.1 Background on XSS Attacks 11
2.2 Limitations of existing filters 13
2.3 Overview of XSSFilt and Contributions 16
2.4 Design . 17

2.4.1 XSSFilt Overview . 17
2.4.2 Identifying Reflected Content 19
2.4.3 XSS Policies . 22

2.5 Implementation . 24
2.5.1 Deployment on the PaleMoon browser 25

2.6 Evaluation and Comparison 27
2.6.1 Protection Evaluation 27
2.6.2 Compatibility Evaluation 30
2.6.3 Partial Injection Prevalence 33
2.6.4 Performance Evaluation 35
2.6.5 Security Analysis . 36

2.7 Related Work . 38
2.7.1 Systematization of XSS Filters 38
2.7.2 New Surveys and Attacks 47

3 jCSRF: A Server- and Browser-Transparent CSRF Defense
for Web 2.0 Applications 50
3.1 Approach Overview . 53

3.1.1 Injecting jCSRF-script into web pages 56

vi

3.1.2 Protocol for Validating Requests 57
3.1.3 Design and Operation of jCSRF-script 62

3.2 Evaluation . 65
3.2.1 Compatibility . 65
3.2.2 Protection . 66
3.2.3 Performance . 67

3.3 Related Work . 68
3.3.1 Server-side Defenses 68
3.3.2 Browser Defenses . 70
3.3.3 Hybrid Defenses . 71

II Principled Security for Web Applications 73

4 WebSheets 74
4.1 Overview . 76

4.1.1 TODO-list . 76
4.1.2 Event RSVP . 80
4.1.3 Faculty Candidate Review 82

5 Language and Design 87
5.1 The WF Language . 87
5.2 Semantics . 91

5.2.1 Simplified Semantics 91
5.2.2 Comparison with other DIFC systems 94
5.2.3 Semantics vs. Implementation 97

5.3 Implementation . 99
5.3.1 Overview . 100
5.3.2 Expression View . 102
5.3.3 Value View . 102
5.3.4 Editing Tables . 105
5.3.5 Dependency Recalculation 107
5.3.6 Built-in Functions . 110
5.3.7 Scripts . 111
5.3.8 Status . 112

vii

6 Evaluation 115
6.1 Case Study . 115

6.1.1 HotCRP . 115
6.2 Covert Channels . 124
6.3 Security of WebSheets . 127

7 Related Work 131
7.1 Spreadsheets . 131
7.2 Information-Flow Control . 134
7.3 Principled Security in Web Applications 137

8 Conclusions 139

References 141

viii

Acknowledgements

First and foremost, I want to thank my advisor, Prof. R. Sekar. He
taught me everything I know about being an academic scholar. He guided
me and supported me during this whole journey, never giving up on me, even
when I was too stubborn or lazy to take his advice or learn from his teachings.
After many years, I am hopeful that some of his knowledge, compassion and
work ethic rubbed off on me, and that I am finishing the Ph.D. program as
a better person. There were troubled, stressful times when I doubted that a
Ph.D. was the best use of my time and energy, or that I had what it takes to
finish, but I never doubted for a second that I had the best advisor I could
ask for.

I must also thank him for providing continuous financial support – not
once did I have to worry about funding, which allowed me to concentrate on
my research full-time. Speaking of funding, I want to formally acknowledge
the grants that have made my research possible: NSF grants CNS-0831298
and CNS-1319137, ONR grant N00014-07-1-0928 and AFOSR grant FA9550-
09-1-0539.

I would also like to thank my dissertation committe for dedicating their
time and providing constructive criticism. On the same note, I also want to
thank Prof. Donald Porter, who did not end up in the final committee, but
provided invaluable feedback on an earlier iteration of this document.

I must also thank all my colleagues and friends, who made working at
Stony Brook an enjoyable experience. In particular, I want to thank my
colleagues from the System Security Lab: Alireza, Tung, Niranjan, László,
Peter, Mingwei, Rui and Nahid; my roommates from Terryville 228: Heraldo,
Jon and Navid; my roommate Puneet; and my Italian friends: Giulia, Luisa
and Andrea.

Last but not least, I want to thank my family and my fiancée for their
unconditional love and support. Academic research can sometimes leave you
feeling directionless, but I could always count on them to provide structure
and purpose.

ix

Introduction 1

1 Introduction

The evolution of the World Wide Web from a limited set of static HTML
pages to a vast network of interconnected dynamic web applications has
drastically changed the vulnerability scenario. While traditional applications
are written in low-level, unsafe languages such as C, web applications are
written using high-level, type safe languages such as PHP and Python. The
most common vulnerabilities found in programs written in unsafe languages
are memory errors, such as buffer overflows. However, the threat of memory
errors is largely a non-issue for web applications: they are plagued by a
fundamentally different set of vulnerabilities, which must be studied and
mitigated separately. As the web application model becomes more and more
popular, replacing not only traditional server applications (e.g. POP3 Mail
Servers, which have been replaced by Webmail portals such as GMail), but
also desktop applications (e.g. Microsoft Office, which is now also sold as
a SaaS web application), the ratio of memory errors to web vulnerabilities
keeps shifting in favor of the latter. According to the Common Vulnerabilities
and Exposures (CVE) list, web vulnerabilities are now more common than
traditional memory errors [31]. Thus, mitigating web vulnerabilities, which
are often the result of logic errors rather than bugs regarding low-level details
such as the length of a buffer on the stack, is becoming increasingly more
important.

Many of these vulnerabilities share the same root cause: while the aware-
ness about web vulnerabilities has increased in the past decade, developers
still follow the same unprincipled approach towards security: namely, the
security policy of web applications is implemented using ad-hoc checks scat-
tered throughout the codebase and mixed with the application logic, and
vulnerabilities are addressed and fixed after they are found and reported.
This unprincipled, reactive approach to security leads to “lock the barn door
after the horse is stolen” situations, because between the time the vulnera-
bility is first exploited and the time it is fixed, the attack has usually caused
considerable damage. For example, the United States Office of Personnel
Management (OPM) was the victim of a major data leak in 2014 that in-
volved 21.5 million records, including highly sensitive data such as SSNs,
fingerprints and security clearance information [97]. The leak has since been
stopped, but the damage cannot be undone: requesting a new SSN is a
tedious, ineffective process that damages the victim’s credit history and re-
quires proof of an ongoing misuse, which rules data breaches out as a valid

Introduction 2

reason until the data is actually used for identity theft [13]. Worse, the
attackers now possess fingerprint data that will forever identify these indi-
viduals. Consider the possibility that a US covert agent can now be identified
by a foreign government using data from this leak.

Intuitively, the best solution to the problem of scattered security checks
is to extract them by analyzing the informally specified policy and express
them in a way that is not intertwined with the application logic. However,
this clashes with the reality of web development; most web developers have
limited experience with policy specification and are tasked with developing
new features instead of improving the security of legacy code; it is very cum-
bersome for them to think about the security policy informally implemented
by their checks, especially considering the time constraints they are subject
to.

Given that developer’s incentives and skills are not aligned with security,
it is important to provide usable security for web applications. We tackle
the problem from two different perspectives: firstly, we focus on providing
defenses with the widest applicability, that is, defenses for the most com-
mon vulnerabilities that require no programmer effort; then, we envision a
rearchitecting of how web application are written to provide broader security
guarantees.

1.1 Black-Box Automatic Defenses

To maximize the practical impact of our research work, the first part of this
dissertation focuses on defenses with the broadest applicability. In particular,
we realized this goal through two main design decisions:

• focus on the most common vulnerabilities : some classes of vulnerabili-
ties are more prevalent than others. Their popularity is a combination
of many factors, such as how easy it is to write code free of such vulner-
abilities, how low the barrier of entry is for new attackers, etc. Many
security firms and non-profit initiatives (such as CVE) collect statisti-
cal data on real-world vulnerabilities and compile lists of top vulner-
abilities. In particular, the Open Web Application Security Project
(OWASP), a non-profit organization dedicated to educating the public
on web application security, aggregates data from several sources and
maintains a Top 10 list [133] of web application vulnerabilities. Note
that vulnerabilities such as Cross-Site Scripting (XSS) and Cross-Site

Introduction 3

Request Forgery (CSRF) are “staple vulnerabilities”, appearing in ev-
ery edition since 2007.

• require no programmer effort : although all vulnerabilities ultimately
reflect a weakness in the security policy of a specific web application,
some can be discovered and exploited with little knowledge of the web
application internals, because the fault is largely independent of the rest
of the security policy and application logic. This usually implies the
presence of a recurring unsafe pattern, which security researchers can
leverage to provide an automatic defense. We refer to these defenses
as black-box defenses : because they are independent of the internals,
their deployment and configuration effort are simple or non-existent.

In this dissertation we chose to focus on XSS and CSRF, two popu-
lar vulnerabilities which can both be addressed using black-box defenses.
Both vulnerabilities are technically server-side vulnerablities, but success-
ful attacks damage the integrity and confidentiality of end users’ data. An
XSS vulnerability allows an attacker to inject malicious script content in
web pages returned to victim users, bypassing the basic isolation mechanism
known as the Same-Origin Policy. Because the injected content runs with the
website’s full privileges on the victim’s browser, the attacker can steal confi-
dential information, impersonate the user (e.g. take over his online banking
session [101]) or even use his browser to perform internal network scans and
DDos attacks [44]. On the other hand, a CSRF vulnerability allows an at-
tacker to abuse the credentials of the website’s users, tricking the browser of
the victim into performing an unauthorized request. For example, CSRF vul-
nerabilities have been exploited on banking sites to transfer money from the
victim to the attacker’s account [148]. Other entries from the aforementioned
OWASP Top 10 list are either problematic to mitigate without developer in-
put (e.g. Sensitive Data Exposure), are not relevant to web applications (e.g.
Insecure Direct Object References), or have been tackled and mitigated by
a great deal of previous work (e.g. SQL Injection (SQLI) and OS Command
Injection [118, 5, 45, 49]).

To protect against these two vulnerabilities, this thesis presents XSSFilt
and jCSRF, two defenses against XSS and CSRF respectively. In particular,
XSSFilt proposes a new filter architecture that avoids the problems found in
previous filters such as IE8’s XSS filter and XSSAuditor, covering a greater
number of XSS vectors; jCSRF protects existing web applications by auto-

Introduction 4

matically rewriting outgoing HTTP responses, augmenting web pages with
the ability to authenticate not only same-origin but also cross-origin requests.

With respect to the problems of ad-hoc checking that plague traditional
web applications, these defenses provide a limited, yet significant improve-
ment: for a specific vulnerability (and a subset of its attack vectors), they
provide protection for the entire web application, including its corner cases
and unfamiliar or untested features. Moreover, because these defenses do not
rely on the underlying application logic or policy, when the web application
is modified the defense is immediately effective on the new codebase, thus
doing away with the need for maintenance of the defense itself.

1.2 Towards a principled approach

Unfortunately, black-box defenses have a major limitation: they are vulnera-
bility-specific defenses that block attacks based on how the attacks bypass
the security policy, not whether the policy is bypassed at all. This means
that they protect against some ways to bypass the security policy informally
expressed in the application logic, but not all of them. For example, an
ideal XSS filter is supposed to prevent attackers from inserting unauthorized
scripts, thus prohibiting an attacker from reading HTTP responses and DOM
nodes that are meant for another user. However, most real-world XSS filters
only defend against one specific way of inserting scripts, namely injection
of reflected content into the HTML response. Unfortunately, this is not the
only way information can leak out: there are other ways to inject script
content (i.e. stored XSS, where there is no immediate relationship between
request and response), and there are countless other ways to access the same
piece of data that do not involve injection of unauthorized scripts altogether.
For example, a SQLI attack can extract the data directly from the web
application database without involving the victim’s browser, or a bug in
the authentication implementation may allow the attacker to impersonate
a particular user without stealing his session cookies. It is hard to offer a
black-box protection that covers against all these different vectors, especially
considering that each vulnerability can be exploited in different ways.

To provide broader protection, it is beneficial to take a step back and ap-
proach the problem from a different perspective: although there are countless
vulnerabilities representing even more attack vectors, perhaps there is a root
cause to all these vulnerabilities? In that case, addressing it would prevent
exploitation of any of them. If not a root cause, perhaps a common goal to

Introduction 5

all these attacks? If so, addressing it would reduce or nullify the damage
caused by successful exploits. Indeed, we believe that data theft is the end
goal of most attacks in the wild. Small-scale data theft involves stealing the
credentials of a specific user, to exploit his specific permissions or to steal his
personal information (e.g. as a stepping stone for a spear phishing attack).
On the other hand, large-scale data leaks involve millions of users, whose
data is harvested for its resale value. The latter kind of attacks are steadily
on the rise, almost quadrupling from 2011 to 2015 [117]. For example, 80
million records containing sensitive personal information such as SSNs were
stolen from Anthem, the second largest insurance provider in the US [57].

Regardless of their scale, these are all attacks on the confidentiality of the
data of each user, and stopping them brings us back to the core problem of
web application development we already discussed: the security of the user’s
data does not have a first-class role, and the privacy policy is implicitly
implemented using checks scattered throughout the application logic. This
approach has many major drawbacks:

• Hard to cover all cases. Because enforcing a specific policy requires
placing the same check many times throughout the codebase, it is easy
to forget one check and cause a vulnerability. For example, phpMyAd-
min requires 1409 checks for user input sanitization alone. Unsurpris-
ingly, its developers forgot a handful of checks, resulting in vulnerabil-
ities [145].

• Lack of separation of concerns. Large, complex projects benefit from
division of labor: each developer is tasked with implementing or main-
taining different pieces of the codebase. Nowadays, it is common to
have a separate security team that handles the security concerns of
the project. However, the existing approach prevents policy and ap-
plication logic developers from operating on different code that can be
independently reviewed.

• Difficult to maintain. Maintenance is even more problematic than the
initial development itself: if the informally specified policy must be mod-
ified (either because of a bug fix or to accommodate for a new feature),
the developers must track down and update all checks.

• No least-privilege principle. Since the application logic itself performs
all checks and controls access to all of the data, it must therefore have

Introduction 6

access itself to all the data: there is no application of the least privilege
principle. If the ad-hoc policy has a bug that allows an attacker to
execute custom code (or SQL query, Shell Command, etc.), there is
no limit to the damage or the extent of the data leak. While this is
standard practice in web application development, we note that OS de-
velopers would balk at the idea of trusting userspace applications (e.g.
a Word Processor) to enforce system-wide policies such as checking for
file permissions!

• No formal verification or analysis. Because the security policy is scat-
tered throughout the codebase and and written in a high-level language
with complex semantics, it is virtually impossible to provide the deve-
loper with analysis tools to formally verify the policy, or at least check
for a restricted set of desirable security properties.

In this thesis, we devise a new approach that avoids these drawbacks.
While we break away from traditional web application development, we have
a chance to solve two important problems simultaneously:

• The technical problem of bug-free policy development. Traditional de-
velopment practices force developers to convert the high-level policy
they devised into low-level checks scattered throughout the application
logic. This is an error prone process: as we have seen, the same checks
need to be repeated into several code paths to avoid introducing a data
leak.

• The non-technical problem of conflicting security concerns. Often, ap-
plication developers and end users are fundamentally different actors.
Although the former can provide a baseline privacy policy that works
for common use cases, developers are mostly focused on implementing
the core functionality of the application (i.e. the application logic),
forgoing support for fine-grained policies. Moreover, the best way to
avoid support calls is to enforce relaxed policies that avoid security
failures. Instead, it is the end users who ultimately know which pieces
of information are sensitive and who should be given access to them.

To understand what’s at stake when solving the technical problem of pol-
icy errors, consider the recent Voter Database leak [39]: a security researcher
discovered a publicly exposed database of information on 191 million voters

Introduction 7

due to a web application misconfiguration. If developers could specify the
privacy policy of voter records using a high-level policy framework that auto-
matically performs the necessary low-level checks, it would be easy for them
to prevent exposure to attackers. A sensible policy would expose the data
only to allowed officials; in this case, the developers would understand the
need to keep this information secret and the policy is cut and dry. However,
other kinds of information require support for fine-grained policy that are
controlled by the end user. In this case, the non-technical problem of mis-
matching security concerns plays a part. Consider a social network: while
many users are privacy conscious, developers do not have a strong incentive
to provide fine-grained privacy controls, as the success of most social net-
works depends on providing a simple interface that users leverage to share
the most amount of data possible to the widest audience.

In this thesis, we start from a clean slate and envision a new web applica-
tion development paradigm where users retain control of their data and can
specify a privacy policy that follows the data throughout the web applica-
tion. Support for high-level policy development has already been retrofitted
into existing web application practices using Mandatory Access [100, 15] and
in particular Decentralized Information-Flow Control [87, 145, 42] (DIFC).
However, none of these works directly empower end users to provide their
own policies. The new paradigm is based on the spreadsheet model: applica-
tion logic and user data is entered in data tables, while the security policies
are defined through permission tables. Both types of tables can contain not
only immediate values, but also formulas which can refer to other table cells,
just like an ordinary spreadsheet.

1.3 Contributions

This dissertation describes two black-box defenses, XSSFilt and jCSRF, and a
new web application development paradigm focused on security, WebSheets.
Below, we detail our contributions.

1.3.1 XSSFilt

We present XSSFilt, a client-side, browser-resident black-box defense against
reflected and DOM-Based XSS attacks. XSS was a natural choice for our
purposes, because it has consistently been among the top threats for web
applications [133]. Previous work on automatic XSS defenses has mostly

Introduction 8

focused on static HTML filtering [63, 118, 108], comparing pairs of HTTP
requests and responses for injection of script content.

Performing XSS filtering on the HTML response has two major short-
comings: firstly, it is vulnerable to “browser quirks”, non-standard parsing
exceptions built into each browser’s HTML parser. For example, Firefox con-
siders <script/hello src=...></script> to be a valid script tag. Since
the filter needs to correctly identify which parts of the response represent
code that will be executed, non-standard behavior can be exploited to con-
fuse the filter. Secondly, static filtering cannot protect against DOM-Based
XSS attacks, a variant of XSS where the malicious content does not appear in
the HTML response and is only introduced at runtime by existing JavaScript
code. In this case, static filters cannot speculate on the runtime behavior of
an HTTP response.

To provide immunity against browser quirks, XSSAuditor [7] proposed a
new filter architecture that tightly integrates with Google Chrome’s HTML
parser, which guarantees consistent detection of script content in the HTML
response. However, the architecture does not fully address the problem of
DOM-Based attacks, because the majority of DOM-Based vectors never in-
teract with the HTML parser. Moreover, the matching algorithm used by
XSSAuditor does not account for arbitrary string transformations performed
by the web application and partial injections, where malicious javascript con-
tent is injected into an existing script.

XSSFilt solves all the aforementioned problems: a new architecture pro-
vides complete coverage of DOM-Based XSS vectors and an approximate
substring- matching algorithm is used to account for arbitrary string trans-
formations and to cover the partial injection vector. Thanks to its improve-
ments, XSSFilt is able to detect more attacks than other state-of-the-art
black-box XSS defenses. The filter was eventually deployed in the Palemoon
web browser, an open-source Firefox fork with over 500,000 users.

1.3.2 jCSRF

We also present jCSRF, a CSRF defense for Web 2.0 Applications. Although
writing code free of CSRF vulnerabilities is conceptually simple, requiring
only the use of a nonce for all sensitive requests, CSRF vulnerabilities are
still common. Even to this day, CSRF vulnerabilities are regularly found in
router firmware, which enable attackers to gain access to the router’s internal
network and possibly intercept its traffic [130].

Introduction 9

Researchers have already proposed several CSRF defenses [66, 64, 28, 96,
143, 120]. However, they all suffer from limited applicability, because they
either a) require access to the source code or knowledge of the web application
internals (i.e. they are not black-box defenses), b) require modification to
existing WWW standards (e.g., a new HTTP header), c) are incompatible
with dynamically generated requests (e.g., XMLHttpRequests) and d) cannot
support certification of cross-origin requests.

jCSRF is a novel CSRF defense that does not suffer from any of the
above drawbacks. It operates by interposing transparently on the communi-
cation between clients and servers, modifying HTML responses and adding
a script that authenticates both same-origin and cross-origin requests. Our
prototype implementation is a server-side proxy that requires no configura-
tion, no changes to the web application and no special browser extensions or
modifications on the browser.

1.3.3 WebSheets

Finally, this dissertation presents WebSheets, a new web application develop-
ment paradigm based on the spreadsheet model that focuses on principled se-
curity. Instead of focusing on black-box defenses that require no programmer-
effort, we take a complementary approach and design a new paradigm to
provide security conscious developers the ability to specify security policies
that are not scattered across the application logic.

The paradigm has two main goals: firstly, give security a first-class role,
making it easy for developers to specify and maintain the policy for a web
application; secondly, we want to empower users to keep control of their data:
instead of signing off their data to the web application, putting its secrecy
at the mercy of the web application developers, we let users specify a policy
for their own data, which the runtime enforces as the data is manipulated
by untrusted parties.

To achieve these two goals, we leveraged the spreadsheet model, augment-
ing it by associating a permission cell to each data cell and using Mandatory
Access Control to automatically enforce the respective permission wherever
data from a cell is used for a computation. The choice of basing WebSheets
on the spreadsheet model is not arbitrary: if users are to specify their own
policies, we need to provide a familiar interface for them.

Our prototype implementation is a Node.js application where users can
create and share websheets.

Part I

Black-Box Defenses

XSSFilt 11

2 XSSFilt: Protection, Usability and

Improvements in Reflected XSS Filters

This section presents XSSFilt, our defense against reflected and DOM-Based
XSS attacks. The reason for focusing on XSS is simple: XSS has consistently
been among the top threats for web applications (#1 in the 2007 edition of
the OWASP Top 10, #2 in the 2010 edition and #3 in the 2013 edition). In
terms of raw numbers, it is one of the most commonly reported vulnerabil-
ities: in 2011, XSS vulnerabilities accounted for 14.7% of all reported CVE
vulnerabilities. xssed, a famous repository of XSS vulnerabilities, currently
hosts more than 40000 individual vulnerabilities. Before, we dwelve into the
specifics of our defense, we provide some background information about XSS
attacks. In particular, we present a simple example and explain the difference
between feflected, DOM-Based and stored XSS attacks.

2.1 Background on XSS Attacks

An XSS attack involves three entities: a web-site that has an XSS vulner-
ability, a legitimate user of this web-site, and the attacker. The attacker’s
goal is to be able to perform sensitive operations on the web-site using the
credentials of the legitimate user.

Although an attacker is able to run his code on the user’s browser, the
same-origin policy (SOP) of the browser prevents his code from stealing the
user’s credentials, or observing any data exchanged between the user and the
web-site. To overcome this restriction, the attacker needs to inject his code
into a page returned by the web-site to the user. An XSS vulnerability in
the web-site allows this to happen.

Exploiting an XSS vulnerability involves three steps. First, the attacker
uses some means to deliver his malicious payload to the vulnerable web-site.
Second, this payload is used by the web site during the course of generating
a web page (henceforth called a victim page) sent to the user’s browser. The
left side of Figure 2 shows an example of a vulnerable page that uses a user-
supplied parameter id to construct the href parameter via document.write,
while the right side shows an example payload. In this case, the payload does
not need to open a new script tag because it is already contained in one;
rather, it closes the string where the parameter is supposed to be confined
and writes additional JavaScript code.

XSSFilt 12

If the web site is not XSS-vulnerable, it would either discard the malicious
payload, or at least ensure that it does not contribute to code content in its
output. However, if the site is vulnerable, then, in the third step, the user’s
browser would end up executing attacker-injected code in the page returned
by the web site.

There are three approaches that an attacker can use to accomplish the
first step:

• In a stored XSS attack, the injected code first gets stored on the web-
site in a file or database, and is subsequently used by the web-site while
constructing the victim page. For instance, consider a site that permits
its subscribers to post comments. A vulnerability in this site may allow
the attacker to post a comment that includes <script> tags. When
this page is visited by the user, the attacker’s comment, including his
script, is included in the page returned to the user.

• In a reflected XSS attack, an attacker lures a user to the attacker’s web
page, or to click on a link in an email. At this point, the user’s browser
launches a GET (or, in some cases, POST) request with attacker-chosen
parameter values. When a vulnerable web site uses these parameters in
the construction of its response (e.g., it echoes them into the response
page without adequate sanitization), the attacker’s code is able to ex-
ecute on this response page. The widespread prevalence of spam and
scam emails (and web sites) make reflected XSS relatively easy, hence
their popularity among attackers. For example, Figure 1 shows how a
reflected attack can be carried out on a vulnerable website: maliciously
crafted input can open a script node in the middle of the page and
execute JavaScript code in the context of the web application. This
code will thus have access to the domain cookies, and may send them
to an external location controlled by the attacker.

• In a DOM-Based XSS attack, the attacker also tricks the user into per-
forming a request to the vulnerable site containing a malicious payload.
However, the attacker does not exploit a vulnerability in the server-side
logic, and the malicious payload is not present at all in the response
(or if present, it does not introduce script code). Instead, the attacker
exploits a vulnerability in the JavaScript code executed by the browser:
the DOM API exposes a handful of properties that can be controlled
by the attacker (e.g. document.location and window.name), and if

XSSFilt 13

Server Code

<h1 >0 search results returned for <?=$ GET["term"];?></h1>

Malicious URL

http://a.com/search?term=<script >

document.location=’http :// evil.com/’ + document.cookie

</script >

Figure 1: Reflected XSS Example

the attacker can trick existing benign code into using this information
to create new JavaScript content (e.g. using an existing call to eval),
he can execute his own code in the context of the web application.

In this thesis, we only address blocking reflected and DOM-Based XSS
attacks. Blocking stored XSS attacks effectively requires cooperation from
the web server, which defeats the purpose of offering automatic, black-box
protection. For a survey of server-side or hybrid defenses that can protect
against stored XSS attacks, refer to Section 2.7.

2.2 Limitations of existing filters

The increase in prevalence and severity of XSS attacks has motivated many
security researchers to devise XSS defenses. Many of these efforts [63, 78,
10, 118] have focused on the server-side, and attempt to detect (or prevent)
unauthorized scripts from being included in the server output. Modern web-
browsers incorporate very complex logic to “fix” HTML syntax errors and
hence provide an acceptable rendering of syntactically incorrect pages. Sev-
eral researchers [62, 90, 136, 78] have eloquently argued that no server- side
logic can accurately account for all such “browser quirks.” As a result, hy-
brid approaches that combine client-side support with a primarily server-side
XSS defense have been developed [136, 90, 122].

Since XSS is a server-side vulnerability, it seems natural to employ a
server-side defense. Unfortunately, the party that is most directly affected
by an XSS attack is a browser-user that accesses a vulnerable server. Con-
sequently, there may not be enough of an incentive for some web sites to

XSSFilt 14

implement XSS defenses — this is one reason why XSS vulnerabilities are so
easy to find. Client-side protections are thus desirable, despite their limita-
tion to reflected XSS.

Microsoft Internet Explorer 8 was the first browser to include a built-in
XSS filter. However, the filter did not exploit its vantage point as a browser
component to its fullest potential, performing the kind of low-level network
interception that would also be possible with a client-side proxy. Because of
this, its filtering logic is similar to other server-side reflected XSS filters that
are implemented as server-side proxies [63, 118]: firstly, it intercepts HTTP
requests that look suspicious; then, HTML responses to such requests are
scanned for script content that may be derived from suspicious parameters,
and this content is then “sanitized” to prevent its interpretation as a script.

Unfortunately, identification of unsafe content is very hard because of
a browser’s HTML parsing quirks. Researchers have shown [92] that there
are several ways to bypass detection by IE8 filter. Worse, the sanitization
technique used in IE8 could be exploited to perpetrate XSS attacks on some
sites that weren’t previously vulnerable [93]! In particular, the sanitization
logic used to neutralize injected scripts caused some other part of the page
that was previously interpreted as passive content to be interpreted as a
script. Although the specific vulnerability reported in [93] has been fixed,
their architecture makes it difficult to rule out that similar vulnerabilities
still exist.

XSSAuditor [7] is Google Chrome’s more recent XSS filter. Unlike IE8’s
filter, it employs a more involved architecture that avoids “browser quirks”
problems by tightly integrating with the browser’s HTML parser, examining
new tags as the parser processes HTML content. If script content “resembles”
a request submitted by the browser, XSSAuditor removes the tag before it
is executed. This simple approach also avoids IE8’s sanitization pitfall, since
preventing the execution of a script does not change the interpretation of
the rest of the page. Moreover, this new architecture can address a small
subset of DOM-Based XSS vectors that feed new HTML content to the parser
(e.g. document.write). However, although XSSAuditor overcomes the main
drawbacks of IE8’s XSS filter, it does not address the following problems:

• Whole Vs partial script injection: XSSAuditor is geared towards de-
tecting the most common form of XSS, where an entire script is in-
jected into a victim page. However, damage can also be effected by
altering the structure of an existing script. Figure 2 shows an exam-

XSSFilt 15

Server Code

<script >

document.write(

’<a href ="../ plugin.php?passed_id=’ +

’ <?=$ GET["id"];?>">’);

</script >

HTTP GET Parameters

id: ’); do xss(); document.write(’

Figure 2: An example server-side script (abstracted from the popular Squir-
relMail web-based email program) with partial injection vulnerability (left)
and a malicious parameter value to exploit it (right).

ple abstracted from the web application SquirrelMail, where a GET
parameter named id is inserted into a document.write call in an ex-
isting script (left frame). Even though the intent of the developers is to
dynamically write an anchor tag, the logic can be subverted to inject
arbitrary JavaScript code. Note the similarity of the malicious input
(right frame) with those used in SQL injections: first, the string ar-
gument previously opened by benign code is closed; then the payload
is inserted; finally, tokens are inserted to synchronize the syntax with
the rest of the benign script and thus avoid syntax errors. In nearly
all cases (including the example presented), the vulnerability allows for
arbitrary code injection into the existing script, thus being as severe as
a whole script injection.

These sorts of vulnerabilities arise naturally in template-based web
application development frameworks and in dynamic web applications
in general. Our experimental results (see Section 2.6.3) demonstrate
that partial injection vulnerabilities are common, accounting for 8%
and 18% respectively in two collections of vulnerabilities. Moreover, as
the first generation client-side defenses (against whole-script injection)
get deployed, attackers are bound to try evading them through partial
script injections.

• Incomplete DOM-Based XSS vector coverage: XSSAuditor’s architec-

XSSFilt 16

ture can only prevent attacks that inject malicious JavaScript content
through the HTML parser. This obviously includes all reflected vec-
tors. However, many DOM-Based vectors introduce new JavaScript
code directly from a JavaScript execution context, bypassing the HTML
parser. Section 2.6.1 shows that out of 9 DOM-Based vectors, XSSAu-
ditor’s architecture can only cover 2, and XSSAuditor’s implementation
only covers 1.

• Accurate algorithms for detecting injections: XSSAuditor uses an exact
string matching algorithm to detect components of a web application’s
output that have been derived from the input request. Character en-
coding and sanitizations incorporated into typical web applications are
performed before string matching. However, this approach does not
handle application-specific sanitizations that may take place. A more
systematic approach would rely on approximate string matching in or-
der to (a) better cope with application- specific sanitizations, and (b)
to more precisely identify the beginning and end of injected strings in
the presence of sanitizations.

2.3 Overview of XSSFilt and Contributions

XSSFilt is a new client-side XSS defense that addresses the above-mentioned
drawbacks of previous filters. In particular, this dissertation makes the fol-
lowing contributions:

• In Section 2.4.1, we present the architecture of XSSFilt, a browser-
resident XSS defense. Unlike previous browser-resident defenses that
all relied on exact string matching, XSSFilt uses approximate string
matching. (See Section 2.4.2.) This enables our defense to cope with
web applications that perform application-specfic sanitizations.

• In Section 2.4.3, we present a set of policies to detect XSS attacks.
These policies detect attacks involving injection of whole scripts, or
those occurring due to injection of parameters within scripts (partial
injections).

• We present a discussion of the full range of attacks possible on XSSFilt,
and ensure that our design can successfully defend against these attacks
(see Section 2.6.5).

XSSFilt 17

• In Section 2.6, we present a comparative study of the protection and
usability of XSSFilt and XSSAuditor. In particular, our evaluation
shows:

– the importance of addressing partial script injections, which ac-
counted for 8% of the 400 vulnerabilities we studied from the XSS
repository xssed.com, and 18% of the 10K vulnerabilities we dis-
covered on the web using an XSS vulnerability discovery tool that
we built.

– the benefits of using an approximate string matching algorithm
over the exact matching algorithm employed by XSSAuditor: our
false negatives were decreased five-fold due to approximate match-
ing.

– that false positives generated by XSSAuditor and XSSFilt are
more likely to be symptoms of underlying injection vulnerabilities
rather than mere annoyances: 85% of the false positives reported
by XSSFilt were in fact caused by an underlying XSS vulnerabil-
ity.

– that XSSFilt has a performance overhead of about 2.5%, making
it suitable for real-world deployment.

2.4 Design

This section describes the architecture of XSSFilt, the approximate substring
matching algorithm used to match inputs and script content despite arbitrary
transformations, and the policies that decide whether a match is an attack
that must be prevented.

2.4.1 XSSFilt Overview

To illustrate XSSFilt’s design, consider the sequence of operations that take
place from the time the user’s browser submits a request to a web server to
the time the web page loads. The steps in this sequence are identified using
numbers in Figure 3, and we describe them in more detail below.

In Step 1, the browser submits a request to a web site. This submission
may be in response to a user clicking on a hyperlink in a web page or email, or
the result of execution of scripts on a page that is currently being displayed.

XSSFilt 18

XSSFilt

Component

Document

Initialization

HTML

Parser

JavaScript

Engine
Script

Node

Text

Node

Search params
Parse Headers

Parse URL

Browser

Internet
Document URL

Post Data
Script Content

Script URL

1

2

3

4

Init
Permits

5 6

7

8

9

10Request

Server

Figure 3: XSSFilt architecture

Either a GET or POST request may be used for submission, and it will
include parameter data that is under the control of the web page or email
containing the link.

In Step 2, the web site returns a response to the browser’s request. This
leads to Step 3, when a new document is created by the browser. In this
step, the browser invokes the Init method of XSSFilt, providing information
about the request submitted in Step 1. XSSFilt parses the URL and POST
data of all the input parameters and converts them into a list of (name, value)
pairs. This step will later enable XSSFilt to detect partial script injections.
The filter then returns control to the browser so as to start rendering the
page.

In Step 4, the web browser’s internal HTML parser is used to parse the
document received in Step 2. This causes the creation of various nodes in
the document tree, including script and text nodes in Step 5. In Step 6, a
script node would normally be sent to the JavaScript engine, but the browser
intercepts the script and sends it to the Permits method of XSSFilt. At Step
7, XSSFilt uses an approximate substring matching algorithm to search for
one or more of the GET/POST parameters inside the script. Any matching
content is deemed reflected or tainted. Further details on this detection tech-
nique can be found in Section 2.4.2. If the tainted components of a script
violate the policies described in Section 2.4.3 then the execution of the script
is blocked. Otherwise, it is handed over to the JavaScript engine in Step 8.

Note that, during the execution of a script, new script content may be
created and immediately executed using dynamic code primitives such as
eval. Our architecture ensures that such newly created code is passed to

XSSFilt 19

the permit operation of XSSFilt in Step 9, thus ensuring that dynamically
created code is checked for XSS in the same manner as code included stat-
ically within <script> tags. Similarly, scripts execution can also cause the
the creation of new HTML content, e.g., as a result of document.write or
setting innerHTML attribute of some DOM nodes. In all these cases, the
HTML parser will be invoked in Step 10, and Steps 5 through 8 will be re-
peated. Covering both Step 9 and Step 10 ensures complete DOM-Based
XSS coverage.

2.4.2 Identifying Reflected Content

Detection of reflected content is a taint analysis problem, where the HTTP
request supplied by the browser is a source of (tainted) attacker- controlled
data, and each script that is either statically present in the HTML response
or introduced by JavaScript at runtime is a sensitive sink. The architec-
ture presented in Section 2.4.1 demonstrates how all sensitive sinks are cov-
ered, but does not prescribe how taint is propagated from sources to sinks.
Server-side XSS defenses can rely on taint-tracking instrumentation on the
web application code code for accurate tracking, but this is obviously not a
possibility for a browser-resident defense. Thus, the only option is to infer
possible taint by comparing the attacker controlled data with script content.
A known limitation of such an approach is that if data goes through complex
transformations, then there would be no match between the input and output
and hence no taint can be inferred. Fortunately, the transformations used
by most web applications seem to consist of character encodings and simple
sanitizations (e.g. removing spaces). Reference [118] presents an approxi-
mate substring matching algorithm that can account for arbitrary changes
up to a specified edit distance. In the context of web applications, where
the matching process returns similar results as taint-tracking, it is helpful
to consider the algorithm as a variant of taint-tracking; thus we refer to the
algorithm as taint- inference.

The core of our taint-inference algorithm is the same as that of Ref-
erence [118]. However, since XSSFilt is embedded in a browser and Ref-
erence [118] describes a server-side proxy, there are differences in terms of
identifying taint sources, recognizing tainted content, and a few additional
optimizations.

1. The URL is parsed into a list of (name, value) parameters. The pa-
rameter name is used for reporting purposes, but is of no other interest

XSSFilt 20

to XSSFilt. This decomposition into parameters is necessary to de-
tect partial script injections. If the URL cannot be parsed properly,
or if special characters are present in the URL path (or if they span
more than one parameter), the entire path is also appended as a single
parameter. This step ensures that the technique would not fail for ap-
plications that use non-standard parameter encoding, but instead will
operate in a degraded mode where it can at least detect whole-script
injection.

2. As an optimization, parameters whose content cannot possibly include
JavaScript or HTML code are ignored. Specifically, we discard pa-
rameters shorter than 8 characters, and parameters containing only
alphanumeric characters, underscores, spaces, dots and dashes. These
characters are commonly used in benign URLs. When these parameter
values are included in the returned page, the resulting content will not
match the policies described in Section 2.4.3, but ignoring them will
not cause attacks to be missed.

3. Before any inline script is executed, an approximate substring matching
algorithm is used to establish a relationship between the parameters
and the script. If the parameter is longer than the script, then the
script is searched within the parameter, to detect whole script injection.
On the other hand, if the script is longer than the parameter, then
the parameter is searched within the script, to detect partial script
injection.

A similar check is performed before an external script is fetched for
execution. If the script URL is longer than the parameter, then the
parameter is searched within the URL to detect hijacking of existing
external scripts, where the attacker is able to point them to a mali-
cious domain. Otherwise the URL is searched within the parameter to
account for whole script injection of an external script name.

Previous browser-resident techniques for XSS detection, including XSSAudi-
tor [7] and noXSS [60] use exact substring matching rather than an approx-
imate substring matching to identify reflected content. Another difference
is that XSSAuditor does not parse parameters and hence it can only detect
those cases where an entire script is injected, while XSSFilt can detect par-
tial script injections as well. The main advantages of XSSAuditor’s approach
are:

XSSFilt 21

• Faster runtime performance: exact substring matching has linear-time
complexity, and thus better performance over the quadratic-time worst-
case complexity of approximate matching.

• Lower false positive rate: This is because (a) exact matching is stricter
than approximate matching, and (b) likelihood of coincidental matches
for the entire script is smaller than that for any of its substrings.

Our approach, on the other hand, has complementary strengths:

• Coping with application-specific sanitizations: Approximate substring
matching is better able to cope with application-specific sanitizations
that may take place, e.g., when a ‘*’ character is replaced by a space. In
contrast, an exact matching algorithm will fail to match even if a single
such substitution takes place. Our results in Section 2.6, as well the
results of References [4] and [118] show that such application-specific
sanitizations do occur in practice.

• Partial script injections: As described in the introduction (Figure 2),
template-based web application frameworks create natural opportuni-
ties where an existing script could be modified by injecting a parameter
value into its middle. In this case, there would not be a match for the
whole script, and hence XSSAuditor would miss such injections. As we
show in the evaluation section, such partial script injection vulnerabil-
ities are relatively common.

Although the results in Reference [118] seem to indicate that the above
benefits could be obtained without undue performance overheads or false
positives, a more careful examination indicates that those results are not
necessarily applicable for a client-side XSS defense:

• The false positive evaluation in Reference [118] was done in the context
of SQL injection, specifically on simple web applications. In contrast,
a browser-side XSS defense needs to avoid false positives on virtually
all applications that have been deployed on the web.

• In terms of performance as well, the results in Reference [118] were ob-
tained using a SQL injection data set. The volume of data subjected to
approximate matching and policy checking are thus much smaller than
that involved in the rendering of a web page, and hence performance
constraints are more stringent for XSS-defense within a browser.

XSSFilt 22

Thus, it was unknown, prior to this work, whether a client-side XSS defense
can benefit from the strengths of approximate matching without incurring its
drawbacks. Our evaluation answers this question affirmatively. Section 2.6
shows that XSSFilt benefits from the increased power of approximate match-
ing, while minimizing its drawbacks.

2.4.3 XSS Policies

Section 2.4.2 presented an algorithm to compare the content of untrusted
sources and sensitive sinks to emulate taint-tracking. If a match is found,
the filter must decide whether to allow or prevent execution of the sink. This
section details the policies involved in this decision.

Previous research on injection attacks on web applications showed that a
few generic policies can detect a wide range of attacks. In particular, Su et
al [129] proposed the syntactic confinement policy that confines tainted data
to be entirely within certain types of nodes of a parse tree for the target lan-
guage (e.g., SQL or JavaScript). A lexical confinement policy has been used
successfully by others [118]. However, these works primarily targeted SQL
injection, which is relatively simple. In contrast, XSS is more challenging due
to the diversity of injection vectors and the many evasion techniques avail-
able to attackers. Below, we describe policies that address these difficulties
in a systematic manner.

Policy for Inline Code

This policy is used for protecting against XSS attacks embedded in inline
content. Specifically, the following types of content are addressed:

A. Inline code: This category includes code injected in the web page using
one of the following mechanisms:

i. Inline scripts: Script content, enclosed between <script> and
</script> tags

ii. Event listeners: Code enclosed in an event handler specification,
e.g.,

iii. JavaScript URLs: Code provided using JavaScript protocol, e.g.,

XSSFilt 23

iv. Data URLs: These provide a general mechanism to include inline
data (e.g. text, images, HTML documents) using a URL. Because
they support base64 encoding, it is important to perform taint-
inference on the original base64 encoded string. For example,
<object data="data:text/html;base64,PHNjcmlwdD5hbGVydC

giSGVsbG8iKTs8L3NjcmlwdD4="></object> inlines a page con-
taining <script>alert(1)</script>.

Note that, as shown in Figure 3, the vectors covered by this policy can
be both reflected (Step 4, feeding into Step 5) and DOM-Based (Step
10, feeding the attack back to Step 5).

B. Dynamically created code: New code may come into being when a
value stored in a variable is eval’d or used in an operation such as
setTimeout.

The simplest (and most restrictive) inline policy is one that prohibits
any part of a script from being tainted. Unfortunately, this policy produces
many false positives because it is common for scripts to contain data from
HTTP parameters. For this reason, we implemented a lexical confinement
policy that restricts tainted data to be contained entirely within a limited
set of tokens. In practice, we discovered that the data injected is normally
inside strings. All of the attacks in our dataset consisted of such injections
within strings. We therefore specialized the policy to ensure that tainted
data appears only within string literals, and does not extend before or after
the literal.

Policy for External Code

This policy is enforced on external code that is specified by a URL, i.e.,
injection vector (C) described below.

C. External code: Code that is referenced by its name using one of the
following mechanisms:

i. External scripts: Script name provided using a script tag, e.g.,
<script src="xyz.js"></script>

ii. Base tags: These can be used to achieve an effect similar to ex-
ternal script injection by implicitly changing the URL from where
scripts in the document are loaded.

XSSFilt 24

iii. Objects: Similar to external scripts, but embedded between
<object> and </object> tags.

The following policy is applied to the name of external scripts or objects:

1. If the host portion of the URL is untainted, then the script is allowed.
Note that an attacker cannot typically upload a malicious script onto a
server controlled or trusted by a web application. For this reason, the
attacker needs to control the host portion of the URL.

Unlike the host component, our policy permits the path component of
a URL to be tainted, since some web applications may derive script
names from parameter values.

2. Even if the host portion of the URL is tainted, our policy permits
the script if it is from the same origin. We use a relaxed same-origin
check [28] which verifies if the registered domains of the URLs match.
Thus, www.google.com is considered same-origin with
reader.google.com.

3. Finally, if the tainted domain was previously involved in a check that
was deemed safe, then it is allowed. Intuitively, XSSFilt assigns trust
on a per-domain basis, and considers all requests from the same domain
as trusted or untrusted.

Note that DOM-Based vectors are covered here as well. For example, a
vulnerable script that performs
document.write("<script src="evil.com/xss.js"></script>")

will eventually trigger a check for external scripts (Step 10→ Step 5→ Step
6 from Figure 3)

2.5 Implementation

The first prototype of XSSFilt was implemented by modifying the Content
Security Policy (CSP) [122] implementation in Firefox 4, which allowed us to
leverage its existing interposition callbacks throughout the Firefox codebase.
CSPs implement the nsIContentSecurityPolicy interface, which is used
to a) check if the URL of external resources being loaded is included in a
whitelist, and b) check whether inline scripts are enabled in the CSP for
the current page, denying their execution regardless of their content. Since

XSSFilt 25

XSSFilt needs to decide whether to allow or deny inline scripts based on their
content, we modified the existing CSP callbacks to pass the script content
to permits* calls where appropriate. We also added new callbacks for base
elements and Data URLs. Note that Firefox’s CSP implementation was a
JavaScript prototype at the time; we implemented most of our high-level
functionality in JavaScript, but, for performance, we implemented the taint-
inference algorithm in a separate C++ XPCOM component. The results
from Section 2.6 were collected using this implementation, which is available
for download on the XSSFilt project page [107].

After the CSP-based prototype was developed, the author was hired by
Mozilla Corporation for a summer internship, to investigate the possibility
of merging the filter into the official Firefox codebase. For this purpose,
the filter was reimplemented in a more principled fashion, providing its own
interface and source files. To optimize its performance, we implemented the
entire filter in C++. Our work resulted in a patch for Firefox 17 for bug
#528661 [61]. Besides the open-source patch, we have released a patched
Firefox binary that includes the filter [107].

2.5.1 Deployment on the PaleMoon browser

Unfortunately, the process got stuck in review phase, and the patch never
made it into a stable release of Firefox. However, the main developer of a
popular Firefox fork, PaleMoon [82], expressed his interest in late 2015 in
integrating the patch into its codebase, which is based on Firefox 24 ESR.
Besides dealing with minor bitrot (from Firefox 17 to 24), we added the
following two features:

• whitelisting for dynamically loaded scripts. While compatibility testing
of our reference implementation showed that XSSFilt is practical be-
cause false positives are few and far between, deploying it to a large
userbase (∼500k users) requires more attention to the issue. In partic-
ular, beta testers discovered two false positives, one in Yahoo Mail and
one in the Twitch player.

The Yahoo mail false positive follows the loader pattern: a query pa-
rameter is used by a script on the page as a URL for an external script
tag. While our experimental evaluation from Section 2.6.2 shows that
many sites implement this pattern insecurely and allow an attacker to
load a malicious script, our analysis of Yahoo’s code did not uncover a

XSSFilt 26

vulnerability. In this case, a regular expression securely limits the host-
name to a handful of safe domains. To work around this false positive,
we implemented the necessary logic and UI elements to whitelist do-
mains that loaders use to host their javascript files. Whitelisting target
domains instead of the loader itself is safer because, if a vulnerability
is ever found in the loader script, the filter will still prevent malicious
scripts from executing. Note that this is not a spurious flow caused by
the use of taint-inference instead of taint-tracking, but rather an actual
flow that only happens if the script URL is benign. Even filters that
use real taint- tracking, such as Reference [126], would flag this (and
most other loader implementations) as a false positive, because they
cannot capture how the flow is present, yet safe.

The Twich player false positive follows the related sandbox pattern,
which consists of an purposedly unsafe of the loader pattern: since the
loader script runs on a third-party domain that contain no data worthy
of an exploit, an attacker that exploits the loader vulnerability and
loads his own content into the domain can cause no harm. For example,
embedding the Twitch player into a site causes a third-party iframe
from a CDN (cdn.embedly.com) to be embedded in the page. The frame
contains a vulnerable loader script which uses a query parameter as a
script URL, which can be straightforwardly modified to load a malicious
script. However, the Same-Origin Policy restricts the attack surface to
the CDN domain, which doesn’t contain interesting credentials.

• whitelisting for incompatible sites : a handful of sites contain server-
side logic that cause false positives even in the absence of an attack.
For example, Google Translate takes the URL of the page to translate
as a parameter and rewrites the translated page with an additional
BASE tag so that relative links do not need to be rewritten. Because
the href attribute of the BASE tag is often similar (or identical) to
the URL of the translated site (e.g. http://www.example.com vs.
http://example.com/example.html), the filter believes that the BASE
tag has been injected. XSSAuditor does not recognize this as an at-
tack, because it is more tightly integrated with the HTML parser: the
filter can check for additional conditions in the parsing context, such
as whether the match extends past the URL and includes the href

attribute or the BASE tag. However, this also makes it harder for them
to recognize DOM-Based XSS attacks that do not feed malicious data

XSSFilt 27

back through the HTML parser (i.e. anything but document.write

and Element.innerHTML). Because these sites are rare, although we
added support for a whitelist, we did not add the UI to let users add
new sites to the whitelist, which the PaleMoon staff plan to maintain
themselves.

After addressing these issues, we successfully shipped the filter turned on
by default in PaleMoon version 26 [82].

2.6 Evaluation and Comparison

In this section, we first evaluate and compare the protection and compat-
ibility offered by XSSFilt and XSSAuditor, showing that XSSFilt protects
against more attacks while not suffering from more false positives. Then,
we demonstrate that partial script injections are a realistic threat; finally we
evaluate XSSFilt’s performance and discuss how our architecture covers all
vectors.

Note that to test XSSAuditor without having to instrument another
browser, we did not use the original implementation included in Google
Chrome. Instead, we reimplemented a stricter version of its policies within
our filter and then manually confirmed false positives and false negatives.

2.6.1 Protection Evaluation

To compare the protection offered by XSSFilt and XSSAuditor, we tested
them against 4 sources of XSS attack data, most of which have been used in
previous research.

xssed: xssed.com [37] contains reports of websites vulnerable to XSS, along
with a URL for a sample attack. Since the dataset is very large, we
randomly selected a subset of 400 recent, working attacks among these
in order to estimate the effectiveness of our filter against real-world
attacks.

cheatsheet: the xssed dataset is biased towards very simple attack pay-
loads, since most of them simply inject a script tag. To assess the
filter’s protection for more complex attacks, we created a web page
with multiple XSS vulnerabilities and tried attack vectors from the
XSS Cheat Sheet [50], a well-known and oft-cited source for XSS filter
circumvention techniques.

xssed.com

XSSFilt 28

Dataset XSSFilt XSSAuditor

xssed 399/400 379/400
cheatsheet 20/20 18/20
dexterjs 25/25 23/25

Figure 4: Results for the xssed, cheatsheet and dexterjs datasets

dexterjs: the xssed and the cheatsheet datasets are both heavily biased
towards reflected XSS. As a matter of fact, they contain no DOM-
Based XSS attacks at all! To rectify this, we leveraged DexterJS’s [99]
dataset, a recently published DOM-Based XSS scanner. The authors
have made a set of 820 attacks on 89 domains publicly available, but
these have since been fixed. However, the authors also took snapshots
of the vulnerable websites at the time of discovery using HTTrack and
were kind enough to share the snapshots with us. Although only a
subset of vulnerabilities can be replicated on a local server, we were
able to find 25 distinct working vulnerabilities among them that worked
on both Chrome and Firefox1

domxsswiki: like xssed, the dexterjs dataset is also biased towards sim-
ple vulnerabilities. Therefore, to evaluate the coverage of all DOM-XSS
vectors, we used the domxsswiki [125] as a reference to identify 9 dis-
tinct DOM-Based vectors that work on Firefox, and generated 9 attacks
employing these vectors.

To automatically test this large number of attacks, we modified XSSFilt to
log XSS violations to a file and wrote a Firefox extension to automatically
navigate the browser to all the URLs in the datasets.

Figure 4 summarizes the results for the first three datasets. XSSFilt
successfully stopped all but one of the attacks from the xssed dataset and
all attacks from the cheatsheet and dexterjs datasets. Its lone failure
is attributed to a limitation of taint-inference previously explained: when

1The attacks actually only work on Chrome and IE, because the three major browsers
have inconsistent behavior about URL fragment encoding: the fragment portion of
location.href is returned urlencoded in Firefox, and urldecoded in Chrome and IE[134].
To make them work in Firefox, we leverage the instrumentation capabilities of Jate [135]
and configure location.href’s and document.URL’s getters to decode their result before
returning it.

XSSFilt 29

Vector XSSAuditor XSSFilt

eval No Yes
Function No Yes
setTimeout No Yes
script.src No Yes
script.text No Yes
location No Yes
location.href No Yes
document.write Yes Yes
node.innerHTML No Yes

Figure 5: DOM-Based XSS Vector Coverage

the web application applies extensive string transformations, the matching
algorithm might fail to find a relationship between the parameter and the
content. In this specific example, the filter failed because the parameter:

alert("HaCkEd By N2n -HaCkEr - 3rd@live");

was transformed into

alert("HaCkEd N2n -HaCkEr 3rd@live");

by the web application. Some (but not all) spaces and dashes had been
deleted, along with the word “By”. In these situations, no client-side filter
can realistically be expected to detect the attack.

The 100% coverage on the cheatsheet dataset is not surprising: these
attacks are designed to bypass server-side sanitization functions, which look
for specific patterns in text and are vulnerable to browser quirks and unusual
XSS vectors. Since this filter architecture is immune to browser quirks and
covers all vectors uniformly, none of these attacks succeeded.

The table also shows 100% coverage on the dexterjs dataset. Together
with the results from table 5, which show the result of the domxsswiki

dataset, it provides support to our assertion that XSSFilt covers all DOM-
Based XSS vectors.

XSSAuditor missed many more attacks in these datasets. Figure 6 shows
the underlying causes:

Partial Script Injection: XSSAuditor does not detect this type of attack
because, unlike XSSFilt, it does not perform URL parsing and substring

XSSFilt 30

Dataset Partial Script String Unhandled
Injection Transformation DOM-Based Vectors

xssed 16 5 0
cheatsheet 2 0 0
dexterjs 0 0 2

Figure 6: XSSAuditor failures

matching, and cannot search for a substring of the URL in the middle
of a script.

String Transformation: XSSAuditor relies on canonicalization to account
for common string transformations in web applications. This approach
can break when an uncommon transformation takes place. Taint-
inference relies on approximate substring matching, which is more tol-
erant of exceptions.

Unhandled DOM-Based Vectors: Although the dexterjs dataset is bi-
ased towards the most popular DOM-Based XSS attack vector,
document.write, the only one that XSSAuditor can detect, the dataset
also contains two attacks that use different vectors, which XSSAuditor
is unable to detect.

2.6.2 Compatibility Evaluation

Browser-resident reflected XSS defenses restrict the capabilities of browsers
with respect to content found in input parameters, such as GET parameters
from the querystring. As a result, they have the potential to break some web
pages, and thus lead to compatibility problems.

Types of False Positives

False positives can be accidental, represent benign injections, or may be
specifically induced by the attacker. We discuss these three cases separately.

Accidental False Positives: There is a small chance that JavaScript con-
tent is incorrectly associated with benign parameters, which can result in
degraded user experience. For such an event to happen, two conditions must
be met:

XSSFilt 31

1. The taint-inference must report a match between an input parameter
and JavaScript content or between an input parameter and an URL
pointing to a JavaScript resource. Because taint-inference does not
track taint explicitly inside the web application, similarities in input
and output values can result in an accidental match.

2. The match must violate the policies discussed in Section 2.4.3; in par-
ticular, the matched string must contribute JavaScript content to the
page.

Even though accidental matches can occur, these two conditions are un-
likely to be met for the same piece of content, since JavaScript code represent
a fraction of content of HTML pages, and user input does not commonly re-
semble script content. The results presented next support this assertion:
accidental false positives are not responsible for any of the 8 false positives
reported. No “random” matches were observed: all violations represent a
real flow of information, which was restricted to benign values by a whitelist
check. Unfortunately, a black-box filter (or a filter based on full-fledged taint-
tracking, for that matter) cannot reason about the safety of these checks.

Benign Injections: XSS filters prevent injections under the assumption
that all injections are malicious and that they can always cause harm, and
XSSFilt is no exception. However, this assumption does not always hold.
In rare cases, the policies from Section 2.4.3 can stop an injection that is
intended by the web application developer. Although the results from this
section show that developers often misuse this feature, a developer who is
aware of the threat can support benign injections safely, and the XSS filter
can get in the way and cause false positives. The two most common cases
are the loader and the sandbox patterns: in the former, an input parameter
is used to load an external script; if the location of the external script is
unrestricted, the developer shot himself in the foot and the XSS filter would
correctly prevent this unsafe behavior; however, if the location of the external
file is checked against a whitelist or restricted to a benign host, then the web
developer can safely inject the new script into the existing page, and the
XSS filter would disrupt the pattern causing a real false positive. The latter
pattern is implemented by executing the benign injection from a throwaway
origin that contains no sensitive data on either the browser or the server. In
this case, the filter would block the injection that the developer implemented

XSSFilt 32

under the correct assumption that it would cause no harm, thus causing a
false positive.

Induced False Positives: A drawback of all black-box approaches for taint
computation is that the attacker can trick the filter into inferring a relation-
ship between a spurious parameter and a script which is always present.
Unlike accidental false positives, which can at most degrade the user brows-
ing experience, or false negatives (the filter missing an actual XSS attack),
which result in a browser no more insecure than a similar browser without
any XSS defense, induced false positives can potentially lead to new security
vulnerabilities that do not affect a browser without XSS defenses. For exam-
ple, it may be possible to use induced false positives to disable a framebusting
script, which is included in HTML pages to protect against clickjacking at-
tacks. Reference [111] describes such an attack for IE8 and XSSAuditor,
proposing a non-vulnerable framebusting script. Unfortunately, this is an
inherent weakness of black-box XSS filters.

Tests

To estimate the compatibility of XSSFilt and compare it with XSSAu-
ditor, we instrumented Firefox to log information about XSS checks while
performing a crawl starting from a custom set of 120 URLs2. We developed
our own crawler as a Firefox extension, which allowed us not only to support
discovery of dynamically constructed links and forms, but also to check all
the resources loaded by the web page (including scripts and advertisements
inserted through DOM manipulation) for XSS violations. We also ran the
test using XSSAuditor’s policies.

Overall, both filters reported a moderate number of false positives. How-
ever, most of them were either due to a URL being supplied as a parameter
and then used by an existing script to construct a new script tag (the afore-
mentioned loader pattern), or by a parameter being directly passed to a
string- to-code function such as eval. These practices would be safe if the
application code checked the value against a whitelist of pre-approved URLs
for the former case or JavaScript snippets for the latter, and the violation
could be indeed considered a false positive. However, we found that out of
51 XSSFilt notifications, only 8 did such checks; the remaining violations
were in fact due to vulnerable pages that could be subverted to load a script

2The set of URLs can be found at http://pastebin.com/kYqas9ae

http://pastebin.com/kYqas9ae

XSSFilt 33

Filter XSSFilt XSSAuditor

of violations 8 6

Figure 7: Compatibility Comparison

from an arbitrary host or execute arbitrary code. This set of pages include
important websites such as wsj.com, weather.com and tripadvisor.com.
For this reason, we do not consider these scenarios as false positives, and we
discounted them from the results shown in Figure 7.

2.6.3 Partial Injection Prevalence

Compared to XSSAuditor, XSSFilt is able to detect partial script injection
vulnerabilities. Therefore, it is important to assess how prevalent these are.
To estimate their prevalence, we used three different methods.
Partial Injections in xssed.com Data Set: Out of 400 real-world live
XSS attacks, 4% were targeting partial injection vulnerabilities. We analyzed
the rest of the vulnerable pages attacked through whole script injections to
discover if they contained partial injection vulnerabilities as well, and we
discovered that an additional 4% of pages are vulnerable, for a total of 8%
of pages vulnerable to partial script injection.

Thus, even though the coverage against attacks on the xssed dataset
for XSSAuditor was 95%, the actual coverage on vulnerabilities is lower at
91%. However, the size of this dataset is quite limited for the purpose of
extrapolating statitics about the nature of XSS attacks in general. Moreover,
the website does not review submissions and does not reward contributors for
creative or complex attacks. For this reason, the dataset is biased towards
simple vulnerabilities that can be discovered automatically.
Partial Injection Vulnerabilities in the Wild: We have developed a
tool/scanner called gD0rk [105] to study the prevalence of XSS vulnerabili-
ties in real-world sites. Although gD0rk was developed independently from
XSSFilt, we believe that it is very helpful for assessing the prevalence of
partial injection vulnerabilities:

• gD0rk analyzed a much larger collection of web sites as compared to
xssed.com data, and hence provides a broader basis for drawing infer-
ences about vulnerabilities in deployed sites.

XSSFilt 34

• gD0rk uses a mechanical procedure for finding vulnerabilities, with no
built-in bias for either whole or partial script injections.

gD0rk uses Google’s advanced search capabilities to guide its crawl to
candidate web sites that are more likely to be vulnerable, probes them for
reflected content by modifying the URL, and examines the context in which
the content is injected in the web pages returned to build an attack. The ex-
act details of the tool are not important for the purposes of this dissertation,
but we do want to note that it is sophisticated enough to a) understand the
syntactic context in which the input parameter is found in the HTML out-
put, to generate an appropriate payload, and b) detect and circumvent many
sanitizations performed by web applications where possible. For example, if
a GET parameter is reflected inside a JavaScript string in a script tag, the
scanner attempts to write "; payload(); // through the filter to exploit
the partial injection vulnerability. However, if the application sanitizes dou-
ble quotes, the scanner attempts to close the script tag instead and open a
new script node with </script><script>payload();</script>.

We ran gD0rk for one month and identified 272,051 vulnerable websites.
For scalability and performance reasons, we did not validate the generated
attacks for all these vulnerabilities. Instead, we used statistical sampling
to estimate the fraction of these sites that were actually vulnerable. In
particular, a random subset of 1000 vulnerabilities among these were selected,
and then we were able to verify that 98% of the generated attacks worked on
this subset. We then selected a random subset of 10000 vulnerable websites
and used the scanner to identify the context of the vulnerable reflections.
We found that 18% of these reflections were included within script tags or
event handlers, and thus represent partial script injection vulnerabilities.
Dynamically Generated Scripts: Intuitively, the necessary requirement
for a partial injection vulnerability is a script that is assembled dynamically
from input parameters by the web application. We believe that it is reason-
able to expect developers to fail to sanitize parameters which appear inside
scripts just as often as they fail to sanitize them anywhere else in the page.
Under this hyphothesis, the rate of pages that construct scripts dynamically
is a good estimator for the ratio of partial injection vulnerabilities to whole
script injection vulnerabilities. The benefit of this indirect approach over the
previous one is that the dataset is not made out of vulnerable pages, which
represents a skewed sample from mostly unpopular websites.

For this reason, we reused our Firefox crawler from Section 2.6.2 and

XSSFilt 35

seeded it with the 1000 most popular websites according to the Alexa rank-
ings. When the crawler processes a page with non-trivial HTTP parameters
and detects that a parameter appears in a script, it substitutes the param-
eter value with a placeholder, requests the page with the newly constructed
URL and then attempts to find the original value and the new placeholder
in the response. If the placeholder is found in the same script and the orig-
inal parameter value is not found, then the relationship between script and
parameter is confirmed and the page is marked as containing a dynamic
script. When we stopped the crawler, it had crawled a total of 35145 pages,
of which 9% contained dynamically generated scripts. Given the strictness
of the requirements, we believe this is a conservative estimate.

2.6.4 Performance Evaluation

Unlike the protection and compatibility evaluations from Section 2.6.1 and
2.6.2, the performance evaluation is focused on XSSFilt only. XSSAuditor’s
performance has already been evaluated in Reference [7].

Calculating the overhead imposed by the filter requires a dataset that
represents real-world websites. This is because XSSFilt contains many opti-
mizations that bypass policy enforcement if parameters do not contain special
characters, if they are too short or if an external script is fetched on the same
origin of the page.

The Mozilla codebase includes a performance test for regression testing:
tp4 is an automated test that can be run on patches to the mozilla codebase,
to estimate the overhead that these can impose on the browser. The test
estimates the time required to load a set of predefined pages that are saved
locally to produce consistent results over time. The overhead estimated by
tp4 for XSSFilt is negligle. Unfortunately, since tp4 fetches homepages saved
locally, it overestimates the effect of the filter’s optimizations: requests don’t
have parameters to check, and all external scripts are from the same origin.

To produce more meaningful results, we measured the load times on the
real- world dataset from Section 2.6.2 using pageloader, the Firefox exten-
sion that is used internally by tp4. We used an aggressive caching proxy
to factor out network delay while transparently providing pageloader with
remote resources. This way, we can avoid overestimating the speedup due to
XSSFilt’s optimizations. The test showed an overhead of 2.5%.

However, even though the dataset clearly triggered many XSSFilt checks,
the figure is not necessarily representative of the overhead normally expe-

XSSFilt 36

rienced by users, because this is a) heavily dependent on the amount of
parameters in web applications and b) ultimately diluted when factoring in
the delay involved with fetching a webpage off the network. For this reason,
we used profiling data available from an ordinary user session consisting of
3000 unique pages. Since a web browser is a multithreaded execution en-
vironment, the overhead cannot be estimated by simply timing the calls to
XSSFilt: the same call will take longer if the user is simultaneously watching
a video on YouTube on a different tab. Therefore, the profiler logged the ac-
tual parameters of XSS checks, and given that the only expensive operation
is approximate substring matching, we can perform the approximate string
matching computations offline to estimate the time spent during XSS checks
for each page load. This yields an average overhead of 0.5%, which shows
that the overhead is almost negligible when factoring in network latency.

2.6.5 Security Analysis

In this section we identify possible attack vectors and strategies that may be
used for an XSS attack, and argue how our design addresses these threats.

We expect an attacker to deploy the full range of techniques available
to evade detection by XSSFilt. There are two logical steps involved in the
operation of XSSFilt: (I) recognizing script content in the victim page, (II)
identifying if this code is derived from request data. The following techniques
may be used to defeat Step I:

1. Exploit all of the previously mentioned vectors to inject code, hoping
that one or more of the vectors may not be (correctly) handled by
XSSFilt. However, the filter architecture makes it simple to enforce
complete mediation [113], since there are only a small number of code
paths that call into the JavaScript engine.

2. Exploit various browser parsing quirks to prevent XSSFilt from recog-
nizing one or more of the scripts in the victim page. Note, however,
that browser quirks pose a problem for techniques that attempt to de-
tect scripts by statically parsing HTML. In contrast, XSSFilt operates
by intercepting scripts dispatched to the Javascript engine, and hence
does not suffer from this problem.

3. Exploit DOM-based attacks: If the victim page uses a script to dynami-
cally construct the page, e.g., by setting the innerHTML attribute, then

XSSFilt 37

try to defer script injection until this time. This technique defeats fil-
ters that scan for scripts at the point the response page is received.
However, XSSFilt’s architecture ensures that all scripts, regardless of
the time of their creation, are checked before their execution. Hence,
XSSFilt is not fooled by DOM-based attacks.

4. Exploit sanitization to modify the parse tree and force the parser to
interpret another part of the page as script. This vulnerability existed
in Internet Explorer [93], whose filter deactivated script nodes by mod-
ifying the <script> tag. In contrast, XSSFilt’s decision to block the
execution of a script has no effect on how the rest of the page is parsed.

To defeat Step II, an attacker may use the following techniques:

5. Employ partial rather than whole script injection: We have already
described how our taint inference implementation (Section 2.4.2), to-
gether with the policies described in Section 2.4.3, can detect partial
injections.

6. Employ character encodings such as UTF-7 to throw off techniques for
matching requests and responses. Note that by the time a browser
interprets script content, it has already determined the character en-
coding to be used. Therefore XSSFilt can apply the corresponding
decoding operation before the taint inference step, and thus thwarts
this evasion technique.

7. Exploit custom sanitizations performed by an application to evade taint
inference. As described before, XSSFilt uses approximate substring
matching, which provides a degree of resilience against application-
specific sanitizations employed by web applications. However, if a web
application makes extensive use of non-standard character transforma-
tions, it may be possible to exploit them to evade XSSFilt. It seems
unlikely that any purely client-side defense can address this evasion.
Moreover, note that the attacker cannot induce such behavior on ar-
bitrary applications — he can only exploit applications that already
perform extensive, non-standard transformations.

8. Employ second order attacks that operate by injecting malicious pa-
rameters into links or forms contained in the victim web page. An XSS

XSSFilt 38

HTML
Parser

JavaScript
Engine

Sensitive

Data

Browser

Website

Application
Logic

Attacker

User
Malicious
Link

Click

Exfiltration

Modify DOM

Execute

Execute

Malicious
Request

Malicious
Response

0
1

3

2

4

6

5a

5b

Figure 8: Steps of an XSS Attack

attack would be effected when these forms are subsequently submitted.
Note, however, that XSSFilt will apply policies to these submissions
as well, and hence detect second (or higher order) order attacks. IE
has an exception for same-origin links and would be vulnerable to this
attack.

2.7 Related Work

This section is divided into two parts: firstly, we identify the steps required
to launch a successful XSS attack and organize XSS filters according to how
they interact with an ongoing attack to prevent it (this section also includes
defenses that published after XSSFilt). Secondly, we review new surveys and
attacks that have advanced the state-of-the-art since our publication.

2.7.1 Systematization of XSS Filters

A successful reflected or DOM-Based XSS attack requires the following:

• a malicious parameter value sent to the server,

• creation or alteration of scripts included in the server page,

• actions taken by this script that compromise the victim.

XSS defenses protect against XSS attacks by stopping any of the three
conditions mentioned above. Figure 8 shows a more detailed depiction of
the process that leads to a successful XSS attack, splitting the process into 6

XSSFilt 39

distinct steps. The purpose of this formalization is to organize XSS defenses
by how they interact with an ongoing attack during these steps. The steps
are:

Step 0 (Dissemination): The user’s browser is tricked into performing the
malicious request. In Figure 8, we assume the user clicked a malicious
link supplied by a Spam email, but other possibilities exist; for exam-
ple, malicious advertisements can automatically redirect the user and
launch the attack3. We label this Step 0 because preventing this step is
out of scope, and our threat model assumes that attackers always find
a way to trick the user’s browser into sending the malicious request.

Step 1 (Malicious Request): The browser sends an HTTP request con-
taining the attack to the target web server. Because there is a confused
deputy component to XSS, the browser or the request have no way to
detect and communicate to the server that the request was unintended
or outright malicious. However, a potential XSS attack can be stopped
in this step using heuristics, assuming that the outgoing request con-
tains something that looks like an XSS payload.

Step 2 (Faulty Application Logic): The application logic unsafely con-
sumes untrusted input and builds an HTML response containing the
attack. XSS attacks can be stopped during this step by performing
appropriate sanitization on inputs, a deceptively difficult problem. Al-
ternatively, some defenses might collect information during this step
but wish to delay actual enforcement to Step 3 or Step 4, and either
commmunicate to the client how inputs made their way into the out-
put (i.e., marking certain sections of the page as untrusted), or, us-
ing a complementary approach, endorse certain parts of the output as
trusted.

Step 3 (Malicious Response): The web server returns a malicious re-
sponse to the browser. Reflected XSS attacks can be stopped at this
step by checking if any input ends up in the HTML output and could
be interpreted as a script. Note that Step 3 can be performed on
the client-side (e.g. client-side proxy), transparently over the network

3Historically, the SOP has always considered redirecting the top frame a necessary
nuisance and not a security vulnerability

XSSFilt 40

(e.g. corporate interception proxy) or on the server-side (e.g. web ap-
plication output filter). Note that DOM-Based XSS attacks are not
observable at this step, because they only manifest themselves after
the JavaScript engine consumes untrusted input in an unsafe way.

Step 4 (Malicious Script Execution): The malicious script contained in
the response is parsed by the HTML parser and its content is sent over
to the JS engine for execution. If the server sent trust information to
the client along with the response, the trust level of the script can be
checked here and XSS attacks can be stopped. If no trust information
is present, the attack can be stopped by looking for the current script
about to be executed in the input. Even if a script is benign, it might
contain DOM-Based vulnerabilities, and an attack can happen during
its execution (see 5a and 5b).

Step 5a (Vulnerable DOM Operation): A benign script can also mod-
ify the DOM, adding new script content (e.g. document.write). If the
malicious script is inserted during this step, then this is defined as a
DOM-Based attack. An XSS attack can be stopped here by blocking
new script nodes; however, because new script content must eventually
go through Step 4, defenses can simply rely on existing defenses on the
execution path.

Step 5b (Malicious Dynamic Code Execution): A benign script can
also add new script content directly (e.g. eval). If the malicious script
is inserted during this step, this is also known as a DOM-Based attack.
Unlike Step 5a, malicious scripts introduced from Step 5b do not go
through Step 4, so XSS defenses must stop most DOM-Based attacks
here.

Step 6 (Malicious Payload): At this point, we assume that the attacker
is executing its own malicius JavaScript code on the user’s browser.
Not all is lost: an XSS defense can restrict the runtime behavior of the
malicious script, preventing specific actions (e.g. exfiltrating cookies for
session hijacking). Note however, that any runtime restrictions must
apply to benign code as well, since malicious code is indistinguishable
from benign code at this stage.

Even though each defense has its own unique twist on how to recognize

XSSFilt 41

and stop XSS attacks, they can be organized into the following categories,
according to where in Figure 8 they check for XSS attacks.

Preventing Malicious Requests (Step 1): A filter using this approach
blocks, prevents or sanitizes HTTP requests that are deemded dangerous.
The main drawback of this type of filter is that it must make a purely spec-
ulative decision about the nature of the URL with minimal information: be-
cause the request hasn’t even been sent yet, the filter does not know how the
web application uses the suspicious URL in the response (e.g. if is sanitized,
or if it is present in the response at all!).

The only filter in this category is included in NoScript [43], a popular
Firefox plugin which allows users to execute JavaScript only on trusted web-
sites manually added to a whitelist. To detect suspicious content in outgoing
URLs, its XSS filter relies on regular expressions. For example, if a URL
contains a script tag in a parameter, the filter sends out a sanitized request
without the tag. Since the filter cannot actually check if malicious data is
actually present in the response, it can suffer from a higher rate of false
positives compared to other approaches.

Sanitization routines (Step 2): While server-side sanitization is a neces-
sary first line of defense and is not complicated for simple inputs (e.g. only
allow alphanumeric characters), allowing complex inputs (e.g. WikiMedia,
BB Code) while disallowing scripts is prone to errors.

Several works have highlighted how simple taint-tracking to verify that
“blessed” sanitization functions are applied to untrusted inputs [67] is inad-
equate, because it puts too much trust into the correctness of sanitization
functions [3, 115, 55]. ScriptGard [115] assumes the existence of sanitization
functions that are safe for a specific context (e.g. writing inside an HTML
attribute) and identifies two sanitization errors (besides the more obvious
lack of sanitization altogether) that can lead to vulnerabilities: context-
mismatched sanitization, where the wrong sanitization function is applied,
and inconsistent multiple sanitization, where sanitization routines are com-
posed incorrectly. During a training phase, ScriptGard uses taint-tracking
to check if the right sanitization is applied to untrusted data flowing to a
specific sink. The correct sanitization routine is then patched into the web
application and performed at runtime.

Bek [55] describes a restricted language for writing sanitizers that allows
static analysis of the sanitizer’s behavior. For example, given a sanitization

XSSFilt 42

function Bek can answer queries such as “can you construct an input that
produces the following output?”, to check if malicious strings can circumvent
sanitization. The author’s intuition is that, unlike application logic, sanitiza-
tion functions do not need to be written in powerful languages that are hard
to analyze. Instead, the authors argue that Bek is sufficiently expressive to
model real-world code and yet restricted enough to be amenable to static
analysis.

Blueprint [78] presents a server-side sanitization routine which converts
HTML into JavaScript code that inserts the original HTML content into
the page using the DOM API. The purpose of this transformation is to fix
the parse tree of the page (i.e. its dynamic interpretation) on the server-
side, detecting and filtering script content on the DOM representation and
generating JavaScript code to reliably reconstruct the sanitized parse tree
once the code is rendered by the browser. Unlike traditional server-side
filters, this makes Blueprint immune to browser quirks.

Recognizing Injection into HTML (Step 3): A filter using this approach
prevents XSS attacks in three (sub)steps, all of which are non- trivial and
prone to bypasses and issues. In Step 3.1, the filter uses string matching
to detect which parts of the HTTP response are made out of the inputs
from the HTTP request; if the application performs input sanitization, the
matching might fail. In Step 3.2, the filter must detect which parts of the
HTML response will be parsed as script content by the browser, either using
a similar parser or using other heuristics; any minimal difference in parsing
behavior, even regarding non-standard recovery of errors (browser quirks)
can lead to bypasses or false positives. In Step 3.3, if an input parameter
is found in a script region of the HTML file, the script must be sanitized;
an attack might survive sanitization, or the sanitization itself might change
how the rest of the page is parsed, re-activating a broken attack. Also, note
that filters using this approach cannot possibly deal with DOM-Based XSS
attacks, since there is no DOM representation of the page at this stage.

XSSDS [63] describes two different server-side filters: an XSS filter for
stored and reflected XSS attacks that builds a whitelist of scripts using train-
ing, and a reflected XSS filter based on string matching. To be more resilent
against browser quirks, the filter performs step 3.2 using the Firefox parser,
which is at least able to defeat browser quirks against Firefox clients; how-
ever, this parser adds significant overhead and cannot reliably handle browser
quirks for other browsers.

XSSFilt 43

Reference [142] is a server-side filter that uses taint-tracking to protect
against a wider range of injection attacks (SQL Injection, OS Command
Injection, etc). In the context of XSS, it greatly simplifies step 3.1, because
taint information can be used to precisely identify which parts of the HTML
response come untrusted inputs. However, full-fledged taint-tracking has
higher overhead than string matching, and the binary or the source code
must be transformed, possibly leading to a loss of reliability. The policies
are based on syntactic confinement : tainted tokens of sensitive operations
should not span multiple syntactical constructs. An example in the case of
XSS is “no parts of the page originating from untrusted inputs shall close
a tag and open a script tag”. Reference [118] introduces taint- inference
instead of taint-tracking, using similar policies.

XSS-GUARD [10] ports the approach of Candid [5] from SQL Injection
to XSS: the application is instrumented to build an alternative “shadow”
response along with the ordinary one; instead of using untrusted parame-
ters to assemble the response, the application logic of the shadow page uses
dummy inputs. Once both responses have been built, XSS-GUARD verifies
that every script present in the real page is also present in the alternative
page. Although XSS-GUARD is a server-side defense, the idea of sending a
dummy request along with the original request for XSS protection has been
used on the client-side as well in Reference [58].

Internet Explorer 8 [108] was the first XSS filter to be integrated by de-
fault in a major browser. Despite being part of the browser itself, it actually
works like a client-side proxy and thus belongs firmly in this category. Com-
pared to XSSDS and Reference [118], IE8’s filter performs step 3.2 and 3.3
in a faster and simplistic way: from the untrusted inputs the filter creates
regular expressions of possibly malicious injections using heuristics; the reg-
ular expressions are then used to find scripts in the HTML output. The
filter’s goal is to provide a usable protection for ordinary users, thwarting
basic attacks without incurring false positives.

Recognizing Injection into the DOM (Step 4): A filter using this ap-
proach is tightly integrated with a specific browser (in particular, its HTML
parser) and can stop execution of new JavaScript code by manipulating the
AST while it is generated by the parser, removing the offending nodes. Filters
from this category prevent XSS attacks in two substeps, which are related
to those found in from the previous category. Step 4.1 is equivalent to Step
3.1, and the same caveat about sanitization apply here as well. Step 4.2 is

XSSFilt 44

equivalent to step 3.3, but it is much easier: the filter can prevent execution
of scripts content simply by removing the offending AST node, sidestepping
the complex step of sanitizing HTML code. Note that there is no equivalent
for Step 3.2: identifying which parts of the HTML response are parsed as
script is now done “for free” by the browser’s parser instead of by the filter,
defeating all browser quirks. However, as shown in Figure 8, filters from this
category automatically cover Step 5a through Step 4, but not 5b, stopping
only a subset of DOM-Based attacks.

XSSAuditor [7] is the name of the XSS filter integrated into Google
Chrome. At the time of its publication, the Step 4 approach was a novel
contribution, and thus the paper focuses on its advantages over IE8’s filter,
a Step 3 filter. The filter is called by the HTML parser every time a relevant
tag or attribute is consumed, and the corresponding string in the HTML out-
put is searched in the URL. In practice, this means that XSSAuditor expects
that for a successful XSS attack entire tags and attributes must be present
in the URL, which is not always the case, in particular for partial injections.
If an attack is found, the parser modifies the AST and removes the offending
node.

Recognizing Execution of Code (Step 4 & 5b): This approach also
creates filters that are tightly integrated to a specific browser, but instead of
examining data from the HTML parser, it register callbacks in the codebase
right before a string is about to be sent to the JavaScript engine for execution.
This obviously includes both Step 4 and 5b. Our filter, XSSFilt [104], falls
into this category.

Reference [126] presents another filter that uses this approach, published
2 years after XSSFilt. Unlike XSSFilt, this filter assumes the existence of
a reflected XSS filter and focuses on stopping DOM-Based attacks. The
authors argue that filters based on string matching, while appropriate for re-
flected XSS attacks, are unnecessary imprecise in the context of DOM-Based
XSS: since the flow of untrusted inputs into vulnerable sinks happens entirely
in the browser, the filter can collect reliable taint information by modifying
the JavaScript engine. In their case, the authors leveraged the work already
done in Reference [75] for the Chromium browser and added a straightfor-
ward policy to block DOM-Based attacks: the filter’s policy prevents tainted
strings from becoming a) JavaScript tokens (except terminals such as strings
and numbers) and b) URLs in tags and DOM API methods that load new
external JavaScript content (specifically, the host part of the URL). With

XSSFilt 45

this policy, the paper reports a false positive ratio of 0.16% on an Alexa Top
10000 crawl.

The paper also discusses the shortcomings of other XSS filters, focusing
on XSSAuditor and preseting 13 different issues that can be used to bypass it.
Thanks to our improvements over XSSAuditor, only three apply to XSSFilt:
Second order flows, which applies to attacks that use cookies, localStorage
and similar flows that outlive the HTTP request/response lifecycle of the
filter; trailing content, which confuses string matching because neither the
input parameter and the injected script content is a substring of the other;
double injection, previously discovered by Nikiforakis [94]) which splits the
payload among different inputs, also confusing the string matching process.
These weaknesses can be traced back to the choice of using taint- inference
as opposed to full-fledged taint-tracking.

Blocking Unauthorized Scripts (Step 4 & 5b): This approach includes
defenses that use directives from the web application to decide which scripts
are allowed to run. Although they require explicit cooperation from web
applications, these defenses can easily classify scripts as trusted or untrusted
and act accordingly. These defenses also protect against stored XSS attacks.

BEEP [62] is a proposal to allow servers to supply a policy for the page
through a JavaScript function. This function can interpose on script exe-
cution: it receives the script content and its DOM node as arguments, and
can allow or deny its execution. The paper provides two sample policies: a
whitelisting policy, where the web developers matches every script with a
set of known script hashes, and a containment policy, where developers can
mark a nodes as untrusted and the function prevents execution of script from
any descendant.

DSI [90] and Noncespaces [136] protect against injection attacks by pro-
viding an isolation primitive for HTTP. Using this primitive, the server can
securely isolate untrusted content and trasmit it to the browser along with
the HTML response. The browser can then refuse to execute untrusted con-
tent. This combines the advantages of server-side defenses with respect to
identification of untrusted content (support for taint-tracking and developer
annotation) and of client-side defenses with respect to enforcement (immu-
nity to browser quirks, support for DOM-Based attacks). Both papers use
nonces to safely delimit untrusted content; DSI uses random character se-
quences, while NonceSpaces uses XML namespaces.

Content Security Policies [122] are a W3C standard to restrict the set of

XSSFilt 46

hosts pages can include resources from. For each content type, web developers
can specify a list of trusted hosts allowed to embed content in their web page.
In the context of XSS, CSPs can prevent attacks by forcing external scripts
to be served solely by servers that are trusted or under the control of the web
application. Unfortunately, inline scripts cannot be considered same-origin in
the presence of XSS vulnerabilities; therefore, to protect against XSS attacks,
CSPs must also prevent execution of all inline scripts. Reference [140] noted
a low adoption rate for CSPs compared to other security headers and a large
percentage of CSP policies opting out of XSS protection by allowing inline
scripts and eval calls4. A more recent version of the spec supports a less
restrictive inline script policy: inline scripts are allowed as long as they bear
a nonce defined by the policy. Using nonces, developers can deploy CSPs
without having to convert all their inline scripts into external scripts, which
will hopefully result in more widespread adoption.

Preventing Unintended Information Flows (Step 6): Defenses follow-
ing this approach do not attempt to prevent execution of malicious code,
which is already running at this point. Instead,they try to minimize the
extent of the damage upon a successful attack.

Noxes [69] prevents exfiltration in general by monitoring outgoing HTTP
data. It is implemented as a client-side proxy that works like a personal
firewall: once the user vists a site, the proxy prompts the user if the site
causes HTTP requests to URLs that are not a) on the same origin as the site
and b) not statically present in the original HTML page. The intuition is
that XSS attacks try to exfiltrate data by issuing XMLHttpRequests, creating
new images, etc, which are not present in the original page. The evaluation
shows that 3.5% of links would generate a warning. (5.7% if protection
against implicit flows is enabled, which prevents the attacker from performing
too many requests to the same third-party domain). Unfortunately, web
pages generate much more dynamic content today than in 2006 (the year of
publication of Noxes), and we expect the warning rate to be much higher.
For example, Single page applications like Gmail would produce warnings for
most of their links.

SessionShield [95] focuses on preventing exfiltration of session identifiers,
which are stolen to hijack user sessions. In this case, the proxy inspects
responses for Set-Cookie headers, filtering out session identifiers by recog-

4Even under such policy, CSPs can help with exfiltration in the event of an XSS attack

XSSFilt 47

nizing their name (e.g. phpsessid) or the entropy of their value. The proxy
adds the session cookie to all responses to the same site, effectively hiding the
session identifier from the browser, while supplying it transparently to the
server. The effect is the same as defining the session id cookie as HttpOnly,
which prevents JavaScript code from accessing its value.

Noxes generates many warnings, and SessionShield only protects session
IDs. Information Control Flow (IFC) can be used to track the flow of confi-
dential data and only warn the user if outgoing connections contain such data,
reducing the number of warnings. Reference [137] presents a modification to
Firefox’s JavaScript engine that prevents exfiltration using fine grained taint-
tracking, refusing to transfer sensitive information (e.g. cookies) to third par-
ties. IFC can also be enforced using Secure Multi- Execution (SME); instead
of applying SME to the whole browser, which causes significant performance
and memory overhead and usability problems, FlowFox [26] discusses the
implementation of SME for the JavaScript engine only, and demonstrates
how it can still successfully deal with a multitude of threats (e.g. session
exfiltration, malicious advertisements, drive-by- downloads, etc.).

Instead of preventing information leaks, PathCutter [16] focuses on pre-
venting the propagation of XSS worms, by dividing the web application into
views and granting limited privileges to each view: an XSS attack compro-
mising a view (e.g. a user comment) might not have the necessary privileges
to propagate the worm to other users. Views are separated using iframes
pointing to different subdomains, which automatically enforce client-side iso-
lation using the SOP; server-side authentication and access control is done
using the Origin header.

2.7.2 New Surveys and Attacks

Since the publication of XSSFilt and XSSAuditor, the research community
has begun taking XSS filtering into account. Recent work has focused on
DOM-Based XSS, which had not been addressed head on by the last gener-
ation of defenses, and filter evasion.

In particular, two works [75, 99] focused on detection of DOM-Based XSS
attacks in the wild to demonstrate that, as Web Application embed more
and more functionality on the client side, DOM-Based XSS vulnerabilities
are not a mere variation on reflected XSS vulnerabilities, but a major threat
that needs to be addressed. Both works rely on client-side taint-tracking;
Reference [75] adds byte-level taint-tracking to Chromium’s JavaScript en-

XSSFilt 48

gine and DOM implementation. Once tainted data reaches a sink, it is sent
to an exploit generator, which uses context information (e.g. whether the
attacker- controlled string appears in a JavaScript string fed to eval, in an
HTML attribute fed to document.write, etc) to generate and verify an ex-
ploit. This technique is similar to what we described in our own exploit
generator for gDork [105], but has been extended to a) deal with multiple
sinks other than the HTML sink implied in reflected XSS attacks and b) use
additional information available in the context of taint-tracking (e.g which
sanitization functions were applied to the tainted data). Starting a crawl
from the Alexa Top 5000 sites, the tool found almost 25 million potentially
unsafe data flows. However, because verifying a vulnerability is time con-
suming, they focused on a subset of flows that is easier to exploit (e.g. no
sanitization applied, no second order attacks), which yielded 180 thousand
exploits to verify, of which approximately 40% succeeded, for a total of 8.6%
sites from the Alexa Top 5000 containing at least one vulnerability.

Instead of working at the C/C++ level, Reference [99] uses a proxy to
rewrite incoming JavaScript code and add taint-tracking. This kind of in-
strumentation does not require learning about the internals of one browser
and is not tied to a specific implementation; on the other hand, the overhead
is much higher. Beside demonstrating the popularity of DOM- Based XSS
vulnerabilities, the paper describes how to automatically produce patches
for the vulnerabilities it finds. Starting from the Alexa Top 1000, their tool
found 777 thousand flows, which they narrowed down to 80 thousand flows
that are easier to exploit, yielding 820 exploits across 89 Alexa Top 1000
domains.

An unsurprising but useful consequence of the increased amount of pre-
sentation and application logic that has moved from web servers to browsers is
that more of it is now available to researchers for study. Although obfuscation
prevents reverse engineering and static analysis, the code is still amenable for
runtime analysis. In the context of DOM-Base XSS, Reference [127] defines
taint-related complexity metrics (e.g. lines of code between each source ac-
cess and sink operation) in an attempt to understand the underlying causes
of DOM-Based XSS vulnerabilities. Although a third of vulnerabilities are
associated to at least one metric having a high complexity, about two thirds
are associated to low complexity metrics only, which seems to suggest that
the vast majority of XSS attacks are simply caused by total lack of developer
awareness about the dangers of handling attacker- controlled data on the
browser.

XSSFilt 49

FLAX [114] describes Client-Side Validation Vulnerabilities (CSVs); these
include, but are not limited to, DOM-Based XSS attacks. This threat in-
cludes attacks that use similar sources of untrusted input, but do not inject
new JavaScript code; instead, they subvert the application logic in more sub-
tle ways, e.g. they impersonate another origin using postMessage, or they
inject additional query parameters in otherwise benign XmlHttpRequests.
XSS defenses are ineffective against these non-injection threats; FLAX [114]
uses taint-aware fuzzing to discover CSV vulnerabilities, while ZigZag [141]
uses an Intrusion Detection approach, learning a model of the inputs to each
sensitive sink during training.

Researchers also started taking XSS filters into account; Reference [53]
discusses how to exploit sites and steal confidential data in a “post-XSS”
world, i.e. assuming that XSS filters work and that attacks are able to inject
content (e.g. HTML, CSS), but not execute JavaScript code. They name
these scriptless attacks. The paper presents a proof-of-concept attack to
steal CSRF tokens (and thus bypass most CSRF protections) and discusses
mitigation techniques. In particular, although CSPs are useful to prevent
injection of external resources and exfiltration, they cannot prevent attacks
relying on inline elements, since the only inline content that can be locked
down is script content. Rereference [54] discusses non-standard innerHTML

behavior that can be used to bypass not only server-side XSS filters, but,
unlike normal HTML browser quirks, also client-side filters.

jCSRF 50

3 jCSRF: A Server- and Browser-Transparent

CSRF Defense for Web 2.0 Applications

The second defense presented by this dissertation is jCSRF, another black-
box defense that protects legacy web applications from CSRF attacks. CSRF
is the name given to a Confused Deputy Attack [52] specific to web applica-
tions. It is fundamentally different than an injection attack like XSS, and
therefore a successful defense requires a different approach than XSSFilt.
The term CSRF is as old as 2001 [139]. However, the security community
has not paid enough attention to the issue until recent years. CSRF has been
infamously named the “sleeping giant” among web based vulnerabilities, the
reason being that most websites have been vulnerable to CSRF attacks long
before vulnerabilities started to be discovered, but neither malicious individ-
uals nor developers understood the extent of the threat. Given the number
of unfixed vulnerabilities still in the wild, it is unsurprising that CSRF, just
like XSS, appears both in the CWE Top 25 and the OWASP Top 10.

The stateless nature of HTTP necessitates mechanisms for maintaining
authentication credentials across multiple HTTP requests. Most web applica-
tions rely on cookies for this purpose: on a successful login, a web application
sets a cookie that serves as the authentication credential for future requests
from the user’s browser. As long as this login session is active, the user is no
longer required to authenticate herself; instead, the user’s browser automat-
ically sends this cookie (and all other cookies set by the same server) with
every request to the same web server.

The same origin policy (SOP), enforced by browsers, ensures confiden-
tiality of cookies: in particular, it prevents one web site (say, evil.com)
from reading or writing cookies for another site (say, bank.com). However,
browsers enforce no restrictions on outgoing requests: if a user visits an
evil.com web page, possibly because of an enticing email (see Figure 9), a
script on this page can send a request to bank.com. Moreover, the user’s
browser will automatically include bank.com’s cookies with this request,
thus enabling Cross-site Request Forgery (CSRF). A CSRF attack thus en-
ables one site to “forge” a user’s request to another site. Using this attack,
evil.com may be able to transfer money from the user’s account to the at-
tacker’s account [148]. Alternatively, evil.com may be able to reconfigure
a firewall protecting a home or local area network, allowing it to connect to
vulnerable services on this network [21, 22, 25].

jCSRF 51

Attacker Bank

Server
Victim

Malicious

Server
Bank

Database

Please visit evil.com
Click on link

GET evil.com

Send response

POST bank.com – data + cookies

Valid session ID

Transfer money

Browser

$(‘invisible form’).submit()

Figure 9: Illustration of a CSRF attack

Since CSRF attacks involve cross-domain requests, a web application can
thwart them by ensuring that every sensitive request originates from its own
pages. One easy way to do this is to rely on the Referrer header of an
incoming HTTP request. This information is supplied by a browser and
cannot be changed by scripts, and can thus provide a basis for verifying the
domain of the page that originated a request. Unfortunately, referrer header
is often suppressed by browsers, client-side proxies or network equipment
due to privacy concerns [6]. An alternative to the Referrer header, called
Origin header [6], has been proposed to mitigate these privacy concerns, but
this header is not supported by most browsers. As a result, it becomes the
responsibility of a web application developer to implement mechanisms to
verify the originating web page of a request.

A common technique for identifying a same-origin request is to associate
a nonce with each web page, and ensuring that all requests from this page
will supply this nonce as one of the parameters. Since the SOP prevents
attackers from reading the content of pages from other domains, they are
unable to obtain the nonce value and include it in a request, thus providing
a way to filter them out. Many web application frameworks further sim-
plify the incorporation of this technique [143, 32, 51]. Nevertheless, it is
ultimately the responsibility of a web application developer to incorporate
these mechanisms. Unfortunately, some web application developers are not

jCSRF 52

aware of CSRF threats and may not use these CSRF prevention techniques.
Even when the developer is aware of CSRF, such a manual process is prone
to programmer errors — a programmer may forget to include the checks for
one of the pages, or may omit it because of a mistaken belief that a particular
request is not vulnerable. As a result, CSRF vulnerabilities are one of the
most commonly reported web application vulnerabilities, and is listed as the
fourth most important software vulnerability in the CWE Top 25 list [132].

Prompted by the prevalence of CSRF vulnerabilities and their potential
impact, researchers have developed techniques to retrofit CSRF protection
into existing applications. NoForge [66] implements CSRF protection using
the same basic nonce-based approach outlined earlier. On the server-side, it
intercepts every page sent to a client, and rewrites URLs found on the page
(including hyperlinks and form destinations) so that they supply the nonce
when requested. RequestRodeo [64] is conceptually similar but is deployed
on the client-side rather than the server side. Unfortunately, since these tech-
niques rely on static rewriting of link names, they don’t work well with Web
2.0 applications that construct web pages dynamically on the browser. More
generally, existing CSRF defenses suffer from one or more of the following
drawbacks:

1. Need for programmer effort and/or server-side modifications. Many ex-
isting defenses are designed to be used by programmers during the soft-
ware development phase. In addition to requiring programmer effort,
they are often specific to a development language or server environment.
More importantly, they cannot be deployed by a site administrator or
operator that doesn’t have access to application source code, or the
resources to undertake code modifications.

2. Incompatibility with existing browsers. Some techniques require browser
modifications to provide additional information (e.g., the referrer or
origin [6] header), while others rely on browsers enforcement of policies
on cross-origin requests (e.g., NoScript [43], CsFire [28], SOMA [96],
RequestRodeo [64]). These approaches thus leave server administrators
at the mercy of browser vendors and users, who may or may not be
willing to adopt these browser modifications.

3. Inability to protect dynamically generated requests. Existing server-side
defenses, including NoForge [66], CSRFMagic [143], and CSRFGuard

jCSRF 53

[120], do not work with requests that are dynamically created as a
result of JavaScript execution on a browser.

4. Lack of support for legitimate cross-origin requests. Previous server-
side token-based schemes similar to NoForge are aimed at identifying
same-origin requests. However, there are many instances where one
domain may trust another, and want to permit cross-origin requests
from that domain. Such cross-origin requests are not supported by
existing server-side solutions, and there does not seem to be any natural
way to extend them to achieve this.

Therefore, we developed a new approach for CSRF defense that does not
suffer from any of the above drawbacks. jCSRF is implemented in the form
of a server-side proxy. Note that on web servers such as Apache that support
a plug-in architecture, jCSRF can be implemented as a web server mod-
ule, thus avoiding the drawbacks associated with proxies such as additional
performance overheads and HTTPS compatibility.

jCSRF operates by interposing transparently on the communication be-
tween clients and servers, modifying them as needed to protect against CSRF
attacks. As a server-side proxy, it avoids any need for server-side changes.
jCSRF also avoids client-side changes by implementing client-side processing
using a script that it injects into outgoing pages. It can protect requests for
resources that are already present in the web page served to a client, as well as
requests that are dynamically constructed subsequently within the browser
by scripts. Finally, it incorporates a new protocol that enables support of
legitimate cross-domain requests.

jCSRF protects all POST requests automatically, without any program-
mer effort, but as we describe later, it is difficult (for our technique and those
of others) to protect against GET-based CSRF without some programmer
effort. Moreover, GET-requests are supposed to be free of side-effects as per
RFC2616 [38], in which case they won’t be vulnerable to CSRF. For these
reasons, jCSRF currently does not protect against GET-based CSRF.

3.1 Approach Overview

As described before, the essence of CSRF is a request to a web server that
originates from an unauthorized page. We use the terms target server, and
protected server to refer to such a server that is targeted for a CSRF attack.

jCSRF 54

An authorized page is one that is from the same web server (“same-origin
request”), or from a second server that is deemed acceptable by this server
(“authorized cross-origin request”). In the former case, no special configu-
ration of jCSRF is needed, but in the latter case, we envision the use of a
configurable whitelist of authorized sources for a cross-origin request.

We have implemented jCSRF as a server-side proxy, but it can also be
implemented as a server-side module for web-servers that support modules,
such as Apache. This proxy is transparent to web applications as well as
clients (web-browsers), and implements a server- and browser-independent
method to check if the origin of a request is authorized. Conceptually, this
authorization check involves three steps:

• In the first step, an authentication token is issued to pages served by
the protected server.

• In the second step, a request is submitted to jCSRF, together with the
authentication token.

• In the third step, jCSRF uses the authentication token to verify that
the page from which the request originated is an authorized page. If
so, the request is forwarded to the web server. Otherwise, the request
is forwarded to the server after stripping all the cookies.

Note that stripping off all cookies will cause an authentication failure
within the web application, except for requests requiring no authentication,
e.g., access to the login page of the web application, or another informational
page that contains no user-specific information. Thus, jCSRF is secure by
design and will prevent CSRF attacks. Specifically, its security relies only on
three factors: unforgeability of authentication tokens, secure binding between
the token and the original page, and the correctness of the authorization
policy used in the third step. Other design or implementation errors may
lead to false positives (i.e., legitimate requests being denied) but not false
negatives.

Note that conceptually, the first two steps are similar to those used in
previous defenses such as NoForge [66]. Thus, the key novelty in our approach
is the design of protocols and mechanisms that ensure that CSRF protection
can be achieved for:

jCSRF 55

• dynamically created requests: requests that are constructed as a re-
sult of script execution on the client (web-browser). Such requests are
common in Web 2.0 applications using AJAX.

• cross-origin requests: requests from a web page served by one web site
A to another website B, provided B trusts A for this purpose.

When requests are dynamically created, the strategy used by NoForge
of statically rewriting the links (to include an authentication token) is not
applicable. We have therefore developed a new approach that uses injected
JavaScript to carry out this function. In particular, when a page is served by
a web application, jCSRF injects some JavaScript code, called jCSRF-script,
into this page. On the browser, jCSRF-script is responsible for obtaining
the authentication token, and supplying it together with every request orig-
inating from this page. By comparing the domain of the current page and
the domain of a request, this script can distinguish between same-origin and
cross-origin requests, and use different means to obtain the authentication
tokens in each case.

We also point out that a static rewriting strategy does not provide a way
to validate cross-origin requests. In particular, if a server A embeds a cross-
origin request for server B in its page, then the client would need a token for
accessing B, but the server A has no easy way to obtain such a token. Note
that it cannot directly request such a token from B since the token would
have to be bound in some way to the user’s cookies for B, and A has no
access to these cookies. In contrast, we develop a protocol that can support
cross-origin requests naturally.

From a conceptual point of view, jCSRF approach can be applied to both
GET and POST requests. However, in practice, the “authorized origin”
constraint, which forms the basis of all CSRF defense mechanisms, should
not be imposed on many GET-requests. Examples include (a) login pages
and other pages that contain no security-sensitive data, and (b) book-marked
pages, which may or may not contain sensitive data. Application-specific
configuration would be required to list such landing pages (case (a)) for each
application, and except them from authorization checks. Handling case (b)
would require some level of browser cooperation, something we do not assume
in our work. Moreover, since it is recommended practice to avoid side-effects
in GET-request (as per RFC2616 [38]), they are less likely to be vulnerable
as compared to POST-requests. Finally, certain HTML elements such as img

jCSRF 56

Server
User

jCSRF

Proxy
Visit safe.com

GET safe.com
GET safe.com

<html>…</html>Set-Cookie: Cat

<html><script src=jcsrf.js>…</html>

Submit form

jCSRF

Handler

POST post.php

Cookie: Cat

Data: form data + Pat

Check if Cat and Pat

match

POST post.php

Data: form data
<html>…</html>

<html><script src=jcsrf.js>…</html>

Copy Cat from

cookies into form as

Pat

Register Submit

handler for forms

Browser

Display page

Figure 10: Same-Origin Protocol Workflow

and frame cause the browser to issue a GET request before jCSRF-script has
a chance to add the authentication token, requiring jCSRF-script to resubmit
the requests for these elements and complicate its logic. For these reasons,
in our current implementation of jCSRF, GET requests are not subjected to
the “authorized origin” constraint.

Below, we provide more details on the key steps in jCSRF.

3.1.1 Injecting jCSRF-script into web pages

When a page is served by a protected server, jCSRF-proxy automatically
injects jCSRF-script into the page. This can be done without having to
perform the complex task of parsing full HTML. Instead, the new script is
added by inserting a line of the form

<script type="text/javascript" src=... ></script>

jCSRF 57

immediately after the <head> tag. Also, jCSRF-proxy includes a new cookie
in the HTTP response (unless one exists already) that can be used by jCSRF-
script to authenticate same-origin requests. The rest of the page is neither
examined nor modified by jCSRF-proxy. As a result, the proxy does not
know whether the page contains any cross-origin (or same-origin) requests.
It is left to the jCSRF-script to determine on the client-side whether a request
being submitted is a same-origin or cross-origin request.

If jCSRF-proxy is implemented as a stand-alone proxy, then it may not
be easy to handle HTTPS requests as the proxy will now intercept encrypted
content. Although this can potentially be rectified by terminating the SSL
sessions at the proxy, a simpler and more preferable alternative is to imple-
ment the proxy’s logic as a module within the web server.

3.1.2 Protocol for Validating Requests

Although there is just a single protocol that uses different mechanisms to
validate cross-origin and same-origin requests, it is easier to describe them
separately. We first describe the same-origin validation since it is easier to
understand, and then proceed to describe the cross-origin case.
Same-Origin Protocol: The same-origin protocol, illustrated in Figure 10,
is a simple stateless protocol which authenticates same-origin requests. Red
dotted lines in the figure demarcate request-response cycles.

Initially, an authentication token needs to be issued to authorized pages.
Since jCSRF permits POST requests only from authorized pages, the very
first request from a user has to be a GET request. Such a request is charac-
terized by the fact that a cookie Cat used by jCSRF is not set. The server’s
response to this request is modified by jCSRF-proxy to set this cookie to a
cryptographically secure random value. In addition, jCSRF-proxy also in-
jects jCSRF-script in the response as previously described. When this page
is received by the browser, jCSRF-script executes, and will ensure (as de-
scribed further in Section 3.1.3) that the value of Cat is copied into a new
parameter Pat for all requests originating from this page.

Note that all pages returned by a protected server are modified as above,
not just the initial GET request. As such, subsequent requests can provide
Cat as well as Pat. This information is then used in the second step of the
protocol in Figure 10 to validate POST requests. In particular, jCSRF-proxy
checks if Pat = Cat, and if so, the request is forwarded to the server after
stripping out Pat. A missing Pat or Cat, or if Pat 6= Cat, it is deemed an

jCSRF 58

unauthorized request. In this case, jCSRF-proxy strips off all cookies before
the request is forwarded to the server. Since web applications typically use
cookies to store authentication data, this ensures that the request will be
accepted only if it requires no authentication. Note that cross-origin GET
requests can be limited in the same way as POST requests, but for reasons
described before, the current implementation of jCSRF does not do so.
Correctness — In order to protect against CSRF, this protocol needs to
guarantee the following properties:

• scripts running on an attacker-controlled page visited by user’s browser
cannot obtain the authentication token for the protected domain.

• any token that may be obtained by the attacker, say, using his own
browser, cannot be used to authenticate a request from user’s browser
to the protected domain

• the attacker should not be able to guess an authentication token that
is valid for the protected domain

The first property is immediate from the SOP: since the authentication
token is stored as a cookie, attacker’s code running on the user’s browser
runs on a different domain and has no access to it.

The second property holds because the attacker, apart from being pre-
vented by the SOP from reading the token, is also prevented from setting
the token. Therefore, any token obtained by the attacker and embedded
into forms sent by the user would not match the cookie that jCSRF-proxy
previously set for the user.

The third property is ensured by the fact that the authentication token
is randomly chosen from a reasonably large keyspace. Specifically, jCSRF-
proxy for a server S generates Cat as follows. First, a 128-bit random value IR
is generated from a true random source, such as /dev/random. A pseudoran-
dom number generator, seeded with IR, is then used to generate a sequence
of pseudorandom numbers R1, R2, From these, nonces N1, N2, . . . are
generated using secret-key encryption (specifically, the AES algorithm) as
follows:

Ks = IR, Ni = AESKs(Ri)

Whenever jCSRF-proxy receives a request with a missing (or invalid) Cat, it
sets Cat to Ni and increments i.

jCSRF 59

User
Source

Proxy (S)

Submit form

S jCSRF

handler

POST post.php

Cookie: Cat

Data: form data + P
ST

at

<html><script src=jcsrf.js>…</html>

Insert P
ST

at into form

Target

Proxy (T)

Decrypt P
ST

at to check for

Cat and S

T

IFRAME

XmlHttpRequest

X-No-Csrf: Yes

Data: S

Set-Cookie: Cat

P
ST

at
postMessage P

ST
at to S

GET T iframe

T iframe

Browser

Visit safe.com
GET safe.com

<html><script src=jcsrf.js>…</html>

Register submit

handler for form

P
ST

at = AESKt(Cat || S)

Display page

Figure 11: Cross-Origin Protocol Workflow

Note that this protocol design does not require Ni values to be stored per-
sistently, since the validation check is stateless: jCSRF-proxy simply needs to
compare Cat and Pat values in the submitted request. Hence, if jCSRF-proxy
crashes, it can simply start all over, generating a new IR and so on. Simi-
larly, Ks can be refreshed on a periodic basis by setting it to a new random
value from /dev/random.
Cross-Origin Protocol: Figure 11 illustrates our protocol that enables
pages from a (source) domain S to submit requests to a (target) domain T .
Note that servers have been omitted to reduce the number of actors involved
in the picture. Before describing the specifics of the protocol, note that the
mechanism used in the same-origin case cannot be used for cross-origin re-
quests: jCSRF-script runs on the source domain and therefore has no access
to the target domain’s cookies, which should contain the authentication to-
ken for requests to that domain. An obvious approach for overcoming this

jCSRF 60

problem is to have the source domain communicate directly with the target
domain to obtain its authentication token, but this is not easy either. In par-
ticular, a correct protocol must bind the subset of user’s cookies containing
security credentials (for domain T) to jCSRF’s authentication token (also for
domain T). Unfortunately, jCSRF-proxy, being application-independent, is
unaware of which cookies contain user credentials, and hence cannot achieve
such a binding on its own. We therefore develop a protocol that exploits
browser-side functionality to avoid the need for a new protocol between S
and T . In this protocol, javascript code executing on the user’s browser com-
municates with T to obtain an authentication token and communicates it to
jCSRF-script. This enables jCSRF-script to include the right value of Pat

when it makes its cross-origin request to T .
Note that there may be many instances where the user loads a page

from S containing a form for T , but never actually submits it. To avoid the
overhead of additional communication with T in those instances, the steps for
passing T ’s authentication token to jCSRF-script are performed only when
the user submits a cross-domain form. In addition to reducing the overhead,
this approach has privacy benefits since T does not get to know each time
the user visits a page that allows submitting data to T .

The specifics of our cross-domain protocol are as follows. When a POST
action is performed on a page from S, jCSRF-script checks if the target do-
main T is different from S and if T accepts authenticated requests. This
information can either be supplied by the web administrator of S as a list of
jCSRF-compatible origins or detected by attempting to load a special image
jCSRF-image.jpg from T : the error and load events can be used to detect
whether the resource was found. If the host does not support jCSRF, then
jCSRF-script simply submits the post to T without any authentication to-
kens. Otherwise, jCSRF-script injects an iframe into the page for the URL
http://T/jCSRF-crossdomain.html?domain=S. This page will contain ja-
vascript code that sets up the authentication token P ST

at that a page from S
can present to T . The steps involved in this process are as follows:

• First, the script within the iframe makes an XmlHttpRequest to the
domain T , providing S (given by the parameter domain in the above
request) as an argument. XmlHttpRequests can only be issued to same-
origin resources and, unlike ordinary requests, are allowed to include
custom HTTP headers. Therefore, a request bearing the custom header
X-No-CSRF proves to T that the request came from a page served to

jCSRF 61

the user’s browser by T .

• This XmlHttpRequest is served by jCSRF-proxy. If the user’s jCSRF
cookie (i.e., the cookie Cat) is not set, it is set by jCSRF-proxy using
a nonce value Ni as described for the same origin case. In addition,
jCSRF-proxy sends back the authentication token:

P ST
at = AESKT

(Cat||S)

Here, KT is a (random-valued) secret key generated for T using the
procedure described for the same-origin protocol.

• In the next step, P ST
at needs to be passed on jCSRF-script so that it

can complete the request to server T . This is accomplished using the
postMessage API, which provides a secure mechanism for the framed
script from domain T to communicate with a script from domain S.
Note that a framing page from a malicious domain A cannot trick the
frame from T into sending P ST

at : postMessage can be instructed to
deliver the message to a specific target origin which is chosen by T .
Whenever T is instructed to send P ST

at , this will be sent to S only, thus
preventing A from reading the message.

Some of the older browsers do not support the postMessage API. In
that case, a technique called location hash polling5 can be used in its
place.

• Once the framing page has received the token, the jCSRF-script from
S adds it to the form and submits the POST request to T .

• When jCSRF-proxy for domain T receives a POST request, it decrypts
it using KT , and checks if the cookie Cat included with the POST is
a prefix of the decrypted data. If so, it checks if the domain S, which
represents the remaining part of the decrypted data, is authorized to
submit cross-domain POST requests. If so, the request is passed on

5In location hash polling [41], a framing page sends its URL to a framed page as a
parameter. The framed page can then append a token to the URL of the framed page
using an anchor at the end of the URL. The basis for this technique is that this URL
change does not cause the framing page to reload; instead the value appended to the URL
is available for polling. If a malicious page from domain A lies about its URL (pretending
to be a page from S), then the update will cause the outer page to reload from domain S,
thus defeating the attempt by A to read data written by T .

jCSRF 62

the server. In all other cases, jCSRF-proxy treats the request as unau-
thorized, and strips all cookies before it is forwarded to T .

Correctness — Correctness of the cross-domain protocol relies on the same
three properties as the same origin protocol:

• scripts running on an attacker-controlled page visited by user’s browser
cannot obtain the authentication token for the protected domain.

• any token that may be obtained by the attacker, say, using his own
browser, cannot be used to authenticate a request from user’s browser
to the protected domain

• the attacker should not be able to guess an authentication token that
is valid for the protected domain

For the first property, note that because of the semantics of the postMessage
API, an attacker-controlled page can either receive an authentication token
that encodes its true domain A, or it may lie about its origin and not receive
the token at all. In the latter case, the first property obviously holds. In
the former case, although there is an authentication token, it contains the
true origin of the attacker. On receiving this token, jCSRF-proxy will deny
the request, as the attacker domain A is not authorized to make cross-origin
posts.

The second property holds because the attacker is unable to set (or read)
the value of user’s cookie Cat for the protected domain T . Thus, even if
he obtains an authentication token P by interacting with T using his own
browser, he cannot use it with user’s cookie Cat that will have a different
value from the cookie value sent to the attacker by T . (Recall that T uses
cryptographically random nonces to initialize Cat.)

The third property is ensured by the fact that the authentication token
is randomly chosen from a reasonably large keyspace.

3.1.3 Design and Operation of jCSRF-script

As noted before, jCSRF-script needs to intercept all POST-requests and add
the authentication token as an additional parameter to these requests. There
are two ways in which browsers may issue POST requests:

jCSRF 63

Application Version LOC Type Compatible

phpMyAdmin 3.3.7 196K MySQL Administration Tool Yes
SquirrelMail 1.4.21 35K WebMail Yes
punBB 1.3 25K Bulletin Board Yes
WordPress 3.0.1 87K Content-Management System Yes
Drupal 6.18 20K Content-Management System Yes
MediaWiki 1.15.5 548K Content-Management System Yes
phpBB 3.0.7 150K Bulletin Board Yes

Figure 12: Compatibility Testing

• Submission of HTML forms, represented by form tags. Note that it is
not necessary for the page to contain a form tag, because the form can
be constructed dynamically using Javascript. Also, it is not necessary
for the user to submit the form explicitly, because the form can be
submitted automatically using Javascript.

• XmlHttpRequest submissions. Unlike form submissions, where the re-
sponse cannot be accessed by the submitting script, the response to
XmlHttpRequest can be read by the script making the request.

Compatibility requires handling both types of primitives. We now describe
how jCSRF-script achieves this.
HTML Form Submission: Modern browsers allow Javascript code to reg-
ister callbacks for specific events concerning the web page presented to the
user. These functions are called event handlers. To ensure that every form
is submitted to the web application with an authentication token, jCSRF-
script registers a submit handler for each POST-based form. This handler
then checks if the submission is to the same-origin or cross-origin. In the for-
mer case, jCSRF-script simply adds the authentication token as an additional
parameter to the POST request. In the latter case, it uses the cross-domain
protocol to first obtain a token for the target domain, and then adds this
token as an additional parameter to the POST request.

Note that the web application might define its own event handlers for
the submission event, mostly to validate the form contents. If the web ap-
plication handler ran after jCSRF’s handler, it would have access to the
authentication token. In some rare cases, the presence of the token might
confuse the web application handler which only expects a predefined set of

jCSRF 64

fields. Therefore, jCSRF-script detects if the web application defines its own
handlers and wraps them with a function which removes the token before
calling the web application handler, reinserting the token afterward. There
are two types of event handlers: DOM0 handlers (registered with the HTML
attribute onSubmit or by assigning a function to the JavaScript property
form.submit) and DOM2 handlers (registered with the addEventListener

function). The former type of handler is detected by periodically checking all
forms for new, unwrapped submit handlers, which can be done through the
previously mentioned submit property of form elements, since handlers are
JavaScript functions and functions are first-class objects in JavaScript. The
latter type requires overriding the addEventListener method to directly
wrap new handlers during their registration, since there is no way to query
the set of listeners registered for a specific (event, object) pair.
XmlHttpRequest: For XmlHttpRequests, jCSRF-script modifies the send

method of the class. For a browser supporting DOM prototypes [47], this can
be done simply by substituting the send function, while on older browsers
it is done by completely wrapping XmlHttpRequest functionality in a proxy
object that hides the original class, and redirects all requests made by the
web application to the proxy class. As explained in 3.1.2, adding a special
header X-No-CSRF is enough to prove that the request is same-origin and
therefore safe.
Compatibility: jCSRF-script uses jQuery’s live method [131] to reliably
interpose on submission of dynamically generated forms: instead of binding
an event handler to a specific DOM element at call time, live registers a
special handler for the root element which is then invoked once the event
that fired on one of its descendants bubbles up the DOM tree. The purpose
of the special handler is to find the element responsible for the event, check
whether it matches the element type specified to live and apply the event
handler supplied to live to it. jCSRF-script can thus bind its handler to
the submit event for all future forms by calling

$(’form’).live(’submit ’, handler)

Overriding addEventListener requires DOM prototypes support, which is
not available on old browsers (IE7 and older). On these browsers, only DOM0
events can be wrapped.

Even though we did not encounter this scenario in any of the web appli-
cation we tested, the techniques used to wrap DOM0 and DOM2 handlers
may not work properly if the web application (or another software similar

jCSRF 65

to jCSRF which transforms the HTML output) is using them as well. For
example, if another piece of code other than jCSRF-script polls forms for the
presence of submit handlers, a race condition can ensue: either the two wrap-
per functions are composed in a nondeterministic fashion, or one wrapper is
overwritten by a subsequent attempt to wrap the function by the second
piece of code.

Note that failure to wrap an event handler does not necessarily imply
a compatibility issue with jCSRF: most web applications define their own
handlers to predicate on specific form fields, enforcing constraints such as
“the field age must be a number”. Only handlers that predicate on classes
of fields might be incompatible with jCSRF on older browsers. For example,
the constraint “all fields must be shorter than 10 characters” could create a
problem for the token field if the handler is not wrapped.

3.2 Evaluation

3.2.1 Compatibility

To verify that jCSRF is compatible with existing applications, we deployed
popular open-source Web applications and accessed them through the proxy,
checking for false positives by manually testing their core functionality. We
tested jCSRF with two browsers (Firefox and Google Chrome) and the fol-
lowing applications: phpMyAdmin, SquirrelMail, punBB, Wordpress, Dru-
pal, Mediawiki, and phpBB. As Figure 12 shows, these are complex web
applications consisting of thousands of lines of code that would require sub-
stantial developer effort to audit and fix CSRF vulnerabilities. jCSRF was
able to protect all applications without breaking their functionality in any
way.

Note that these web applications did not perform cross-origin requests,
and therefore our evaluation did not cover the cross-origin protocol. Never-
theless, we believe that the primary source of incompatibility in the cross-
origin protocol will remain the same as the same-origin protocol, namely,
reliably interposing on submit events. As a result, we expect the compat-
ibility results for the cross-origin protocol to be similar to those shown in
Figure 12.

It is worth mentioning that jCSRF requires JavaScript enabled. If it is
disabled, say, through the use of a browser extension such as NoScript [43],
then requests would be sent out unauthenticated, resulting in false positives.

jCSRF 66

Application Version LOC Type CVE Stopped
RoundCube 0.2.2 54K Webmail CVE-2009-4076 Yes
Acc PHP eMail 1.1 3K List Manager CVE-2009-4906 Yes

Figure 13: Protection Evaluation

3.2.2 Protection

To test the protection offered by jCSRF, we selected 2 known CVE vulnera-
bilities and attempted to exploit them. The results are summarized in Figure
13.

First, we exploited the CVE-2009-4076 [23] vulnerability on the open
source web mail application RoundCube [109]. Emails are sent using a POST
request, but its origin is not authenticated. We built an attack page on an
external website that fills out and submits an email message. jCSRF success-
fully blocked the attack, because the POST request was missing the authen-
tication token. Second, we exploited the CVE-2009-4906 [24] vulnerability
on the Acc PHP eMail web application. This vulnerability allows changing
the admin password with a POST request from an external website. jCSRF
was able to thwart this attack as well.

We limited our evaluation to two because the effectiveness of jCSRF does
not need to be established purely through testing. Instead, we have pro-
vided systematic arguments as to why the design is secure against CSRF
attacks. A secondary factor was that reproducing vulnerabilities is a very
time-consuming task, and can be further complicated by difficulties in ob-
taining specific software versions that are vulnerable, and dependencies on
particular configurations of applications, operating systems, etc.

Finally, two attacks are out of scope for a tool such as jCSRF, but should
be mentioned for completeness: XSS attacks and same-domain CSRF at-
tacks. XSS attacks can be used to break the assumption that same-origin
scripts are under the control of the web developer, to issue token requests
and leak results to the attacker, thus defeating the purpose of jCSRF. We
point out that a successful XSS attack grants the attacker far more serious
capabilities than the ability to craft requests on the victim’s browser using
his cookies. In fact, the attacker can simply steal the cookies directly and
send authenticated requests as the victim from his own machine! To our
knowledge, no other server-side CSRF defense can resist in case of an XSS
attack. Same-origin CSRF attacks can be carried out by injecting a form in a

jCSRF 67

server response and tricking the user into submitting it. jCSRF-script would
add the correct authentication token, because it has no way to realize that
the form present in the DOM tree was indeed supplied by the attacker [149].

3.2.3 Performance

In this section, we estimate the overhead imposed by jCSRF. A page em-
bedding jCSRF-script issues three different type of requests to its target
jCSRF-proxy:

1. GET requests. For these, the browser does not perform any special
processing, and thus incurs no overhead. On the server-side, jCSRF-
proxy only needs to generate a new token if the user does not have one
already.

2. Same-Origin POST requests. Before the actual submission, jCSRF-
script copies the authentication token Cat from the cookies to the form
as Pat. Therefore, no overhead is introduced on the client, and the
proxy only needs to check that Cat = Pat, which is an inexpensive
operation.

3. Cross-Origin POST requests. The cross-origin protocol requires three
additional GET requests for authentication: one to detect whether the
target web application is running jCSRF, one to fetch the iframe from
it that requests the token and one for the actual XmlHttpRequest that
fetches the token. Therefore, this additional network delay dominates
any other delay introduced by token generation and verification by the
proxy. Although this overhead is non-negligible, we point out that
cross-origin POST requests make up only a small fraction of HTTP
requests [80], and therefore the delay due to these roundtrips is not
likely to affect the overall user browsing experience.

We built a simple web application, deployed it locally and compared
the response time of unprotected vs. protected same-origin and cross-origin
POST requests. jCSRF protection incurred at most 2ms overhead.

jCSRF 68

3.3 Related Work

3.3.1 Server-side Defenses

NoForge [66] was the first approach that used tokens to ascertain same-origin
requests without requiring modifications to the application’s source code.
Implemented as a server-side proxy, NoForge parses HTML pages served
by a web server, and adds a token to every URL referring to this server.
It associates this token with the cookie representing the session id for the
application. When a subsequent GET- or POST-request is received, it checks
if this request contains the token corresponding to the session id. jCSRF is
clearly influenced by NoForge, but makes several significant improvements
over it:

• NoForge requires developer help to specify the name of the cookie con-
taining the session id. Not only is this effort unnecessary in our ap-
proach, but it is also the case that our technique is compatible with
alternative schemes for authentication, such as those that store au-
thentication credentials in multiple cookies, or schemes that support
persistent logins that, at different times, may be associated with differ-
ent session ids.

Moreover, NoForge needs to maintain server-side state in the form of
valid (session id, token) pairs. In contrast, jCSRF does not maintain
state, and is less prone to DoS attacks.

• jCSRF supports web sites where URLs are dynamically created by
client-side execution of scripts.

• jCSRF supports cross-origin requests whereas NoForge can only protect
same-origin requests. NoForge’s approach does not easily extend to
cross-origin case since it relies on a mapping between cookies and tokens
on the server side. In the cross-origin case, the cookies that are visible
to the origin and target domains are different, and so it is unclear how
the states maintained on the two domains can be correlated.

An important difference between NoForge and jCSRF is that the former
protects GET-requests as well. However, as discussed before, there are a
number of difficulties in CSRF protection for GET-requests: inability to
bookmark pages, need for developer effort to identify “landing pages” that
do not need CSRF protection (which are not supported by NoForge), and so

jCSRF 69

on. In the interest of providing a simple, fully automated solution, jCSRF
protects only POST-requests.

Bayawak [59] can be thought of as extending NoForge to enforce a stronger
policy: URLs in the web application are augmented with a special token not
only to ensure that the request is same-origin, but also to constrain the
order in which web pages can be visited. As such, it also protects against
workflow attacks that aim to disrupt the session integrity by sending out-of-
sync requests. This increased protection is obtained at the cost of additional
programmer effort needed to specify permissible workflows. Bayawak does
not address cross-origin requests or URLs that are dynamically created on
the client-side.

X-PROTECT [149] is a server side defense that employs white-box anal-
ysis and source code transformation to overcome the shortcomings of other
black-box approaches, namely their inability to protect against same-origin
CSRF and their need to specify landing pages manually.
Developer Tools: Most web frameworks for rapid application development
[32, 51, 106, 35, 148] include functionality to simplify CSRF protection, typ-
ically using a NoForge-like approach. For example, Django [32], a Python-
based framework, provides CSRF protection for POST requests by requiring
a specific template tag to be added to HTML forms, which is translated to
a hidden form field containing a token that is also returned through cookies.
To check whether the token in the cookies and the form match before execut-
ing the application logic, Django provides function wrappers to instrument
views (python functions associated to URLs). CSRFMagic [143] provides a
similar capability for PHP applications. Web developers need to include an
import statement in their PHP files to activate this protection. The purpose
of the included file is to register output and input filters. The output filter
executes before the HTML page is sent to the client, and adds a token to
POST forms. The input filter checks for the presence of this token.

CSRFGuard [120] is similar to CSRFMagic, but is designed for Java EE
applications. It examines incoming GET and POST requests for the presence
of a valid token. CSRFGuard introduced an option for client-side insertion
of tokens using a script. Although this appears similar to our technique of in-
jecting jCSRF-script, its operation is different. In particular, their client-side
script adds the token to content available when the page fires the load event,
and hence does not handle requests that may be dynamically constructed by
various scripts associated with this page. Moreover, unlike NoForge, it allows
web developers to configure a set of landing pages that do not require a valid

jCSRF 70

token, thus mitigating the usability issues related to GET-request protection
at the cost of additional developer effort.

CSRF tools for developers are an invaluable resource for rapid application
development. Their benefit is that they provide a finer granularity of control
for programmers, as compared to fully automated approaches such as jCSRF.
The main drawback of developer tools is the need for programmer effort.
Moreover, programmers may overlook to add checks in all places they are
required, thus leaving vulnerabilities.

The basic idea of comparing a token and cookie value to verify same origin
requests is similar between these approaches and jCSRF. However jCSRF
goes beyond these tools by (a) providing support for cross-origin requests,
and (b) supporting requests to URLs that are generated dynamically on the
client-side.

3.3.2 Browser Defenses

Zeller and Felten [148] present a Firefox plugin which implements a simple
policy to prevent POST-based CSRF: cross-site POST requests must be au-
thorized by the user. The drawback of this simple approach is the fatigue
stemming from repeated user prompts. NoScript [43] implements a more
sophisticated policy that can avoid prompts. In particular, it restricts only
those POST requests that go from an untrusted origin to a trusted origin.
NoScript primarily targets sophisticated, security-conscious users who are
willing to put in the effort needed to populate their list of trusted origins.

De Ryck et al [28] presents a CSRF protection plugin for Firefox, CsFire.
It studies cross-domain interactions on the web, and uses the results to design
a cross-domain policy that protects against CSRF attacks while optimizing
compatibility with existing web applications. This policy relies on the con-
cept of relaxed SOP, which allows communication between subdomains of
the same registered domain (e.g. mail.google.com and news.google.com).
Their policy also introduces the idea of direct interaction: since CsFire is a
browser plugin, it has access to UI information such as whether a request was
initiated by a user click. Cross-Origin GET requests initiated by user clicks
are allowed, while cross-origin POST requests are not allowed in any case.
Instead of blocking the request altogether, the plugins strips the cookies from
the request, which are necessary to carry out a successful CSRF attack.

RequestRodeo [64] differs from the above techniques in that it is imple-
mented outside of a browser as a client-side proxy. It relies on an approach

jCSRF 71

similar to NoForge, but rather than blocking a request, it simply strips all
cookies from such requests. Another difference is that it has no exceptions
for landing pages. This can significantly affect usability.

A key advantage of browser-side defense is that it protects users even
if web sites are not prompt in fixing their vulnerabilities. Moreover, they
have accurate information about the origin of requests, whether they result
from clicking on a bookmark, or a link on a web page trusted by a user.
Their primary drawback is that the defense is applied to all web sites and
pages, regardless of whether they have any significant security impact. Such
indiscriminate application significantly increases the odds of false positives.
Moreover, it is easier for a server-side solution residing on a target domain
to determine whether it trusts the origin domain of a request. In contrast,
browser-based defenses require the user to make this determination, and
moreover, do it for all origins and target domains.

3.3.3 Hybrid Defenses

These defenses require both browser and server modifications. The Refer-
rer header is the most known mechanism in this context. Using this HTTP
header, a web browser can provide the crucial information that servers lack:
namely, the origin domain of the current request. Given this information,
a server can implement a simple CSRF protection mechanism that denies
requests from domains that it does not trust. Unfortunately, due to pri-
vacy concerns, it is common to suppress referrer headers [6]. Barth et al [6]
proposed a new header, called the origin header, which mitigates these pri-
vacy concerns by suppressing most of the sensitive information leaked by the
referrer header and providing only the domain name and the protocol.

SOMA [96] is an alternate approach that aims to address a range of
threats, including CSRF and XSS. With SOMA, the target domain is able to
specify the set of allowable origin domains for incoming requests and an origin
domain can specify the set of allowable target domains for outgoing requests.
Effectively, SOMA provides support for mutual authentication from both the
origin and the target of a request. Its implementation relies on a browser
plug-in that retrieves these policies from the source and target domain and
disallows any cross-origin requests that violate either policy.

Hybrid defenses are the simplest and most effective solutions, because
they combine the information and mechanism available on browsers as well
as web- servers. However, both browsers and servers have to be modified

jCSRF 72

in order to achieve CSRF protection. For this reason, it is harder for a
hybrid defense to gain real-world traction. For instance, the origin header
represents a very modest change from a technical perspective; yet, even after
7 years, not all major browsers support the header as originally proposed
by Barth et al. For example, Firefox does not supply the header for same-
origin requests, which forces developers to keep implementing more complex
token-based authentication as a backup mechanism.

Part II

Principled Security for Web
Applications

WebSheets 74

4 WebSheets

So far, we were focused on mitigating vulnerabilities in legacy applications
without requiring any developer effort. However, black-box defenses are
vulnerability-specific defenses with a narrow scope. In particular, they do
not address any of the limitations of traditional application development
that we described in Section 1.2. To overcome these limitation and provide
broader protection, we focus on the problem of protecting the confidential-
ity of data in web applications; we start from a clean slate and envision a
paradigm where users retain control of their data and can specify a privacy
policy that follows the data throughout the web application. The paradigm
is built upon the following principles:

• security is a primary concern, not an afterthought : our main goal for
the new paradigm is to solve the problems of ad-hoc checking described
in the introduction. The ability to build secure web applications should
be the main driving factor for our design. It should be simple for
developers to specify and maintain a policy.

• users maintain ownership and control of their data: principled web ap-
plication development is not only about helping developers avoid bugs;
users can benefit too: they should not necessarily have to sign off their
data to the web application, putting its secrecy at the mercy of the
web application developer. The paradigm must allow users to specify a
policy for their own data and as the data is consumed by untrusted ap-
plications, carry policies along with it and enforce the policies wherever
appropriate, so that third-parties can only tack on additional restric-
tions on the distribution of the data.

• ease of use: if users are to be in charge of their own data and writ-
ing their own policies, then it is paramount that policies be simple
to specify. Moreover, users and developers alike will have an easier
time picking up the new paradigm if we re-use familiar concepts where
possible.

We concretized these principles mainly through two design decisions:

• full separation between application logic and policies : the mixture of
application logic and ad-hoc checks is replaced by a clear separation

WebSheets 75

between data and permission metadata. Mandatory access control is
used to attach policies to data and subject the data to a consistent
policy wherever it flows during evaluation.

• use of the spreadsheet model : The textual programming model, where
data is stored in databases and code is stored in linear text files, is
replaced by data tables and permission tables. Both tables can contain
not only immediate values, but also formulas, which can refer to other
table cells, just like a spreadsheet. While the formulas in data tables
implement the application logic, the formulas in permission tables im-
plement the policy. If we want users to write policies for their own
data, it makes sense to leverage a user-friendly paradigm

We have named our new paradigm WebSheets, given its tight relationship
to spreadsheet programming. The architecture described in the rest of this
dissertation overcomes all the problems of traditional web application devel-
opment: policy checks are now organized in a tabular fashion and evaluated
anywhere the data they are attached to is used, with no room for error or
forgetfulness. Moreover, instead of simply giving away control of their data
to web application developers, users can define their own tables and define
their own policies.

The remainder of Part II is structured as follows: first, we provide an
overview of the WebSheets model and language (Section 4.1), illustrating it
using several example applications. We follow with a in-depth description of
the WF language (Section 5.1) and its operational semantics (Section 5.2).
Then, we describe our reference implementation (Section 5.3). We conclude
the document with background information on spreadsheets and related work
(Section 7). Below, we summarize our key contributions:

• We present a new paradigm based on the Spreadsheet model to design
secure web applications where the application logic is clearly separated
from the security policy.

• We introduce WF, a simple expression language to uniformly define
operations on tabular data, as well as privacy and security policies on
the data.

• We provide operational semantics for the evaluation of data and per-
mission formulas, comparing the expressivity of our model with other
DIFC solutions.

WebSheets 76

Author Name Completed Shared

author "Mow Lawn" false ["Jim"]

author "Date" true []

author "Meet Frank" false ["Frank", "Tom"]

author "Homework" false ["Phil"]

Figure 14: TODO-List, Task Data Table (Expression View)

• To provide a reference implementation for WebSheets, we developed
a Node.js application that allows users to create and share websheets
through a web interface. Besides adding adding permission tables and
mandatory access control as described by the operational semantics,
we extended the semantics of traditional spreadsheets with support for
temporal and logic triggers, and the ability to upload and safely execute
user scripts in two different sandboxed environments for procedural
data processing.

4.1 Overview

In this section, we provide an overview of WebSheets. Our goal here is to
present the core of the paradigm — our reference implementation, described
in Section 5.3, comes with a user interface that provides basic UI elements
such as buttons, checkboxes, file upload fields, etc. These features have been
added on top of the core semantics in a straightforward way, and we do not
discuss them here.

To introduce the paradigm, we use a step-by-step approach, illustrating
the WF language and the semantics of formula evaluation using three exam-
ple applications of increasing complexity. We start with a relatively simple
TODO list application, and progress to a moderately complex application for
faculty candidate evaluation. An interesting aspect of WebSheets illustrated
in these examples is that often, security policies are the application logic.

4.1.1 TODO-list

The first, simplest example is TODO-List, an application which maintains
a private TODO list for each user. Its lone data table, Task, is depicted
in Figure 14. Each row represents a TODO entry, which has an author,

WebSheets 77

Author Name Completed Shared Row

Read user in Shared
or user == author

Write false user == user in Shared user ==
author or user == author author

Add Row
Del Row user == author

Init author "" false []

Figure 15: TODO-List, Task Permission Table (Expression View)

an item name, a “Completed” tickbox and a set of users to share the entry
with. All users add their entries in the same table. We prepopulated the
table with four sample entries, which, under normal operation, would be
provided at runtime by different users. In WebSheets, each data table has an
accompanying permission table that specifies the privacy and data validation
policies of the data contained in the data table. In this case, the permission
table for the Task data table is shown in Figure 15. The data and permission
tables together, both shown as a grid of unevaluated WF formulas, are known
as the expression view for the Task table.

Despite both table containing WF formulas, the formulas in data tables
tend to be simpler, because they usually contain input data provided by
end users. For example, Task contains constants such as "Mow Lawn", which
will trivially evaluate to the same value at runtime. The only non-trivial
formula in Figure 14 is author, which is an environment variable that is
bound to the author of the current row (i.e. the user who added the row) upon
evaluation: although WebSheets automatically track authorship implicitly,
some applications, like this one, benefit from exposing explicit authorship
information. Although it is not explicitly shown in the Figure, each row in
our sample dataset was entered by a different author, and the author formula
will evaluate to a different string on each row.

On the other hand, formulas in permission tables are usually more com-
plex, because they are entered by the user who created the table, the Web-
Sheets equivalent of an application developer. They specify the privacy poli-
cies and the behavior of the corresponding data table. To grant the specified
permission, they must be blank or evaluate to true, either using environment
variables that depend on the cell being evaluated or by explicitly querying
any other cell of the WebSheets repository. For example, user in Shared

WebSheets 78

uses two environment variables: user is set to the user who is currently eval-
uating the permission formula, while Shared is bound to the Shared field of
the current row.

The permission table shown in Figure 15 implements the following policy:
anyone can add new entries, but users can only see, edit and delete their own
entries. Optionally, entries can be shared with a set of users specified in
the Shared column; these users can not only see the entry, but also mark
the item as completed. However, they cannot modify the name or assume
authorship of the entry. Because the functionality of application stems from
the ability of different users to concurrently view and/or modify the list, we
could argue that its logic resides almost entirely in the Task Permissions

table. Note that while data tables can have an arbitrary number of rows and
columns, permission tables follow a fixed schema: there are 5 rows and n+ 1
columns, where n is the number of columns in the data table. The schema
allows specifying a different policy for all cells along each column (using
the first n columns), and one for all cells accross every row of the table,
using the Row column6. When permissions are specified at multiple levels
of granularity, the resulting permission is the intersection of all permissions.
It is helpful to think about permission tables as a tabular representation for
ACLs, where columns represents sets of objects (e.g. all cells along a column)
and rows represent operations. There are four permissions: read, write, add
row and del row. An additional row contains the Init expressions; these
contain default formulas that are used during during add row operations.

In this particular permission table, the read permission is specified once
for all columns using the special Row column. Intuitively, it will evaluate to
true only if the current author of the row or any of the users specified in the
Shared field of the same row are attempting to evaluate the corresponding
data cell. Note how our approach provides a very simple and natural way
to express access policies that are a function of data contained in the tables.
Write permissions are more strict: only the Completed field is writable by
users in the Shared field, while Name and Shared are only writable by the
author of the entry. The Author field is read-only and, together with the

6This fixed schema does not support specifying formulas at the level of granularity of
a single cell. This can be easily supported by an additional shadow table with the same
number of columns and rows as the data table, but we leave it out of our description for
simplicity. Note that, although multiple cells share the same formula, (e.g. all cells along
a column), the formula is evaluated in a different environment for each cell, so the same
formula can yield a different result.

WebSheets 79

Author Name Completed Shared

"Phil" "Mow Lawn" false ["Jim"]

"Matt" "Date" true []

"Jim" "Meet Frank" false ["Frank","Tom"]

"Jim" "Homework" false ["Phil"]

Figure 16: TODO-List, Task (Value View for Jim)

author expression from the Init row, implements a common derived cell pat-
tern used through these examples. In this case, the field will always evaluate
to the implicit author of the row. The add row and del row permissions are
only available for the Row column, because associating them to a single field
would not make sense. The blank Add Row cell specifies that anyone can
create a new TODO entry, while the Del Row formula specifies that only the
author of an entry can delete it.

The expression view is only available to the table owner. End users in-
teract with the application using the value view, which is computed from the
data and permission tables from the expression view, by evaluating the WF
expressions of all cells into values and redacting all those values whose read
permission evaluated to anything other than true. Except for the redac-
tion process, this behavior is similar to that of conventional spreadsheets,
where the default is to show values rather than formulas. Note that unlike
the expression view, the data presented by the value view is user dependent,
because the permission formulas depend on the user who requested the value
view for the table, through the user environment variable. Figure 16 shows
the value view of the Task table for the user Jim. Note how the second row
has been redacted, because Matt has not explicitly shared this entry with
Jim. Of course, the contents are striked out in the Figure to show the read-
ers which information has been redacted, but are removed from the response
altogether in the actual implementation.

Note that there are no formulas to deal with Denial-Of-Service attacks
(e.g. adding 10000 TODO items shared with everyone, to pollute their view).
In this dissertation we focus on the problem of data privacy, and leave out
both the issue of how to protect against such attacks with the current per-
mission table format (e.g. a count check in the Add Row permission) and the
issue of how to extend the current permission table format with dedicated
fields.

WebSheets 80

Data Table
Host Name Public Invitees Attendees
author "Ph.D. Defense" false ["Sekar", "Stoller"] Response[Name == EName

and Coming == true].User

author "Date" false ["Jennifer"] Response[Name == EName
and Coming == true].User

Permission Table
Host Name Public Invitees Attendees Row

Read user in Invitees
or Public
or user == author

Write false false user == author

Add Row
Del Row user == author

Init author "" false [] Response[Name == EName
and Coming == true].User

Figure 17: RSVP, Event (Expression View)

Extensions: The central benefit of WebSheets is that it enables many simple
and varied customizations. This version of TODO-list permits any user to
add new rows to the table. However, other choices, such a limiting to a
specified list of users, is also possible. Note that such a list can also be
specified as another table, e.g., we could call it Task Users. This list may
be defined and modified in the same manner as the Task table itself, thus
providing another interesting application of data-based security policies.

Another possible extension is to add columns to indicate whether a pay-
ment was made for a task (Paid), and a column to indicate acknowledge-
ment of payment (Received). This extension also needs another column,
say, Selected, to indicate the specific person from the Shared list that se-
lected and completed the job. Permissions would now be modified so that
only the person in the Selected column can modify the Received column.
In addition, row deletion would be prohibited until the Received column is
true.

4.1.2 Event RSVP

The second example is an Event invitation and RSVP web application, RSVP,
where users can create and RSVP to events. Events can be public or pri-
vate, and users can only RSVP to private events they have been invited to.
This application requires two tables, Event and Response. The Event table,
shown in Figure 17, has the Host, Name, Public, Invitees and Attendees

columns. We omit other data such as location, date, reason for refusal, etc

WebSheets 81

Data Table
User EName Coming
author "Ph.D. Defense" true

author "Ph.D. Defense" false

Permission Table
User EName Coming Row

Read user in Event[Name==EName]
.0.Invitees

or Event[Name==EName].0.Public
or user == author

Write false newVal == "" user == author
or user in Event[Name==newVal]

.0.Invitees
or Event[Name==newVal].0.Public
or user == author

Add Row
Del Row user == author

Init author "" false

Figure 18: RSVP, Response (Expression View)

to simplify the example. It comes prepopulated with two events, one by
the user Riccardo, and one by Jim. The Attendees field contains a formula
that pulls data from the Response table to display the list of users who have
RSVP’d to the event.

Figure 17 also shows the permission table for Event. Again, read per-
missions are set using the Row column to avoid repetition, and restrict read
access to the event information to either the host of the event or to users that
have been invited; if the event is public, then every user is implicitly invited.
The write row shows how the Row permission can be further restricted using
column permissions. In this case, the row is editable by the Host, but the
Host and Attendees formula are read-only, because they represent logic that
is under the control of the table author.

Note how the formula for Attendees effectively republishes data from
the Response table, and no specific restriction is imposed on such data. In a
traditional web application, this would require the read permission policy for
the Attendees field to take the privacy concerns of the data from Response

into account. In WebSheets re-exposing data is always a safe operation:
because policies follow data, the Attendees read permission formula can
only tack on additional restrictions (in this case, the restriction imposed by
the Row formula). The runtime will still observe the restrictions imposed by
the policy specified in the Response table.

Figure 18 shows the expression view for the Response table, where users

WebSheets 82

Event
Host Name Public Invitees Attendees
"Riccardo" "Ph.D. Defense" false ["Sekar", "Stoller"] ["Sekar"]

"Jim" "Date" false ["Jennifer"] []

Response
User EName Coming
"Sekar" "Ph.D. Defense" true

"Stoller" "Ph.D. Defense" false

Figure 19: RSVP (Value View for Riccardo)

enter their RSVP responses. For our example, it is prepopulated with two
responses from different users. The read permission is once again imple-
mented using the Row field, using a formula similar to the read permission
from Figure 17. However, the formula uses the table filtering construct T[]

to select the relevant row from Event, predicating on the value of its fields.
The write permission row formula only allows the creator of the response to
edit the row. The column fields provide two further restrictions: firstly, the
User field effectively pins the contents of all cells along the User column to
author, implementing the same pattern we have seen for Host in Figure 17.
Secondly, the EName field performs data validation instead of access control:
using the newVal symbol, which is bound to the value that the user is trying
to insert in the cell, the formula mandates that the user must enter an event
name that he has access to.

Once again, developers do not have to worry about the data from Event

leaking through the permission formula: the policies of the data from Event

will follow the data even during permission evaluation, so that to gain access
to the current Response row, the user must not only evaluate the current
formula to true, but also have permission to read all of its dependencies.

Figure 19 shows the value view for the two tables of the application. Note
how in the first row the data from Response is used to build the value for
the Attendees field in Event, and how the second row is redacted, since the
event is not public and Riccardo has not been invited.

4.1.3 Faculty Candidate Review

To further illustrate the applicability of WebSheets using a more involved
example, we employ a scenario from our experience in academia: faculty
candidate review process. The review process is by nature collaborative,

WebSheets 83

Faculty
Name

"Bell"

"Murphy"

Faculty
Permissions

Name Row

Read
Write false

Add Row false

Del Row false

Init ""

Figure 20: Interview, Faculty (Expression View)

since existing faculty contribute to the process: each candidate presents his
research to the faculty body, who can later grade the candidate. Finally, the
chair picks the best candidate, using the grades provided. WebSheets can
be employed not only to automate the grading process, but also to enforce
security policies. In particular, we seek to enforce the following properties:

1. Applicants can only enter and view their own application, while Faculty
can view any application.

2. Each faculty can enter at most one review per candidate, and cannot
enter a review in the name of another faculty.

3. To avoid being influenced by others, faculty should not see each other’s
grades for a particular candidate until they have graded the applicant
themselves.

4. If the candidate and one faculty have a conflict of interest, the latter
should be barred from grading and seeing the applicant’s grades and
average.

We have implemented the Interview application using 3 tables: Faculty,
Applicant and Review. The first table Faculty, shown in Figure 20 is used
to indentify which users have faculty privileges. In this relatively simple ex-
ample, merely having an entry in the table grants the user faculty privileges,
and any other user is assumed to be an applicant. A more involved exam-
ple would use additional fields to assign roles to users, to express role-based
access control semantics in the permission formulas. Read permissions are
blank, because the faculty roster is public; write, add row and delete row per-
missions are set to false: for simplicity, we assume that the Faculty roster
has been pre-populated.

WebSheets 84

Data Table
Name Conflicts AppReviews Average

author ["Bell", "Murphy"] (*from init*) (*from init*)

author [] (*from init*) (*from init*)

Permission Table
Name Conflicts AppReviews Average Row

Read user == author
or user in Faculty.Name

Write false user == false false
author

Add Row
Del Row user == author

Init author [] Reviews[avg(AppReviews)
AppName=Name].Grade

Figure 21: Interview, Faculty and Application (Expression View)

Figure 21 shows the Applicant table, which has the columns Name,
Conflicts, AppReviews and Average, and is used by applicants to fill in
their application: each applicant fills in the first two fields, while the latter
two fields are dynamically calculated by read-only formulas which use the
reviews submitted by faculty in the Review table. Since the latter two fields
have read-only formulas that are specified by the table creator in the Init
row of the permission table, we omit the full formula from the data table,
marking it with (*from init*). Once again, we omitted other fields such as
CV, Date of Interview, etc for simplicity. The row read formula asserts that
applications are only visible by the applicant or by a member of the faculty
body. Note how no read permission restrictions are required for Grades and
Average, despite these being sensitive information from another table that
should not be shown to the applicant or to faculty with conflicts: because
policies follow data, it is sufficient to predicate on the grades themselves,
which is done in the permission table for Reviews.

The Review table, shown in Figure 22 has the columns Author, AppName
and Grade. This table is filled out by faculty after they have evaluated the
applicants. The only sensitive information in each row is the grade, and the
read permission for Grade restricts access to only the author of the review
or to non-conflicting faculty members that have already submitted their own
review7. The write row permission restricts write access only to the author
of the review; however, a validation formula in the AppName field mandates

7We are explicitly exposing everything but the grade to all users. A more restrictive
policy would restrict the other fields to faculty only.

WebSheets 85

D
a
ta

T
a
b
le

A
u
th

o
r
A
p
p
N
a
m
e
G
ra

d
e

a
u
t
h
o
r

"
S
m
i
t
h
"

4

a
u
t
h
o
r

"
D
o
e
"

3
.
5

P
e
rm

is
si
o
n

T
a
b
le

A
u
th

o
r
A
p
p
N
a
m
e

G
ra

d
e

R
o
w

R
e
a
d

u
s
e
r
=
=
a
u
t
h
o
r
o
r
(

u
s
e
r
i
n
R
e
v
i
e
w
[

A
p
p
N
a
m
e
=
=
r
o
w
.
A
p
p
N
a
m
e
]
.
A
u
t
h
o
r

a
n
d
u
s
e
r
n
o
t
i
n
A
p
p
l
i
c
a
n
t
[

N
a
m
e
=
=
A
p
p
N
a
m
e
.
0
.
C
o
n
f
l
i
c
t
s
]
)

W
ri
te

f
a
l
s
e

u
s
e
r
n
o
t
i
n
A
p
p
l
i
c
a
n
t
[

u
s
e
r
=
=
a
u
t
h
o
r

N
a
m
e
=
=
n
e
w
V
a
l
]
.
0
.
C
o
n
f
l
i
c
t
s

a
n
d
u
s
e
r
n
o
t
i
n
R
e
v
i
e
w
[

A
p
p
N
a
m
e
=
=
r
o
w
.
A
p
p
N
a
m
e
]
.
A
u
t
h
o
r

A
d
d

R
o
w

u
s
e
r
i
n
F
a
c
u
l
t
y
.
N
a
m
e

D
e
l
R
o
w

u
s
e
r
=
=
a
u
t
h
o
r

In
it

a
u
t
h
o
r

"
"

0

F
ig

u
re

22
:

F
ac

u
lt

y
A

d
m

is
si

on
A

p
p
li
ca

ti
on

(E
x
p
re

ss
io

n
V

ie
w

)

WebSheets 86

GoodApplicant
Name Average

{{Name:a.Name,Average:decl(a.Average)
for a in Applicant when decl(a.Average)>3.5}

Figure 23: Dynamic Table with declassified averages

that the review can be associated only with an applicant that has not listed
the current user as a conflict. The validation formula also reject multiple
reviews by the same user.

Figure 23 uses a relaxed interpretation of the privacy requirements to
showcase two additional features, namely dynamic tables and declassifica-
tion: while individual reviews are still hidden from faculty in case of con-
flicts, we want to allow all faculty to view averages. Instead of rewriting
another table and entering new data, we leverage dynamic tables to gener-
ate an additional GoodApplicant table based on the data from Applicant,
which will list all applicants with a good average. Note that GoodApplicant,
being a dynamic table, has no permission information of its own; however,
because the policies follow the data, the permissions of its dynamic content
depend on the permissions of the data that is being used to generate the
table. The table builds its contents from a single WF expression, in this case
a list construction expression. The result of evaluating the dynamic table
expression must always be a list of tuples with the same keys, which is used
to fill out the rows and columsn of the resulting table. From the user’s point
of view, a dynamic table is accessed transparently through rows and columns
like an ordinary static table, except that its fields are read-only and cannot
be evaluated individually, because their value depends on one single formula.

Note that the formula uses the privileged function decl to declassify
the average grade of each applicant. Declassification is necessary because
faculty members need to see the average grade even in case of conflicts.
By using declassification, the author of the formula trusts that releasing this
information does not constitute a privacy issue. In this case, he assumes that
the grades given by each faculty have been anonymized by aggregation, i.e.,
by the use of avg. Although declassification introduces exceptions to policies
defined elsewhere, which prevent developers from reasoning about privacy
solely by examining permission tables, the state of the art in textual web
applications is that every single operation is trusted and has full privileges

WebSheets 87

by default! Instead, in WebSheets it requires an explicit construct that can
be used sparingly.

5 Language and Design

5.1 The WF Language

WebSheets cell and permission formulas are written in WF, a simple expres-
sion language that focuses on filtering and processing tabular values. The
target audience of the language is the same non-programmers who write Ex-
cel formulas. Figure 24 shows the grammar for the language, which starts
from the nonterminal 〈expr〉. NUMBER, STRING and ID are terminals
returned by the lexer.

The evaluation of WF formulas is entirely dynamic, i.e., typing errors
or unbound identifiers will only cause a runtime error. Evaluation will turn
WF expressions into WF values, potentially requiring evaluation of other
dependent cells in the spreadsheet. Identifiers are first looked up in the envi-
ronment, a context-dependent (name, value) map containing information
such as the current user, the current table or the current column (when ap-
plicable). When an identifier is not found in an environment, the name is
assumed to be table name.

Besides the usual scalar data types (NUMBER, BOOL, STRING), it
supports two composite types:

• Lists : A (possibly empty) ordered collection of WF expressions. Lists
can be concatenated, sliced and accessed with the operations defined
below.

• Records : A (possibly empty) unordered (key, value) map. Records
can also be merged, sliced or accessed.

Lists and Records are not included in the language just to express higher-
level application logic: WebSheets semantics define a dualism between tables
and WF values. At runtime, a WebSheets table is represented as a list of
named tuples: each element of the WF list represents a table row, and each
row is represented as a WF tuple, a map of column names to WF values for
that particular row.

WebSheets 88

〈expr〉 ::= NUMBER (ints and floats)
| STRING
| ID
| ‘true’ | ‘false’
| ‘null’
| ‘[’ (〈expr〉 (‘,’ 〈expr〉)*)* ‘]’ (list)
| ‘{’ (ID ‘:’ 〈expr〉 (‘,’ ID ‘:’ 〈expr〉)*)* ‘}’ (tuple)
| 〈expr〉 〈bin op〉 〈expr〉 (binary operations)
| 〈un op〉 〈expr〉 (unary operations)
| ‘(’ 〈expr〉 ‘)’ (precedence/associativity override)
| 〈expr〉 ‘.’ ID (tuple/column selection)
| 〈expr〉 ‘.’ NUMBER (list/row selection)
| 〈expr〉 ‘{’ ID (‘,’ ID)* ‘}’ (tuple/column projection)
| 〈expr〉 ‘{’ NUMBER (‘,’ NUMBER)* ‘}’ (list/row projection)
| ID ‘(’ (〈expr〉 (‘,’ 〈expr〉)*)* ‘)’ (function call)
| ‘if’ 〈expr〉 ‘then’ 〈expr〉 ‘else’ 〈expr〉 (functional if-then-else)
| ‘{’ 〈expr〉 ‘for’ ID ‘in’ 〈expr〉 (‘,’ ID ‘in’ 〈expr〉)*

[‘when’ 〈expr〉] ‘}’ (list/table construction)
| 〈expr〉 ‘[’ 〈expr〉 ‘]’ (list/table filtering)

〈bin op〉 ::= ‘+’
... standard math and logic operators ...

| ‘++’ (list/tuple concatenation)
| ‘in’ (list/tuple membership)
| ‘not in’ (shortand for not (e in l))

〈un op〉 ::= ‘not’
| ‘-’

Figure 24: EBNF Grammar for the WF Language

WebSheets 89

Besides the usual unary and binary operators from math and logic, ma-
nipulation of data in WF is supported by four main constructs, which also
have a dualism with table operations:

• Selection: access a single element from a list or record. The exact
semantics depend on the types of the operands involved:

– list and integer : extract the i-th element from the list. For exam-
ple, [5,6,7].1→ 6 (we use the arrow as shorthand for “yields”).

– record and string : extract a single value from the record. For
example, {a:1,b:2}.a → 1.

– list of records and string : perform record selection on all elements
of a list. For example, [{a:1,b:2},{a:3,b:2}].a → [1,3].

This is the WF equivalent of selecting one particular row, cell or column
of a table respectively. Note how, by not allowing 〈expr〉 as the right-
hand of selection, we somewhat limit the language compared to, say,
the C subscript operator. Since we do not rely on statically extract-
ing properties, we could extend the language without complications.
However, we did not find a relevant use case, and this limitation yields
shorter and cleaner formulas (e.g. Faculty.Name vs Faculty."Name").

• Projection: accesses a multiple elements from the list or tuple. Again,
the exact semantics depend on the types:

– list and integers : return a list containing only the specified indices.
For example, [5,6,7]{0,1} → [5,6]

– record and strings : return a subset of the record containing only
the specified keys. For example, {a:1,b:2,c:3}{a,b} → {a:1,
b:2}.

– list of records and strings : perform record projection on all el-
ements of the list. For example, [{a:1,b:2,c:3}, {a:3,b:2,
c:5}].{a,c} → [{a:1,c:3}, {a:3,c:5}].

This is the WF equivalent of selecting multiple rows, cells or columns
of a table respectively.

WebSheets 90

• List Construction: combines one or more lists to create a new list. For
example, {{a:x, b:y} for x in [1,2], y in [3,4] when x+y>4}
→ [{a:1, b:4}, {a:2,b:3}, {a:2,b:4}].

This is the most general operator in the language. The expression
{a:x, b:y} is evaluated using different bindings for x and y for each
iteration. For example, the environment for the first iteration binds x

to 1 and y to 3. The set of bindings to iterate on represents the carte-
sian product of the lists supplied, and the result is a list containing all
the evaluations of {a:x, b:y} using all the bindings from the cartesian
product. If the expression returns a record, then this is the WF equiv-
alent of building a new table from existing tables. The when clause can
be used to filter rows from the resulting table. In the example above,
the first binding does not appear in the result because it is filtered
out by the clause. Many languages have an equivalent construct called
list comprehension. Functional programmers will note how it performs
both map and filter.

• List filtering : returns the subsets of elements of a list that satisfy the
condition in brackets ([{a=1, b=2}][a-b>0] → []). The construct
evaluates the condition in the context of each element, and only includes
the element in the result if the condition evaluates to true. Note how the
keys of the record are automatically added to the environment for each
element. List filtering is particularly useful when the WF list is actually
a WebSheets table: Table[cond] effectively performs table filtering,
returning a subset of Table whose rows all satisfy the condition cond.
In terms of expressive power, list filtering is not a new construct, but a
shorthand for the list construction operator: e[c] == (v for v in e

when c), except that list construction does not automatically add the
keys of v to the environment upon evaluation of c.

Note that the language defines function calls, but not function definitions.
WF simply provides the ability to call external functions defined by the repos-
itory, to perform declassification, execute sandboxed procedural scripts, etc.
To focus on the core features of the language, we also purposefully avoided
describing how permissions come into play. Section 5.2 and 5.3 provide more
details about the interaction between data and permission evaluation and
describe the functions that our implementation exposes to WF formulas.

WebSheets 91

U (set of WebSheet users)
P (set of unevaluated read permissions)
E (evaluation environment)
E [] (empty evaluation environment)
E [a] (retrieve symbol a from the environment)
E [a := b] (return a modified environment where a := b)
E [type] (‘perm’ when evaluating a permission,

‘val’ when evaluating a cell formula)
E [author] (author of the current cell being evaluated)
f() := (pattern matching)
| cond1 → a
| cond2 → b

Figure 25: Semantics Notation

5.2 Semantics

In this section we describe the semantics for the evaluation of WF formu-
las in the context of a WebSheet repository. First, we introduce simplified
semantics for functional evaluation with no side effects, showing how our en-
forcement model offers capabilities equivalent to Decentralized Information
Flow Control (DIFC). Then, we highlight the differences between the opera-
tional semantics as described in this section and the actual implementation
described in Section 5.3. Throughout the section, we will use the notation
from Figure 25.

5.2.1 Simplified Semantics

First, we illustrate the semantics for a simplified version of WF, WFs. The
language is the following:

e = c | e1 + e2 | @l | d(e, u) | user

The language only contains constants, one binary operation, an abstract ref-
erence to a cell l, declassification and a reference to the current user who is
evaluating the formula. We define read-only semantics that retrieve infor-
mation from an abstract store S to return a value to the user, who requests
evaluation of a single cell using the getVal operation. The store S maps a
cell reference to a triple, containing 1) the author of the cell, 2) the data

WebSheets 92

formula and 3) the read permission formula. Its signature is thus

S :: @l→ (u,WFs,WFs)

Internally, getVal uses an evaluation function E to convert any WFs formula
to a constant value c. During the evaluation, it also uses a permission check-
ing function P to ensure that the caller of getVal can satisfy the permission
formulas extracted from S. The signature for E is

E :: (WFs, u,U , E)→ c | ⊥

where WFs is the expression to evaluate, u is the “main” user who is per-
forming the evaluation, U is the set of users whose credentials can be used
in permission checks, and E is the environment, which is used to store addi-
tional information about the evaluation context. In this simplified semantics,
the environment contains the the author of the cell and whether the formula
is a cell or a permission formula. The possible output value ⊥ denotes an
evaluation error or invalid read permissions. Similarly, the signature for P is

P :: (WFs, u,U , E)→ c | ⊥

The signature is the same because P is a wrapper over E that evaluates
permission formulas instead of data formulas.

Figure 26 shows the simplified semantics for WebSheet evaluation. The
most important rule is E(@l, ...). When E evaluates a location reference,
before evaluating the cell formula e, it checks the read permissions for the
cell using the function P to evaluate the permission formula p. P mandates
that at least one of the users in U must have read permissions for the current
cell. getVal is the entry point for the user; it sets up an empty environment
and begins evaluation of a single cell and all its dependencies by evaluating
its reference. The semantics define two restrictions on WFs: d(e, u) is only
available in cells owned by the principal u, and user is only available in
permission formulas.

Note that the semantics from Figure 26 perform eager enforcement of the
policy specified by the permission formulas: E(@l, ...) evaluates the formula e
in S(@l) only after P evaluates the read permission formula to verify that at
least one user within U has access to the data. This is the opposite of deferred
enforcement, where the evaluation of P can be delayed until necessary. For
example, Information-Flow Control implementations attach labels to data

WebSheets 93

E(user, u,U , E) := (reference to the user
| E [type] = ‘perm’→ u evaluating the formula)
| E [type] = ‘val’→ ⊥

E(c, u,U , E) := c (evaluation of constants)
E(e1 + e2,U , E) := (binary operators)

E(e1, u,U , E) + E(e2, u,U , E)
E(@l, u,U , E) := (cell reference)

let (a, e, p) := S(@l)
p′ = P (p, u,U , E [type := ‘perm’, author := a])

in if (p′ = T)
then E(e, u,U , E [type := ‘val’, author := a])
else ⊥

E(d(e, v), u,U , E) := (declassification)
| E [author] = v → E(e, u,U ∪ {v}, E)
| E [author] 6= v → ⊥

P (p, u, U, E) := (permission check)∨
v∈U E(p, v, U, E [type := ‘perm′])

getVal(@l, u) := E(@l, u, {u}, E []) (entry point for users)

Figure 26: Simplified WebSheet Semantics

representing which users have access to said data; the system does not check
whether the current user is allowed by the label to read the data. Instead,
the system propagates the label along with the data, deferring the check until
the restrictions posed by label cannot be enforced any further, right before
the data leaves the trusted runtime.

The main advantage of IFC over other MAC solutions is that it can sup-
port declassification, a controlled and explicit relaxation of the restrictions
imposed by the label: because this is effectively a reversion of an access
control decision (since the user might not be allowed to read the data be-
fore declassification is applied), eager enforcement cannot traditionally sup-
port declassification, forcing MAC systems that enforce a centralized policy
to define a weaker policy that takes all corner-cases into account. How-
ever, our semantics support declassification! While it is true that in general
eager enforcement and declassification do not play along, note that Web-
Sheet semantics impose a very specific path to data flows, because of the
expression-driven nature of WF formulas: the runtime always processes the
declassification call d(e, u) before evaluating its argument e and performing

WebSheets 94

the permission checks for e and its dependencies. Therefore, it is sufficient to
record the declassification event as evaluation goes deeper into the call stack,
so that permission checks can use the authority of the principal who per-
formed the declassification. In the semantics, this is implemented by adding
the user to U in d(e, u) and then using the set of users U in P for permission
checks.

In fact, we argue that we obtain expressivity and flexibility similar to
Decentralized Information-Flow Control [89]. In his dissertation [88], Myers
states that the following two are the essential properties of DIFC:

• “It allows individual principals to attach flow policies to pieces of data.
The flow policies of all principals are reflected in the label of the data,
and the system guarantees that all the policies are obeyed simultane-
ously. Therefore, the model works even when the principals do not
trust each other.”

• “The model allows a principal to declassify data by modifying the flow
policies in the attacked label. Arbitrary declassification is not possible
because flow policies of other principals are still maintained.”

WebSheets exhibit both properties:

• although modifying the store S is abstracted out of the semantics to
focus on evaluation, WebSheets allow users to define their own tables
and attach a policy to their cells. Our threat model also supports
mutually distrusting users: MAC ensures that the restrictions imposed
by read formulas are always obeyed.

• users can declassify their own data by inserting a declassification call
in another cell they authored.

5.2.2 Comparison with other DIFC systems

Figure 27 shows alternative DIFC semantics that use deferred enforcement:
E does not call P ; instead, it returns a set of read permission formulas along
with the result. The set of permission formulas is finally evaluated in getVal.
These semantics use the same store S, but the signatures of E and P are
slightly different: since E performs deferred enforcement, it does not require
the set of users U . Plus, it returns a value and a set of permissions to evaluate
at a later time. Thus, we have

WebSheets 95

E(user, u, E) :=
| E [type] = ‘perm’→ u
| E [type] = ‘val’→ ⊥

E(c, u, E) := (c, {})
E(e1 + e2, u, E) = let (v1,P1) := E(e1, u, E)

(v2,P2) := E(e2, u, E)

in (v1 + v2,P1 ∪ P2)
E(@l, u, E) := let (a, e, p) := S(@l)

(v, Pv) := E(e, u, E [type := ‘val’, author := a])

in (v, Pv ∪ {p})
E(d(e, v), u, E) :=
| E [author] = v → let (v,Pv) := E(e)

in (v, Pv \ {p ∈ Pv : P (p, v, E) = T})
| E [author] 6= v → ⊥

P (p, u, E) := let (v,Pv) := E(p, u, E [type := ‘perm’])

in (v = T ∧
∧

p′∈Pv

P (p′, u, E [type := ‘perm’]))

getVal(@l, u) := let (v,Pv) := E(@l, u, E [])

in if
∧
p∈Pv

P (p′, u, E [])

then v

else ⊥

Figure 27: Simplified DIFC WebSheets Semantics

WebSheets 96

E :: (WFs, u, E)→ (c,P)

and

P :: (WFs, u, E)→ c | ⊥

Although these semantics are functionally equivalent to those from figure
26, they can help readers familiar with DIFC to understand the similarity
with WebSheets. There are two main differences between these semantics and
Myers’s Decentralized Label Model (DLM)8. Firstly, WebSheet users write
read permission formulas that can not only predicate on the current user (e.g.
user == "admin") but also on the contents of the store S; P then verifies
whether a specific user is part of the set of allowed users, which are those users
for which P (p) evaluates to T . The DLM model instead requires developers to
explicitly specify a set of readers. Evaluating WebSheet permission formulas
over each principal would yield a set of readers equivalent to DLM labels (e.g.
user in ["admin", "foo"] is equivalent to DLM’s o→ {admin, foo}), but
note that in DLM the set of users is fixed at the time the label is created and
attached, while in the semantics of Figure 27 the set of users is implicitly
calculated when the check is performed, after the label has flowed all the
way to getVal. Our experience is that in complex web applications, the
policies for a specific piece of data continually change (e.g. a private photo
is made public) and it is easier to account for such changes using formulas as
opposed to explicit set of users, because the formula automatically captures
the update to the policy. Plus, this model readily supports revocation, e.g.
changing the value of a cell upon which p depends so that P (p, u) is no longer
T . The only disadvantage of this model is that calculating the effective set
of readers (i.e. all those users for which all permissions from the permission
set evaluate to T) is expensive and requires the evaluation of n∗m formulas,
where n is the number of permission formulas to satisfy and m is the number
of users in the system.

Secondly, unlike in the DLM, our semantics do not distinguish between
owners and readers in permission formulas. In the DLM model, each set of

8Myers and Liskov [89] introduced both the term DIFC and the term DLM. By DIFC,
we simply refer to the abstract idea of decentralizing label management compared to
traditional IFC systems, so that code from distrustring principals can exchange data.
On the other hand, DLM refers to the concrete label format and semantics that were
introduced in the same paper and then later used in Jif/JFlow [87].

WebSheets 97

readers is associated with an owner (e.g. o → {u1, u2}), whose authority is
required to relax the policy (i.e. add readers to the set {u1, u2}, possibly up
to o →⊥, thus eliminating the restriction altogether) and perform declas-
sification. In our semantics, the formula implicitly represents a set of users
who are considered both owners and readers. Because of this, declassification
works differently: while in DLM a label o → {u1, u2} requires the authority
of the user o for declassification, in our semantics both users u1 and u2 can
add new readers and owners. This is shown in the definition of E(d(e, u)),
where P (u) removes all permission formulas p for which P (p, u) = T .

Note that our design does not prevent us from defining and tracking
ownership, maintaining different sets of readers and owners; we simply opted
to keep our design simpler and accept that in a Web Application context,
where users display their data on unsecured browsers out of the control of the
WebSheet runtime, restrictions on declassification can be easily circumvented
out-of-band, thus making the distinctions between readers and owners less
valuable. The semantics could be easily extended to include a declassification
formula for each cell which defines a set of owners that can declassify its read
permission formula: the permission tables shown in Section 4.1 could be
extended to include a row “Declassify”. Also note that models that unify the
concept of readership and ownership have been used successfully in previos
work [42]. In particular, our semantics are similar to the DC model [124],
which expresses labels as conjuctions of disjunction of principals. It is easy
to see that in the DC model a : (u1 ∨ u2) and b : u3 imply that a + b :
(u1 ∨ u2) ∧ u3 and that the same can be expressed with WF formulas: a :
user in [u1, u2], b : user == u3, with both semantics from Figure 26 and
27 executing both WF formulas and requiring both to return T during the
evaluation of a + b. However, like in the DLM, the users in DC Labels are
also fixed at the time of creation of the label.

The main reason why the eager enforcement semantics from Figure 26 are
preferable to those from Figure 27 (especially after we have shown that, in the
context of functional evaluation, eager enforcement does not prevent declas-
sification), is because the latter semantics are vulnerable to covert channels.

5.2.3 Semantics vs. Implementation

The implementation described in Section 5.3 differs from the semantics shown
in Figure 26. While some features have been left out of the operational
semantics to focus on evaluation, others represent design decision that were

WebSheets 98

made before the semantics were formalized; because they represent trade-offs
which do not affect the core functionality of the paradigm, we did not update
the implementation to precisely follow the semantics.

In particular, the following differences are notable:

• The implementation performs deferred enforcement instead of eager
enforcement of read permissions, building up permission sets during
evaluation. These are evaluated and verified in getVal before the data
is sent to the user. It is thus more similar to the semantics shown in
Figure 27 than those from Figure 26. However, deferred enforcement
yields more opportunities to exploit covert channels, which motivated
us to define eager enforcement semantics. Section 6.2 describes how to
mitigate these covert channels.

• Besides the getVal operation, the repository also supports the setVal

operation. The store S returns an additional write permission formula,
thus requiring the following signature for S:

S :: @l→ (u,WFs,WFs,WFs)

However, write permissions do not flow during evaluation (i.e. there is
no IFC enforcement of integrity). Rather, the formula is used to check
whether a single user can write directly into a specific cell.

• setVal is not the only operation that modifies the store S. Besides cre-
ating and deleting tables, the implemention defines addRow and delRow

operations, which are subject to different permission checks.

• Although all tables are accessible as rows and columns of values af-
ter evaluation, not all tables are directly generated from rows and
columns of WF expressions. The implementation supports dynamic
tables, which are tables whose source is a single WF expression that
must produce a list of uniformly named tuples. The values are then
spread over rows and columns and accessed transparently.

• The implementation implements lazy evaluation and caching seman-
tics. The repository maintains a global cache of values and a per-user
cache of read permission check results. The read permission formulas
that flow during evaluation are actually expressed in the form of cell
references, so that they can be used to dynamically build a dependency

WebSheets 99

graph and update the cache as needed. When a cached value becomes
stale or an entirely new cached table is created, the runtime simply
stores informations on how to evaluate the original formula, but does
not perform evaluation until getVal requires the cell value.

• The implementation introduces the concept of temporal dependencies,
which can be used to force re-evaluation of cached values after a certain
date, or to trigger evaluation indendently of getVal.

• The implementation extends WF with the ability to perform side effects
during evaluation of formulas, by providing the ability to call an exter-
nal procedural script. This is useful if the application needs to perform
I/O (e.g. send mail) or to encapsulate the effects of a transaction (e.g.
update the remaining number of seats).

However, this complicates the semantics: since evaluation is not side-
effect free, the semantics cannot re-evaluate data arbitrarily. In the
implementation, we tackle this issue using caching and short-circuit se-
mantics (e.g. guard && script() does not run script() until guard
evaluates to true). The result is kept fresh in the cache and not re-
evaluated until any of the dependencies of the formula are changed).
The alternative is to require an explicit trigger (e.g. a user initiates
the script by clicking on a cell). In this version, the script resides in a
separate cell as a read-only formula, and it triggers the execution of a
series of assignments to temporary variables and to other cells.

Procedural scripts should have permission semantics that work organi-
cally with the rest of the system. Suppose that there is an assignment
@x := @y+@z, where all three variables reference cells. Assuming that
E(@y + @z, ...) = v, we can keep consistent permissions for the new
constant value v written in @x by writing @y; @z; v into the cell @x,
where the semicolon operator evaluates the expressions in order, but
only returns the last expression. This way, evaluating @x now returns
v, but also requires P (@y, ...) and P (@z, ...) to succeed.

5.3 Implementation

To focus on describing the core semantics of evaluation, permission check-
ing and declassification, Section 5.2 abstracted away important details about
how a practical WebSheets implementation would look like. In this section,

WebSheets 100

Username

Password

User
Username

Password

User
Username

Password

User

Username

Password

User
Username

Password

UserScript
var a = 1;

b = a+1;

return b;

WebSheets Server

Table_1

Cells

Perms

Expr Expr Expr

Expr Expr Expr

Expr Expr Expr

Expr Expr Expr

Expr Expr Expr

Expr Expr Expr

T T F

T F F

F F F

Val Val Val

Val Val Val

Val Val Val

prepare eval

prepare eval

Val Val
V

al

Val Val Val

Val Val Val

V

al

V

al

V

al

V

al

V

al

getExpressionView

redact

redact

getValueView

Figure 28: Overview of WebSheets’ Evaluation Flow

we describe the actual implementation of WebSheets. We begin our illustra-
tion of the implementation by giving a high-level overview of the data model,
showing how information flows to end users. Subsequently, we describe the
design in more detail by defining the structure of WebSheet tables and ex-
plaining their transformation as input formulas are evaluated into values and
cached. Finally, we show how permissions are applied and how values are
redacted before being sent to end users.

5.3.1 Overview

A WebSheet repository consists of tables of WF formulas, user accounts and
user-submitted scripts for procedural data processing that can be safely exe-
cuted in a sandbox. Figure 28 depicts an overview of the system, showing in
particular how these tables are transformed before they are sent to the end
user using two different operations, getExpressionView and getValueView.
The former exposes the “Expression View” of a table, a low-level view show-
ing tables as pairs of data tables and permission tables; the operation is only
available to table owners and privileged users, and the view is mostly used
during development to manage new tables and configure their permissions.

On the other hand, getValueView exposes the “Value View” of a table,
a high-level view that generates intermediate “output” tables (prepare),
causes the evaluation of both data and read permission formulas (eval)
and finally combines the two to produce a redacted result that is sent to

WebSheets 101

Data Table

C1 ... Cn

R0 Expr ... Expr
...
Rn Expr ... Expr

Permission Table

C1 ... Cn Row
read Expr ... Expr Expr
write Expr ... Expr Expr

add row Expr
del row Expr

init Expr ... Expr

Figure 29: WebSheets’ Input Table

a specific user (redact). This operation is available to all users and, unlike
getExpressionView, is used during normal operation to interact with exist-
ing tables that have already been configured. The purpose of the Value View
is to offer an interface similar to spreadsheets, by providing a unified view of
input formulas and output values: although the cells displayed to the user
contain output values, the user can enter input formulas which are written
to the original table, immediately evaluated and displayed to the user as new
output values.

Figure 29 shows the format of tables. Besides a name and a description, all
tables have an owner (i.e. the creator of the table), which can be referenced at
runtime. Each table consists of two sub-tables: a data table and a permission
table. Internally, these tables are represented as arrays of objects with the
same set of properties, which represent the column names of the table. The
implementation can thus reference a specific cell using normal object access,
i.e. table[row][col]; we use the same notation in this section.

Although omitted from the figure, rows and cells also have an author: the
row author is the user who added the row, while the cell author is the user
who last modified the formula. The format of the permission table depends
on the format of the data table: the number of rows is fixed and represents the
various permissions like read, write, etc; the columns are the same columns
from the data table plus an additional row column. The columns named
after the original columns of the data table define permissions that are in
scope for all data cells along the column; for example, perms.write.col1
defines the write permission for all cells along the col1 column. The row

WebSheets 102

column can be used to specify a permission formula in scope for all cells. If
both the column and the row permission are defined for a particular cell, the
actual permission is the conjunction of the two.

As shown, in Figure 29, not all the cells of the permission grid are mean-
ingful and can be edited; for example, users cannot define an init value for
the entire row, because init values are specified per-column. The formulas
supplied by users as strings are contained in Expr objects, which automati-
cally parse the formula according to the WF grammar described in Section
5.1, so that the formula is available both in textual format (for displaying
and editing) and as an abstract syntax tree (for evaluation).

5.3.2 Expression View

Despite allowing users to edit formulas directly from the Value View, Web-
Sheets allow users to view and edit tables directly through the Expression
View. The client fetches the necessary data using the getExpressionView

operation. The semantics for getExpressionView are straightforward, be-
cause unlike getValueView, the operation does not cause any evaluation.
Instead, the server merely checks that the user requesting the operation is
the owner of the table and then returns both the value and the permission
table.

5.3.3 Value View

Value Views offer an interface more similar to spreadsheets: the value and
permission tables are combined together into a single, redacted table that the
users can interact with. The operation getValueView supplies the data to
the client; we define its semantics using a top-down approach, by describing
its three main phases: the operation causes the server to a) generate fresh
output data tables and output permission tables if they do not exist yet
(prepare), b) force evaluation of all the value and permission cells for the
current user (eval) and c) produce a redacted output table by intersecting
the output values and the output permissions (redact). The operation is
depicted in Figure 28.

We now define the three sub-operations that this pseudocode depends on,
namely prepare, eval and redact.

prepare

WebSheets 103

The prepare operation creates fresh output value tables and output permis-
sion tables for a specific user. The purpose of these output tables is not only
to store the result of the evaluation of the formulas of the original table for
the next phase, but also to cache the results for later requests. Note that
there is one cache of output data tables for all users, while each user has its
own cache of output permission tables. This is because, as shown in Section
5.2, the evaluation result of permission formulas depends on which user is
performing the evaluation, while the evaluation result of data formulas can
be shared among all users.

The output value table is generated from the input table by simply wrap-
ping all cell formulas of the input value table in a Cacheable object. The
purpose of Cacheable is to encapsulate lazy evaluation and caching seman-
tics: the prepare operation simply copies input formulas into the object,
delaying actual evaluation to the eval operation, which also stores the result
in the object; subsequent calls to eval can immediately return the cached
result.

The output permission table is also generated from the structure of the
input data table (i.e. it has the same number of rows and columns as the data
table, unlike the permission table shown in the expression view), and it is
filled with read permission formulas from the input permission table: each cell
contains the read column formula from the input permission table ANDed
together with the generic row read permission. These are also wrapped in a
Cacheable object.

eval

The eval operation produces a Value from an Cacheable, either evalu-
ating the WF AST in Expr or by returning the cached value. The evaluation
semantics of most WF AST nodes are straightforward, since they build val-
ues bottom-up by first evaluating the children and then combining them into
a new Value. For example, Section 5.2 shows how to implement addition.
However, a few Expr nodes have notable semantics:

• Identifiers : these are first looked up in the environment, which is a
mapping from strings to Values. If found, their value is returned; if
not found, they are assumed to be references to a table. If the table
exists, eval does not evaluate any cell of the table, but only returns
an unresolved reference to it, a TableValue.

WebSheets 104

• Selection and Projection: resolving the aforementioned TableValue

reference would cause the evaluation of all cells in the table. This is not
only wasteful, but can also creates unnecessary dynamic dependencies.
For this reason, a few operations can act on a unresolved reference
without causing its resolution. The most common cases are selection
and projection: on lists and tuples, they return a subset of the elements;
on TableValues they perform the same function, but do not cause the
reference to resolve. Rather, they cause the TableValue to “focus” on
a subset of the table, which will cause only a subset of table cells to be
evaluated and returned upon resolution.

• Generate and Filter : like selection and projection, Generate and Filter
also avoid resolving TableValues when looping over their rows. For
example T[a==b] is equivalent to projecting T on all the rows that
satisfy the condition in brackets. Thus, only the columns a and b of
each row are evaluated.

Any other operation will immediately resolve a TableValue. The type
of Value returned upon resolution depends on how focused the TableValue

is (i.e. what subset of the original table has been requested using selection,
projection and filtering). Generally speaking, resolve will expand a single
TableValue into as many TableValues as the number of cells focused by the
original TableValue, and then proceed to resolve them one by one.

The basic operation is the resolution of a TableValue focused on a single
cell, which entails looking up the Cacheable wrapper in the cell of the cor-
responding output table and evaluating it. A TableValue focused on a row
will generate a record of TableValues focused on each field and evaluate it.
A TableValue focused on multiple rows (or an entire table) will generate a
list of TableValues focused on each row and evaluate the list.

WebSheets rely on dynamic dependencies both for permissions (i.e. a cell
can be read if the user is allowed to read the cell itself and all the cells it
depends on) and to implement minimal recalculation of cells upon chages (by
maintaining a dependency graph). So far, we did not describe how evaluation
drives the calculation of dynamic dependencies. All Value types store a list
of cells they depend on, which are calculated bottom-up and pushed up to
the final Value during evaluation. The rules for propagating dependencies
for most nodes are straightforward (i.e. a+b will depend on the dependencies
of both a and b), with only two notable cases:

WebSheets 105

• Short-Circuit Evaluation: IF statements, logical AND and logical OR
are implemented with short-circuit semantics. If a value is not evalu-
ated, its dependecies don’t flow to the result.

• TableValue Resolution: When a TableValue is resolved, the result de-
pends on the cell referenced by the TableValue (remember that al-
though a TableValue can reference sets of cells and sets of rows before
resolution, these are expanded into multiple resolutions of single cells).
In practice, this is the only source of dependencies in formulas.

• Lists and Tuples : Lists and Tuples don’t automatically inherit all de-
pendencies from their elements. The runtime extracts all nested de-
pendencies when calculating cell dependencies, but redact can use this
information to work on a per-element basis. This prevents an entire
collection from being redacted if the user does not have access to a
single element.

redact

Finally, we describe the last operation that getValueView depends on.
redact reviews an output value table together with its read permission table
for the current user. For each cell of the output value table, the runtime
checks that:

• the corresponding cell in the permission table evaluates to true, and

• for each dependency collected during evaluation of the permission, the
corresponding permission cells evaluate to true as well.

If either condition is not met, the value is blanked out before it is sent
over the network.

5.3.4 Editing Tables

Besides getExpressionView and getValueView, WebSheets expose several
operations to modify existing tables.

Firstly, note that WebSheets use Information-Flow Control only on read
operations, to ensure confidentiality; there is no dual mechanism enforced to
ensure integrity [9]. Instead, write operations use traditional access control,
evaluating the appropriate formula in the context of the user and ensuring

WebSheets 106

that the user has read access to all the dependencies. Secondly, these permis-
sion formulas are not cached — they are ignored by the prepare operation,
which doesn’t copy them into the output table and doesn’t wrap them into a
Cacheable object. Instead, the expression is always fetched from the input
table and re-evaluated. Although caching semantics would be simple and
similar to those of read permissions, the result of other permission formulas
is not required as often and thus caching would not significantly improve
performance. This simplifies the semantics of edit operations:

• WriteCell : this operation changes the formula of an input cell. To ver-
ify that the user is allowed to perform the operation, the runtime takes
the conjunction of the write permission for the current column and the
generic row write permission and evaluates it. The value must evalu-
ates to true and all its dependencies must be readable (i.e. their read
permission formula must evaluate to true). Unlike read permission for-
mulas, write permission formulas can also refer to the new value of the
cell using the identifier newVal. This is useful to implement validation
logic.

• WritePerm: this operation modifies a permission on the input table.
Only the table owner can change the table’s permissions. In practice,
this means that the table owner also “owns” the data of all its cells,
since he has read and write access to all of them: if a policy prevents
him from accessing the data, he can modify it to remove any restric-
tions. This is no different than current web application development
— users must trust the developers not to misuse the data. We did not
investigate or implement the possibility of “locking in” a policy for a
piece of data, effectively enforcing a contract between user and table
owner that is stipulated at the time the data is entered.

However, users can still retain control of their data using one extra
step: they must enter data into the system using a separate table of
their own making, referring to it when supplying data to an untrusted
third-party. This way, the third-party can only add new restrictions,
but must still satisfy the read restrictions imposed by the user’s table,
where the data is originally extracted from.

• AddRow : this operation adds a new row to the input table, either by
specifying an index or by appending it at the end of the table. The

WebSheets 107

new row is initialized using the cells of the init permission row. While
the owner of the row is the user who executed addRow, the owner of the
cells is the owner of the tables (i.e. the owner of the init cells), until
the user modifies the default values. The operation is executed only if
the add row permission evaluates to true.

• DelRow : this operation removes a row from an input table, but only if
the del row permission evaluates to true.

• CreateTable: this operation creates a new empty table, and its caller
becomes the table’s owner. The user must specify the set of columns at
the time of creation; on the other hand, permissions default to “allow
all” (i.e. empty formulas) and can be modified at a later time using
WritePerm. This operation is not privileged and any user can create a
new table.

• DeleteTable This operation deletes an existing table. Only the owner
of the table can perform this operation.

5.3.5 Dependency Recalculation

Beside being used to implement deferred enforcement, dynamic dependen-
cies are also used to decide which cells must be recalculated upon changes to
the input tables. Minimal recalculation is not only useful to improve perfor-
mance and responsiveness upon edits: cell formulas might perform I/O upon
evaluation (e.g. send an email) that users do not wish to perform multiple
times unless new inputs are available to the function that performs I/O.

Since evaluation is lazy, minimal dependency recalculation involves two
different subproblmes:

1. after a modification to the input tables (e.g. WriteCell, AddRow), the
runtime must marking a minimal set of evaluated values in the cache
as stale. We use the dynamic dependency information collected during
evaluation to visit the support graph of the elements that have been
modified, marking all the nodes reachable from these items as stale.

2. upon evaluation, decide if a stale cell actually needs reevaluation. This
is not always the case: the update that marked the dependencies as
stale might still result in the same value, thus causing no changes to
propagate. We maintain a generation number to detect this.

WebSheets 108

Marking a minimal set of cells as stale is implemented through the trigger

operation, which is called with an event type and a set of arguments every
time input tables are modified. The operation supports the following event
types:

• WriteCell : this is called when an input cell is modified. WriteCell is the
most common trigger and thus the one that requires the most efficient
semantics. Since we maintain a dependency graph, inverting the edges
and visiting the subtree with the current cell as the root yields the
support set for the current set, i.e. the set of cells that depend on the
current cell that was modified. WriteCell simply marks the current cell
and every cell in the support cell as stale.

• WritePerm: this is called when a read permission for a cell or a row
is modified (other types of permissions are not cached). Because no
formula can explicitly refer to a permission formula, the support set for
read permissions is always empty; however, the cells of the permission
cache for which the current permission is in scope should be marked
as stale. When a permission for a column is modified, all the cells on
that column of the permission table for all users are marked as stale;
when a row permission is modified, all cells in the permission table for
all users are marked as stale.

• WriteOwner : this is called when the owner of a row is modified. Write-
Owner is a privileged operation that does not happen often: normally,
the creator of the row its owner as well. In this case, we can still restrict
the number of cells that are marked as stale: although dependencies
on owner cells are not tracked explicitly, only the cells of the current
row can reference its owner (note that the owner can still be accessed
indirectly across different rows or tables by setting a cell of the row to
owner, and then referencing the cell.). Thus, we can approximate the
support set by calling trigger for all the cells of the row.

• AddRow : this operation is called when a new row is added to an input
table. Firstly, the server updates output and permission tables by
adding a new row at the same index. The initial value for each cell of
the new row of the output table is Cacheable(expr), where expr is
the vaue of the cell in the corresponding input table cell. The initial
value for each cell of the new row in the permission table is initialized

WebSheets 109

as the union of the current column read permission and the row read
permission.

Besides updating the data structures, addRow can also cause existing
cells to be marked as stale in two cases:

– If a TableValue references the current row in a looping construct
like Filter or Generate, the update will cause the construct to
return a different result (e.g. returning an extra row or array
element). In this case, TableValue returns a special type of de-
pendency that is used by addRow to recognize this exception and
mark these cells as stale.

– If a TableValue references a specific row and a new row is added
before the row referenced, the index of the row will increase by 1.
This means that all cells referencing rows beyond the current one
must be marked as stale. This can be avoided by distinguishing
between relative row references (e.g. current row) and absolute
refenrece (e.g. fourth row), so that only cells containing absolute
references beyond the inserted index need to be marked as stale.
Note that this optimization only saves work if the row is added
in any position before the very last; since most addRow operations
add a row at the end, we did not perform this optimization.

• DeleteRow : this operation is called when a row is deleted from a table.
The update semantics are similar to addRow, including the caveat about
deleting any row but the last. In addition, deleteRow must mark any
cell that refers to the current row as stale.

• CreateTable: this operation is called when a new table is added to the
server. Because output table are generated as needed by prepare, no
changes to output tabes are needed at this point. Note that if a cell
refers to the current table, we do not need to mark the cell has stale to
inform the cell that the table finally exists. Its value would be of type
Error, because the table did not exist yet, and error cells are always
considered stale by recalculation semantics.

• DeleteTable: this operation is called when a table is deleted from the
repository. Besides deleting its corresponding output table and permis-
sion tables for all users, all cells referencing any cell on this table must
be marked as stale.

WebSheets 110

The trigger operation only marks cells as stale. Re-evaluation, if neces-
sary, happens during eval. All cells have a generation number that updates
when the input cell is modified or when the output cell’s value is updated;
a stale cell can be revived if all its dependencies (that at this point have al-
ready been evaluated) have a generation number that is less than the current
generation number. If a cell is revived, the old value is marked as fresh and
the generation number is not updated, thus notifying the cell’s support set
that no recalculation needs to happen because of this cell.

5.3.6 Built-in Functions

WF function calls can execute builtin functions or user-submitted scripts.
When evaluating a function, eval first tries to look for the function name
in the set of builtin functions provided by the websheet server. Besides the
usual functions that one might expect from a spreadsheet (e.g. sum, avg, etc),
WebSheets have five functions with notable semantics, whose names have
been capitalized to denote unusual semantics with respect to side-effects,
dependencies and permissions:

• decl : this function performs declassification on a value. When any user
performs eval on the cell, all the dependencies that are readable by
the author of the cell (i.e. the user that inserted the decl call) are
marked as non-enforcing and are not used to verify read permissions in
censor. The dependencies are not removed altogether, because they
are still used for recalculation.

• fix : this function prevents recalculation on a value, making it constant
by turning off recalculation and returning it. All dependencies on the
result are marked as non-recalculating and do not affect whether the
cell needs recalculation any longer.

• after : this function introduces a temporal dependency. Instead of de-
pending on changes to another output cell, a temporal dependency
registers a callback to mark the cell as stale at a specific time, so that
it will be up for recomputation the next time a user needs its value. The
function accepts a date and returns true when the current data is after
the date provided to after, and false otherwise. This allows after to
be used along with short-circuit semantics to prevent evaluation of an-
other formula until a certain time. For example, after("tomorrow")

WebSheets 111

&& mail("test mail", ...) prevents users evaluating the cell from
sending an email until the next day.

• trigger : this function also introduces a temporal dependency and regis-
ters a callback, but instead of causing the value to be marked as stale,
the callback immediately triggers the evaluation of the cell as the owner
of the cell (i.e. the user who wrote the trigger call).

• mail : this function is used to send mail outside the system. Because
data leaving the system cannot be subjected to further permission
checks, the function verifies that the user evaluating the function can
read all the dependencies of the email’s body.

When a username is supplied in place of the email address, the function
checks that the user specified has read permissions instead, and sends
the message to the email address associated with his account.

5.3.7 Scripts

If no combination of WF operators and builtin function calls is expressive
enough for a particular task, users can register and call scripts that are
run securely in a sandboxed environment. If the sandboxed script needs to
interact with the websheet server (i.e. the script does not merely process
inputs to produce an output, but also reads and writes cells), the script can
do so using the same RESTful API that is exposed to users through the web
interface. Thus, the script is subject to the same security restrictions. We
provide two environment for executing untrusted scripts:

JavaScript : since the current implementation of websheet runs under Node,
the simplest and fastest way to sandbox code is to use a JavaScript
sandboxing solution. In particular, JaTE [135] enforces strong isola-
tion despite running the untrusted code in the same process. However,
JavaScript sandboxing in the context of WebSheets has two shortcom-
ings:

• JaTE (and other similar sandboxing solutions like Ses [84]) en-
forces isolation but does not address the problem of transparently
exposing the Node API, which is require for code reuse and to
leverage existing libraries. For example, sandboxed scripts cannot
use the require function to import Node modules, because many

WebSheets 112

Node modules interact with the underlying system (e.g. the fs

module). A require implementation for sandboxed scripts must
return “clean” modules that do not have these capabilities, which
requires manual analysis of a multitude of libraries. To solve a sim-
ilar problem in Java, Joe-E [83] released taming libraries, patches
to popular libraries that wrap or delete unsafe methods.

• A JavaScript sandbox forces users to write their own code in Ja-
vaScript. If the user is more familiar with a different scripting lan-
guage or wants to run existing (possibly binary) code, this sandbox
is too restrictive.

LXC-Shell : while the first sandboxing method focuses on speed and simplic-
ity, the second provides generality. We use LXC to quickly spin up a
throwaway Ubuntu-based container, configure it to access the internet
and the WebSheet server itself, and then run the user provided bash
script as an entry point. From there, the user can perform arbitrary ac-
tions – including writing to disk. Before the container is destroyed, the
script can report back a return value to the server, and the control flow
returns to the WF formula that evaluated the script. Note that running
untrusted program as root in LXC containers is not recommended, and
thus we drop root privileges before executing the untrusted script.

Both types of scripts can be uploaded either as normal or setuid. Normal
scripts are executed as the user invoking the script (i.e. the cell owner); the
user must trust the script he is invoking. Setuid scripts are executed as the
author of the script; in this case, the script author must sanitize the inputs
and consume them safely. Also, both types of scripts can only be executed if
the user running the script (according to the setuid bit) has read permission
on all the dependencies of the inputs. This is necessary because the server
cannot stop unauthorized data exfiltration beyond this point. It also allows
script caller semantics to leave propagation of input dependencies up to the
callee — the script can implement decl- and fix-like semantics, prevent-
ing access control and recalculation, or return all dependencies to enforce
reasonable read permissions or ensure proper recalculation semantics.

5.3.8 Status

We have implemented WebSheets as a web application which communicates
with a backend server written in NodeJS through a JSON API. Through the

WebSheets 113

web application, users use the backend as a central repository of applications
to collaborate with other users.

The implementation of the server and the UI is available on GitHub [102]
under the open source GPL3 license. To simplify deployment, a Docker
image is available as well [103]. All the features previously discussed have
been implemented. In particular, the codebase contains:

• an LR parser for the WF language, based on the grammar shown in
Figure 24. The Jison grammar is contained in ws.jison and the ast
definitions are located in ast.js.

• support for both static tables and dynamic tables. Tables are defined
in input.js, while output tables are defined in output.js. Tables are
instantiated throughout the codebase on demand by calling into the
methods defined in these files.

• evaluation, caching and recalculation of data and read permissions.
Triggering and permission calculation are defined in websheets.js,
while evaluation is mostly implemented in ast.js.

• support for redacting output values, including fine-grained redaction of
list and tuple elements. The code is mostly implemented in ast.js.

• access control on the edit operations, including redacting values when
the user does not have the required read permissions. Defined in
websheets.js.

• two different systems for sandboxed execution of user-submitted scripts.
The JavaScript sandbox is defined in sandbox.js, while the Docker
image, based on Ubuntu 14.04, is defined in docker/.

• support for importing WebSheets from XLS files. Although WebSheets
can be created from scratch and managed within the web interface,
we also support reading XLS files with a custom format. Importing
WebSheets from XLS files is very useful for testing because a) they
survive database resets and b) the format also allows pre-populating
the table. The import code is in import.js

The frontend implements the Single Page Web Application architecture:
all HTML, CSS and JS files are static and are served under the static/

WebSheets 114

directory. The routie library listens to location.hash changes and updates
the main content pane using the jQuery library. WebSheet operations are
requested to server using the JSON api. The only pages that have non-trivial
client-side logic are the expression view and the value view. Both of them
use the HTML5 contenteditable attribute to allow users to edit values in
place.

The server is implemented using the express framework. The purpose of
the server is simply to a) manage the lifecycle of the actual WS object, which
encapsulates the application logic, b) convert JSON requests into operations
on the WS object and c) serve the frontend as static content. In particular,
the JSON API includes the following endpoints:

• /user/login: used to login to the WebSheet application by creating a
new session. Most WebSheet operations are invoked with a user argu-
ment and are not available if the user is not logged in. For debugging,
the server also allows the administrator to execute operations as any
other user.

• /admin/[save|load]: used to serialize and deserialize the state of the
web application as a JSON file.

• /table/create: executes the CreateTable operation on the reposi-
tory.

• /table/:name/delete: executes the DeleteTable operation on the .

• /table/:name/input: executes the getExpressionView operation on
the :name table.

• /table/:name/output: executes the getValueView operation on the
:name table.

• /table/:name/edit: executes either the writeCell or the writePerm

operation on the :name table, depending on the request body.

• /table/addrow: executes the addRow operation on table :name. If the
index is missing, the operation defaults to adding the adding the row
to the bottom of the table.

• /table/:name/:row/deleterow: executes the deleteRow operation
on table :name, deleting row :row.

WebSheets 115

6 Evaluation

6.1 Case Study

Section 4.1 used three simple examples to give an overview of WebSheets’
design and capabilities and to demonstrate its ease of use. Because the
nature of that section was mainly didactic, we did not try to demonstrate
that Websheets can be used to effectively develop real-world, complex web
applications. This section is focused on this task, and presents a rewrite of
the popular HotCRP conference management system.

6.1.1 HotCRP

HotCRP [71] is a popular open-source web application developed by Eddie
Kohler that allows conference organizers to automate the paper submission
and review processes. Over the years, HotCRP has been often been fea-
tured in the evaluation section of web security papers; it has been featured
both in vulnerability analysis papers that sought to uncover data leaks in
existing applications [68] and in policy papers that offered centralized pol-
icy specification, to show that they were able to specify its complex poli-
cies [145, 100, 144]. Its popularity is due to its substantial privacy require-
ments: at the very minimum, a modern conference system must securely
handle double-blind anonymity and conflicts of interest between PCs and
submitters.

Over the years, the author had to fix several information leaks; the project
changelog contains 14 mentions of leak-related fixes, although detailed infor-
mation is not available for all of them. When permission checks are strewn
across the codebases and look like the snippet shown in Figure 30, which
shows the complexity of the formula to decide whether a user can access a
paper’s reviews, it is not surprising that the code contains data leak vulner-
abilities.

In particular, one vulnerability described in detail by the author caused
HotCRP’s password recovery feature to reveal the login information of any
user when running in “email debug” mode, as shown in Figure 31.

This vulnerability clearly shows the problem with traditional web appli-
cation development practices: the application logic pushes sensitive data out
of the system all throughout the codebase, and the developer must place the
appropriate policy checks accross each possible path; if even one path is not

WebSheets 116

Figure 30: HotCRP Review Read Policy

Figure 31: HotCRP Password Leak

WebSheets 117

properly handled, an attacker will identify it as the weakest link and exploit
it. In this particular case, the obscure flow is only present if a debug flag is
active.

The author himself, a renowed academic with experience in Information-
Flow Control [34], is aware of the problem and proposes two mitigation strate-
gies [70]:

• minimize the number of distinct outgoing flows of sensitive information,
to decrease the chances of one flow not being sanitized properly: one of
the initial design decisions of HotCRP was to reduce modes, i.e. reduce
the number of different views on the same set of data. This is a sensible
design decision that mitigates the problem, but does not eliminate it.

• use an information-flow control system. However, at the time his
thoughts on the matter were published, the author did not believe that
IFC systems were expressive enough to handle HotCRP’s policies [70],
and used the formula in Figure 30 as an example of complex logic.

The researchers behind Resin [145] and Jeeves [144] implemented a signif-
icant subset of HotCRP’s policies in their IFC systems; since Resin includes
a PHP runtime, the language HotCRP is developed in, the authors leveraged
the original implementation, simply adding data flow assertions to the sys-
tem; on the other hand, since Jeeves implements IFC in Scala, the authors
implemented a clone of HotCRP named JConf, which implements a subset
of the application logic. WebSheets also require us to rewrite the web ap-
plication from scratch, which we unimaginatively call WSConf. However, in
our case we are not only proving that the privacy policies can be expressed
in our paradigm, but that the application logic can be expressed as well. For
this reason, compared to Resin and Jeeves, we implemented nearly all the
features and configuration options of HotCRP, with only a few exceptions
noted below. In particular, WSConf implements the following features:

• double-blind reviews : PC members cannot view the authors of the pa-
pers submitted to the conference, and authors cannot view the name
of the reviewers.

• attachments : support for uploading and downloading PDF files directly
from the repository.

WebSheets 118

• conflicts : prevent PC members from seeing reviews of papers of con-
flicting authors.

• deadlines : support for a submission deadline and a review deadline,
preventing new submissions and new reviews respectively.

• groupthink prevention: reviewers can see the other reviews for a paper
only after submitting their own.

• email notifications : reviewers are notified when they are assigned a pa-
per; authors are notified when the chair has decided whether to accept
or reject the paper.

• review preferences : allow PC members to communicate their willing-
ness to review a particular paper.

• automatic review assignment : automatically assign n reviewers to each
paper, taking the aforementioned preferences into account.

• tagging : support assigning tags to papers. Certain tags are privileged
and can only be assigned by the chair.

• review rating : supports the rating of reviews by other reviewers, to
discourage low-quality reviews.

Because HotCRP is designed to support the use cases of many different
conferences, the aforementioned features can be customized through con-
figuration options. We have implemented a significant subset of them. In
particular, we ported the following HotCRP configuration options:

• deadline override: force acceptance of new papers and new reviews
even when their respective deadlines have passed.

• submission anonymity : controls whether submission anonymity is al-
ways on, always off or opt-in.

• review anonymity : controls whether reviewer anonymity is always on,
always off or opt-in.

• non-assigned reviews : controls whether PC members can spontaneously
review papers that have not been assigned to them.

WebSheets 119

• groupthink prevention: controls whether reviewers can always see the
other reviews for a paper or only after they have submitted their own.

• rating reviews : controls whether reviewers can rate other reviews.

Although we set out to write a realistic HotCRP clone instead of a toy
application, we did not quite reach feature parity. The following HotCRP
features were not implemented or were simplified:

• review assignments : we implemented assignments to showcase the use
of JavaScript sandboxes to support complex procedural logic, but we
believe replicating all the assignment logic of HotCRP is unnecessary.
The problem of optimizing review assignments is NP-hard, so even their
algorithm is based on heuristics; in particular, while their algorithm
focuses on fairness (most likely, to prevent PC members from bothering
the chair about their assignments!), we simply implemented a greedy
algorithm that scans through each paper and assigns reviews to the PC
members with the highest preference, after filtering for conflicts and
review quotas. The original code lives in src/autoassigner.php and
we believe that porting it to JavaScript would not present significant
conceptual challenges.

• PDF format checking : HotCRP optionally uses Banal to check whether
the format of submitted PDF files conforms to the format specified by
the conference. Although LXC sandboxes would be able to interface
with this program, we believe this is out of scope.

• external reviews : since WebSheet operations are only available to reg-
istered users, there is no concept of external reviewer. They can be
simulated by manually assigning a review to a WebSheet user that is
not on the PC committee, which does not require additional application
logic.

• multiple rounds of reviews : the privacy policy of reviews is independent
from their round. The code to support this feature is therefore related
to review assignment, which we only implemented in a simplified way.
Note that a second round of reviews can still be assigned manually by
the chair.

WebSheets 120

• custom submission options and review fields : while HTML applications
need special code to support additional fields, WebSheet developers can
easily add a new column to a table to accept further information for
each entry.

• tracks : tracks use tags to specify different permissions for a subset
of submission or a subset of PC members. Although this feature is
convenient, the same behavior can be otained by deploying different
WSConf instances and configuring them appropriately.

The application requires 7 WebSheet tables: Committee, Config, Paper,
Preference, Review, Tag and RReview. Unlike the examples in Section
4.1, this example is too involved to be included in this document in tabular
format. Our project repository includes the file hotcrp.xls which can be
used to either view the formulas without a WebSheet repository or to import
the application into one. Below, we describe the purpose of each table and a
high-level overview of the policies applied to their data.

The first table we describe is Committee. This table is readable by all
users and writable only by the program chair. The table simply contains
a list of usernames that make up the program committee. In practice, the
table is used to denote membership to the PC role: although WebSheets
do not have built-in RBAC support, it can be easily implemented through
WF formulas using a table with a list of users and roles. In this case, since
the only role is PC member, we omit the role column; simply putting a
username in the table confers membership to the PC group. If we did not
assume that the chair is the user admin, we could add an isChair column
that specifies whether the username on the same row is the PC chair or a PC
member. In other tables, we check if the user belongs to the role using user

in Committee.member. The chair should fill this table before performing
review assignments (although in practice the PC is already known way ahead
of time).

Secondly, we describe another table that should be filled ahead of time,
Config. This table contains flags to configure the behavior and privacy
settings of the system. pDeadline contains the submission deadline date;
opDeadline can be set to true to override the submission deadline and re-
open WSConf for submissions; rDeadline and orDeadline perform similar
functions for the review deadline. sAnon decides whether submissions should
be anonymous. If set to false, then sAnonOptIn decides whether paper au-
thors can choose whether their submission is anonymous on their own using

WebSheets 121

the anonymous field in their submission; otherwise, all authors are visible to
PC members unless there is a conflict. rAnon and rAnonOptIn perform a
similar function for reviewer anonymity. Note that while paper authors are
unblinded after an acceptance decision has been made, anonymous reviews
remain anonymous. rAssigned controls whether PC members can submit
reviews for papers they have not been assigned on. rGroupThink controls
whether reviews are visible to all PC members (barring conflicts) or if re-
viewers must first submit their own review for a paper before seeing other
reviews. rRating controls whether reviewers can anonymously review other
reviews. Finally, tPriv contains the privileged set of tags that only the chair
can write, such as accept and reject.

The table also contains two cells that work as a trigger: setting finalized

to true sends acceptance decision notifications to all paper authors, while set-
ting assigned to true launches the review assignment procedural function
doAssigned. This function uses the maxReviews and minReviews configura-
tion options to set a review quota for PC members and papers respectively.
The function is called in the cell assignedTrigger. Note that the options
are arranged over multiple columns instead of multiple rows; this is merely
to produce shorter references; a table with name, value columns would also
be expressible.

The Paper table contains one paper submission per row. Authors fill in
the following information: a paper title, a paper abstract, a PDF file and a
list of conflicts. Each author can only see rows from his own submissions, but
the rows are also visible to PC members that do not have conflicts with the
author, except for the author field; this field is only visible to PC members if
a) the paper has been accepted or b) if the submission is not anonymous. If
sAnonOptIn config flag is set to true, then the column anonymous controls
the submission’s anonymity; otherwise, the value of that column is ignored
and the global config value sAnon is used.

Unlike the previous fields, the remaining ones are dynamically evaluated
using data from other tables, mostly to summarize information about the pa-
per to the chair and the PC members in a convenient format: the reviewers

field lists the PC members that have reviewed the paper; the reviews field
shows the merit, expertise pairs of the reviews to summarize the value of
the paper; the tags field pulls information from the Tag table and lists all
the tags associated with the paper, to allow PC members and the chair to
quickly search among them. the accepted field looks for specific tags to see
whether the paper has been already accepted or rejected. Note that unlike

WebSheets 122

other tags, the accept and reject tags are also visible to the paper author;
a label-based system would perform declassification here, thus splitting the
policy for the tags into two different places; WebSheets’ WF assertions allow
developers to put the normal policy and the exception for acceptance tags
together in the Tag table, which we describe later.

The Preference table holds the review preference for a particular table.
This table should be filled in by PC members before review assignments are
made: the assignment script will take these preferences into account when
assigning reviews, and delete them as they are used. Preferences are only
viewable by the chair (who runs the assignment script) and their authors.

Review contains the review for the papers. The reviewer fills in the fol-
lowing information: a merit and an expertise score, a review summary, a field
for comments to the author and a field for comments to other PC members.
The rows can be either created by the automatic assignment script (which
runs with admin privileges), or, if the rAssigned config flag is set to false,
manually added by PC members. The rows are only visible to paper authors
after an acceptance decision is made, except for the author field (if the review
is anonymous) and the PC comments. On the other hand, they are visible to
PC members if a) there are no conflicts and b) either the rGroupThink flag
is set to false, or the PC member has already completed a review for the
same paper. Normally, the assignment script creates a row for each review
assigned, and sets the author and paper fields. Note that reviews assigned
by the chair have the assigned field set to true and cannot be deleted by
the assignee.

The Tag table contains tag assignments, one per row. The Paper table
provides a tags field to allow PC members to view sets of tags directly on
the paper. PC members are free to assign tags to papers; however, a small
subset of tags (specified using the tPriv config flag) are privileged and can
only be set by the chair. The tag system is also used to make an acceptance
decision: once the chair sets the accept or reject tag for a paper and sets
the finalized config flag to true, reviews become visible to authors and the
system sends a notification by mail.

Finally, the RReview table contains the grades for the reviews, entered by
other PC members. Only the chair can see the reviews of other PC members.

Besides the 7 tables, WSConf defines one procedural function that runs
in the JavaScript sandbox, doAssignment. The function performs review
assignments according to the preferences supplied by PC members in the
Preference table, avoiding conflicts and observing a maximum number of

WebSheets 123

// ptitle is the current paper that needs a review

// maxR is the quota of reviews per PC member

{ {member: m, pref: Preference[member ==m && paper == ptitle]}

for m in Committee.member

when Review[author ==m&& paper== ptitle]==[] &&

len(Review[author ==m]) < maxR &&

m not in Paper[title == ptitle].0. conflicts

}

Figure 32: Review Assignment WF formula

assignments per PC member and a minimum number of assignments per pa-
per which are supplied as integer arguments. The script is only 40 lines of
code, thanks to the high- level API offered by the sandbox. In particular, the
sandbox exposes the function er, which combines the eval and redact op-
erations defined in Section 5.3.1 to allow safe evaluation of any WF formula.
For the purpose of assigning reviews, we use er to extract the set of PC
members that a) are not already reviewing the paper, b) have not already
been assigned more than their maximum quota of reviews and c) have no
conflicts. The WF formula is shown in Figure 32.

The application logic and permissions required a total of 54 WF formulas
of varying degrees of complexity. For example, the formula to restrict the
addition of new PC members to the chair is simply user == "admin", while
the formula to decide whether the row for a paper is readable is show in Figure
33: the row is readable if the user is the chair, the author of the review, a
PC member without conflicts with the paper (but if groupthink protection
is enabled, the PC member must have already submitted his review for the
paper) or the user is the author of the paper after the conference has been
finalized and acceptance decision have been sent out. Note that cells can
have additional restrictions: for example, the read permission for the author
of the review imposes further restrictions if the review is anonymous.

An important metric to assess the usability of IFC systems is not only
how readable the policies are, but also how much declassification is used
throughout the system. Declassifying a flow represents an exception to the
policy under specific conditions, and it can complicate reasoning about the
actual policy enforced, since the policy is defined in one place but relaxed in
another9. We argue that compared to traditional IFC labels, data assertions

9Note that this is still preferable to ad-hoc access control, because the exceptions to

WebSheets 124

user == "admin" or

decl(user == author) or

(user in Committee.member and

user not in Paper[title== paper].0. conflicts and

(!Config .0. rGroupThink or

Review[paper == paper&& author ==user&& summary !=""] != [])) or

(Config .0. finalized && user == Paper[title ==paper].0. author)

Figure 33: Read Row Formula for HotCRP Reviews

allow more expressivity, which lead to more exceptions covered by the formula
itself and less declassification. In particular, WSConf only required 2 explicit
declassification calls; both of them are related to the fact that read access to
any of the Review fields is conditional on the current user being the author
of the review, but the author of the review itself is not always visible.

6.2 Covert Channels

Generally speaking, a covert channel is a mechanism that can be used by
an attacker to read sensitive data without being subjected to the system’s
policy. Covert channels are particularly important in DIFC systems because
the main feature of DIFC over traditional access control is the ability to delay
enforcement of the policy, allowing a principal to manipulate data that he
might not readily have access to unless it is subsequently declassified. This
creates a window of opportunity for an attacker to first access sensitive data
and then “launder” said data, shedding the security metadata that DIFC
systems typically tie to the data (e.g. a label in traditional lattice-based
systems, or a dependency in WebSheets) for deferred enforcement of the
policy. There are two conditions that make the threat more realistic:

a) the DIFC system cannot express a policy that require the principal to
have any clearance to read sensitive data; instead, the system merely
updates the security metadata to account for the flow of informa-
tion [87, 18, 145]. In this model, principals can always read sensitive
data, but cannot leak it through direct, explicit flows. Some systems

the main policy are clearly marked by the usage of declassification primitives and can be
inspected carefully for correctness, instead of being implicitly littered around the code
where every flow can express a different policy.

WebSheets 125

support two different secrecy levels for sensitive data — one that al-
lows data to be read but not leaked (deferred enforcement), and one
that does not allow data to be read at all (eager enforcement / access
control) [34, 74, 110]. These systems can at least limit the amount of
information that is vulnerable to covert channels. Otherwise, any piece
of information, no matter how sensitive, can be involved in a covert
channel attack.

b) malicious code is part of the threat model.

Covert channels exist also in systems that do not have a) and b), but each
condition makes the threat less realistic: if a) is false (i.e. the systems al-
lows at least opting-in to eager enforcement), high-confidentiality data can
be put out of reach; if b) is false, then only unintentional side- channels
from benign code remain. Because WebSheets has both properties, mitigat-
ing covert channels is essential. Although we do not attempt to mitigate
timing channels, we describe how we mitigate implicit flows and termination
channels.

• Implicit Flow : an attacker can read a single bit from a secret value
without directly reading it by using the secret value in a control flow
decision. For example, secret == true can be expressed as if secret

then true else false, which avoids referring to secret in either
branch. The traditional fix in procedural languages is to push the
dependencies of the condition to the program counter, and have those
taint all variable writes; in a pure functional language where every-
thing is an expression, it is sufficient to attach the dependencies of the
condition to whichever branch is returned.

However, although the WF language itself does not prescribe side-
effects, its implementation in WebSheets has access to a handful of
functions that can perform effectful computations, such as sending a
mail or invoking a sandboxed script that writes to another cell. For ex-
ample, secret == true can be written as if secret == true then

mail("attacker", "secret is true") else 0. Attaching the de-
pendencies of secret to the return value is not enough, because the
data already left the system through the procedural logic once the re-
sult is returned.

WebSheets 126

To prevent this, the dependencies of the condition must be pushed down
to its branches before the branches are evaluated, so that functions can
check for control flow dependencies. In this example, the mail would
be sent only if secret is readable by the current user. Note that short-
circuiting logical operators must also implement a similar protection,
by pushing dependencies of the left node to its sibling if its evaluation
is required.

• Termination: the attacker can also cause an error that terminates the
evaluation of the current formula, thus reading one bit off a termina-
tion channel. We distinguish two types of errors: exceptions, which are
high-level faults that we catch and display as evaluation errors, and
crashes, low-level faults affecting the underlying runtime that cannot
be mitigated by definition. The former can be exploited using an ex-
pression such as secret or 1+"hello". If secret is true, the result is
redacted, otherwise an error is displayed. To patch this channel, we at-
tach dependencies to exceptions using the same logic for implicit flows
as they unwind the stack; then, censor can use the dependencies to
redact these exceptions, making them indistinguishable from ordinary
values that have been redacted.

Crashes, on the other hand, represent all kinds of software faults that
cannot be caught by the JavaScript runtime. For example, an attacker
could cause the underlying runtime to allocate too much memory and
eventually crash, thus making secret or crash() leak one bit by
checking if the server ever responds to the operation. Although we
could simply claim that the OS, the Node runtime and the WebSheet
implementation are part of the TCB and therefore “crash-proof” for the
purposes of our covert channel analysis, we acknowledge that it would
not be a realistic assumption. Instead, we have devised a simple restric-
tion that mitigates the threat: the user who is creating the new formula
must have read access to all its dependencies. In all the scenarios we
presented, the table owner fullfills the role of the application develo-
per, which by definition has full access to all the application’s data.
A more principled alternative, described in Section 5.2, is to avoid de-
ferred enforcement altogether and implement permission checks using
eager enforcement.

WebSheets 127

6.3 Security of WebSheets

In the introduction we identified five major drawbacks of traditional web
application development, and we introduced WebSheets as a new paradigm
that eliminates or mitigates these problems. In this section, we investigate
to what degree our promise has been fulfilled; we tackle each drawback one
by one and discuss how they are addressed by WebSheets.

• Hard to cover all cases : We claimed that specifying a policy requires
placing the same check many times throughout the codebase, and
that it is easy to forget a single check and cause a vulnerability. Be-
cause WebSheets policies are specified in permission tables and enforced
throughout the repository using Information-Flow Control, WebSheets
successfully save developers from the burden of remembering to add
checks to every single flow of sensitive data.

• Lack of separation of concerns : we claimed that, because security
checks are intermingled with application logic, traditional web appli-
cation development prevented policy developers and application logic
developers from operating on different concerns. In WebSheets, policy
developers maintain permission tables, and application logic developers
maintain value tables and scripts, completely separating their concerns.
The runtime uses Information-Flow Control to weave the two together
into a secure web application.

• Difficult to maintain: we claimed that, when modifying a policy in a
traditional web application, developers have to hunt down and update
all the checks that informally specified the policy. Because WebSheets
policies are specified in permission tables and enforced throughout the
repository, developers only need to update permission tables and can
ignore the information contained in the data tables. Moreover, devel-
opers immediately know where to look for the formula which specifies
the policy for a specific column or cell.

• No least-privilege principle: we claimed that in traditional web appli-
cations the application logic has full access to the data, and must place
checks to prevent unauthorized access; if a check is missing, the dam-
age can be severe. In WebSheets, because Information-Flow Control
is a form of Mandatory Access Control, the evaluation of WF formu-
las is subject to a policy that cannot be circumvented. Every formula

WebSheets 128

is explicitly evaluated under the authority of a specific user, and the
policies contained in the permission tables specify whether each piece of
information can be displayed to said user.

• No formal verification or analysis : we originally claimed that it is
impossible to provide the developer with tools to formally verify the
policy or to check for interesting security properties. Admittedly, this
thesis does not offer improvements on this point. However, a system
where policies are organized and separated from the application logic
is a much better starting point for future work that wants to reason
about its security properties.

Moreover, we discuss how WebSheet mitigate concrete threats. To focus
on relevant, realistic threats, we review the attacks discussed in the latest
OWASP Top 10.

A1 - Injection This broad category includes all vulnerabilities where un-
trusted data is interpreted as code by the web application, such as
SQL Injection, XSS and OS Command Injection. Because WebSheets
enforce fine- grained policies using Mandatory Access Control, injection
attacks are neutralized. Malicious WF formulas are part of our threat
model, and their evaluation cannot circumvent policy checks.

A2 - Broken Authentication and Session Management Includes all
vulnerabilities related to login, password management, sessions, etc.
Because developers often write their own implementation, these are
commonly flawed, containing flaws such as cleartext passwords, login
CSRF, etc. WebSheets centrally implement authentication and session
management, only exposing the current logged-in user to the application
logic. Although this doesn’t guarantee that WebSheet’s implementation
is secure, it saves developers from having to re-implement the authen-
tication logic in their tables, thus sharing a single implementation that
can be subjected to more scrutiny.

A3 - Cross Site Scripting We discussed XSS attacks in Section 2.1. Com-
pared to other injection attacks, which are handled using MAC in the
runtime, a principled XSS defense also needs to ensure that cells cannot
contain JavaScript code, which could then misuse the user’s credentials
to leak informations to other users against the MAC policy. Currently,

WebSheets 129

we simply prevent XSS attacks by preventing HTML special charac-
ters to appear unescaped in cells. If the UI needed to be extended to
support untrusted HTML in cells, the provenance information that is
maintained by the runtime could be used together with one of the hybrid
XSS defenses surveyed in Section 2.7.

A4 - Insecure Direct Object References When the application uses an
input parameter to access an object (e.g. referencing a database row
by ID using a parameter from the URL querystring), it must check
if the current user is authorized to access such object. Because Web-
Sheets enforce the policies defined in permission tables using Mandatory
Access Control, any operation on the repository is subject to the appro-
priate policy, regardless of whether the application developer expected
this particular access to be controlled by untrusted input or not.

A5 - Security Misconfiguration Developers must configure each level of
their application stack correctly before deployment, because default
configuration options might not be appropriate for the current de-
ployment or insecure. The most obvious weakness of this kind is
forgetting to change a default password. Because multiple mutually
untrusted applications can share a single repository, WebSheets appli-
cations can share the same stack, which must be configured only once,
except for higher level application specific configuration options. For
example, WebSheets users who wish to deploy WSConf only need to edit
the Config table to fit their needs, but do not need to setup a web server,
a DBMS, etc.

A6 - Sensitive Data Exposure This weakness relates to the ability of at-
tackers to leak private data from the site, such as credit card num-
bers. The Top 10 authors suggests that encryption should be used
on high-confidentiality data to mitigate these leaks. WebSheets use
Information-Flow Control and fine-grained policies to prevent acciden-
tal leaks. For example, credit card numbers can easily be prevented
from leaking anywhere using a read permission formula such as user

== owner || user == "bank", which clearly states that only the user
who entered the number or the paymeny processor can read the number.
Although encryption could be employed to harden the WebSheet runtime
against implementation bugs, we leave that for future work since we al-
ready have a robust mechanism in place to prevent data leaks.

WebSheets 130

A7 - Missing Function Level Access Control When a URL or a single
input parameter is used to decide what operation should be executed on
the backend (e.g. user.php?action=delete), the application should
check whether the user is authorized to perform the operation. Again,
because we are enforcing policies through Mandatory Access Control, as
long as formulas in permission tables are correct, there is nothing for
developers to forget which can cause a user to read or write anything
other than what is specified in permission tables.

A8 - Cross-Site Request Forgery CSRF attacks were described in Sec-
tion 3. Because the HTML interface and HTTP-level operations are
handled by the underlying runtime, WebSheets do not allow developers
to introduce CSRF vulnerabilities. However, the runtime is not guar-
anteed to be free of CSRF attacks, as it is a traditional web application
from the point of view of an attacker. For this reason, we can deploy
a CSRF defense like jCSRF to secure all applications deployed in the
WebSheet repository.

A9 - Using Components with Known Vulnerabilities When a web
application relies on third party libraries, it can become vulnerable to
their vulnerabilities as well. Therefore, developers must ensure that
their dependencies are up to date. The WebSheet runtime is based on
Node, which can use the nsp tool from the Node Security Project to
ensure its components are up to date and free of vulnerabilities.

A10 - Unvalidated Redirects and Forwards Includes both open redi-
rects (e.g. specify a whole URL as a parameter and redirect the user’s
browser using a 403 response) and internal redirects within the appli-
cation’s web pages. The former can be used to redirect the victim to an
attacker- controlled site, while the latter can be used to direct the user
to a page within the same site, to potentially bypass an access control
check that is present only if the page is accessed directly. WebSheets’s
UI does not have a redirect feature at the moment, so this attack is not
applicable. However, if a redirect feature exists, we note that it could
not bypass any access check because of the usage of Mandatory Access
Control.

WebSheets 131

7 Related Work

WebSheets is a new Web application paradigm based on spreadsheets which
leverages information-flow control to support principled access control for
web applications. Related work comes from all three areas.

7.1 Spreadsheets

VisiCalc [14] introduced spreadsheets in their modern form. Since then,
spreadsheets have enjoyed tremendous commercial popularity. Their main
contribution to modern computing and the reason for their success is that
they enabled non-programmers (accountants, administrators, secretaries, etc)
to enter, process and visualize data in a tabular format [91, 119], effectively
allowing them to create full-fledged data-driven applications. The major tes-
tament to their ease-of-use is that users rarely refer to their spreadsheets as
applications.

More generally, the success of spreadsheets can be traced to a handful of
key features:

• User Interface: while textual programs are developed by editing text
files which operate on abstract data structures, spreadsheets programs
enable users to organize their data visually into concrete rows, columns
and tables.

• Concrete Programming : because spreadsheet formulas can only be used
to calculate a single cell value, the non-programmer is not bogged down
by abstractions: the relationships that make up formulas are always
about cells instead of columns, rows and tables.

• Instant feedback : while textual programs must be restarted (and possi-
bly recompiled) after their code is changed, spreadsheets have update
semantics that only recalculate cells as needed, returning an updated
state almost instantly.

As far as commercial spreadsheets are concerned, the spreadsheet para-
digm has remained the same since the 1970s, and researchers have eloquently
argued their weaknesses[17, 40]:

• Code Duplication: the lack of abstraction mentioned above is mitigated
through generous use of copy and paste. For example, to sum the

WebSheets 132

contents of two columns of size n in a third column, because of the lack
of a map primitive, the formula for C1 =A1+B1 is copied n times all the
way to Cn. When the formula is updated (e.g due to a bug) the user
must find and update all copies manually.

• Brittle References : There are two sources of brittleness. Firstly, most
spreadsheet products handle the aforementioned copy and paste by
interpreting A1 and B1 as relative references, which become Ai and Bi

respectively when copied into the i-th row. Although convenient, the
semantics are confusing to users and are a source of bugs. Secondly,
because tables can share worksheets, the addition of rows and columns
can often move the cell referenced, causing the original formula to refer
to a different cell.

• Formulas and Macros : The formula language is very simplistic, and
many operations can only be achieved using macros (e.g. define a
reusable function). However, macros can only be developed by pro-
grammers, which defeats the purpose of using a spreadsheet for most
users.

WebSheets preserve most of the benefits of the basic spreadsheet model,
while mitigating some of its drawbacks: fixed table schemas with column
names reduce the brittleness of formulas, while the WF language reduces the
need for a general-purpose imperative language for macros.

Although the programming languages community in general has largely
ignored spreadsheets [17], the functional programming community has at-
tempted to improve the spreadsheet paradigm. Functional programmers have
a closer relationship with spreadsheets, mainly because spreadsheet computa-
tion is a form of pure functional computation [119]. The related work in this
area falls roughly into three categories: extension and specialization of the
paradigm for a specific use case (e.g. web scraping), backwards-compatible or
user-friendly improvements that cater to non-programmers (e.g. define func-
tions in excel formulas), and backwards- incompatible improvements that
cater to programmers (e.g. replace Excel’s language with a full-fledged func-
tional language).
Domain-Specific Spreadsheets: This research area is motivated by the
intuition that spreadsheets are an incredibly productive tool, but cannot be
used in specific domains because they lack necessary features. Vegemite [76]
and Reference [72] focus on importing and interacting with web data within

WebSheets 133

the spreadsheet paradigm. The former runs within the browser to closely in-
teract with web pages and offer macro recording capabilities, to avoid repeti-
tive tasks and define web scraping macros, while the latter is an Excel add-on
to import data from a multitude of web services. A1 [48] is a spreadsheet
tool to simplify system administration. Unlike traditional spreadsheets, cells
can contain Java Objects and other cells can invoke these objects to display
the result of a computation. The paper also introduces the concept of events,
making the spreadsheet reactive in the face of updates, timer intervals, etc.
XCelLog [121] introduces Deductive Spreadsheets, which are spreadsheet aug-
mented with a DataLog engine for policy development. With its instant up-
dates and tabular representation, the authors argue that spreadsheets are
especially suited for explorative policy development.
Spreadsheets for Non-Programmers: This research area focuses on im-
proving traditional spreadsheets while maintaining their ease-of-use. Ideally,
the changes should be backwards-compatible and introduced gradually to the
user. Reference [65] introduces reusable functions written in tabular form
into Excel: currently, users must abandon the spreadsheet paradigm and re-
sort to Visual Basic macros to define even the simplest of functions. Tabular
functions use cells for input, output and intermediate computation and allow
the user to define functions completely within the spreadsheet paradigm.
Spreadsheets for Programmers: These works attempt to repackage the
spreadsheet paradigm with programmer-friendly features. Reference [138]
augments Excel with the possibility of calling externally defined Haskell
Functions by communicating with a Haskell interpreter. Reference [27] de-
tails the implementation of a Spreadsheet Engine and UI using the Clean
Language, a lazy functional language. Haxcel [77] presents a Spreadsheet-
like interface for Haskell development. Reference [146] describes Mini-SP,
a language for spreadsheets focused on supporting non- trivial control flow
and message passing among cells. Reference [20] discusses how functional
and object-oriented features can come together in the spreadsheet paradigm.

Overall, none of the papers discussed above are similar to WebSheets,
because they focus on improving spreadsheet usability (for a particular task,
for non-programmers and for programmers respectively), while WebSheets
expand the applicability of the spreadsheet paradigm to an entire new class
of applications, namely web applications.

WebSheets 134

7.2 Information-Flow Control

WebSheets implement a form of Language-Based, Runtime, Fine-Grained,
Decentralized Information-Flow Control (DIFC) [89] to enforce confidential-
ity.

In centralized IFC, a single administrator assigns security labels to re-
sources and users and a trusted runtime ensures that data flows are only
permitted if they conform to the “no read up, no write down” policy of
the Bell-LaPadula model [29, 8]. In the decentralized alternative, users can
(a) create and assign new labels to data, (b) declassify data that they own
themselves and, in some later implementations, (c) grant declassification ca-
pabilities for their data to other users. Although centralized IFC has been
successfully applied in the context of military systems [12], recent research
work has favored the decentralized approach because of its increased flexib-
lity.

OS-Level IFC [34, 147, 74] provides broader applicability and stronger iso-
lation guarantees than language-based IFC, especially in the face of malicious
code that tries to circumvent enforcement because of the smaller TCB. The
main drawback of OS-Level IFC is that labels are typically assigned at the
granularity of OS processes or threads, which is fairly coarse-grained for most
purposes [110]: in traditional applications OS processes and threads handle
data from multiple incompatible sources, and the effect of coarse-grained la-
belling is that they quickly become tainted with incompatible labels (e.g. an
OS process reads sensitive data both for user A and user B, and now cannot
communicate with either user), and the application must be rearchitected to
work around this limitation (e.g. fork one OS process per user).

Language-Based IFC supports finer-grained assignment of labels, which
permits applications to handle different kinds of sensitive data within the
same component, as long as the application logic does not actually combine
them in an unsafe way. In other words, coarse-grained labelling greatly
overapproximates the amount of dangerous flows: if a process reads sensitive
data, the enforcement mechanism assumes that the process is actively trying
to leak the data into files, over the network, to other processes, etc, at any
chance it gets; on the other hand, with fine-grained labelling the enforcement
mechanism assumes an ongoing leak in a complete yet reasonably sound
subset of flows.

While early work focused on enforcing secure data flows using static anal-
ysis [30, 89, 87, 19, 112], modern dynamic languages that are popular for

WebSheets 135

web application development, such as JavaScript, Ruby or Python, are not
amenable to precise static flow-to analysis (although simplified subsets can
be, e.g. JavaScriptSAFE [46]). Therefore, fine-grained propagation of la-
bels in language-based IFC is done at runtime, i.e. using dynamic taint-
tracking [2, 145, 137]. Unfortunately, dynamic taint-tracking has its own
shortcomings, such as runtime overhead and the inability to easily deal with
covert channels such as implicit flows and termination channels.

Instead of decentralizing the management of labels, WebSheets decentral-
ize their interpretation: in traditional lattice-based systems, a set of labels
objectively specifies the policy, that is, the effective set of users that can
eventually have access to the information; users add and remove their own
labels to modify the effective policy. This approach results in scattered man-
agement of labels throughout the application’s components; Reference [33]
describes the issues in defining a decentralized policy in a lattice-based sys-
tem and leverages an existing lattice-based system by providing a higher-level
policy language to define centralized policies that translate to lower-level la-
bel assignments. Conversely, in WebSheets the set of labels associated with
a piece of data merely specifies its provenance; users do not attach or remove
labels, bur rather write assertions in permission tables to modify the set of
end users that are allowed to view a value with a specific provenance.

In this sense, WebSheets are more similar to Resin [145], which also allows
developers to write data-flow assertions in the same language as the appli-
cation logic. Unlike WebSheets, however, Resin does not implicitly assign
a policy to each piece of data; it requires manual configuration and assign-
ment of policy objects and filters. Policy objects are attached to data; Resin
modifies the runtime to propagate policy objects along with data; when data
with a policy objects passes through a filter (e.g. HTML output), the fil-
ter and the policy object work together to perform a policy check. As a
reference implementation, Resin provides modified PHP and Python inter-
preters; SAFEWEB [56] exploits the dynamic nature of Ruby to add trans-
parent propagation of labels to the unmodified interpreter using a library
loaded at runtime. Hails [42] relies on Safe Haskell, a minimally restrictive
subset of Haskell, to implement IFC at the granularity of threads using a
library. Jeeves [144] presents a policy language and an enforcement library
for Scala, leveraging its lazy evaluation semantics to automatically propagate
unresolved policy checks to outputs, which are then resolved as needed.

Unlike WebSheets and Resin, Jeeves’s policy language supports explicitly
specifying a low-confidentiality view for sensitive data to support use cases

WebSheets 136

where unauthorized users can still benefit from controlled disclosure (e.g.
current City instead of the exact GPS coordinates). This feature can be con-
sidered as a form of limited declassification, which can conveniently replace
full- fledged declassification in some scenarios, thus simplifying reasoning
about the policy enforced by the system. Other language-based solutions
use traditional DIFC labeling: despite operating in the JVM, Aeolus [18] en-
forces DIFC at the thread granularity. Similarly, Reference [98] is language-
based but implements coarse-grained IFC by leveraging Erlang’s lightweight
threads: when two threads communicate through message-passing, the run-
time verifies that their labels are compatible. Note that these works do
not address the problem of storing labels in persistent storage: IFDB [116]
discusses how to interface a DIFC lattice-based system like Aeolus with a
special DBMS that stores labels at the tuple-level, propagating them back
to the client accordingly. There are other DBMS that support IFC; however,
they are based on the centralized MLS model (in particular, on the model
formalized by the SeaView project [79]). Several commercial DBMSs (e.g.
Oracle, DB2, PostgreSQL) support labels for MLS.

One drawback of IFC over traditional access control is that malicious
code can exploit covert channels to extract sensitive information: to support
declassification at a later point, IFC systems must allow malicious code to
read a piece of data in violation of the policy specified by its label. Although
IFC prevents explicit leaks, this creates the opportunity for the attacker to
leak the piece of data through a covert channel (e.g. a termination chan-
nel). Several works minimize the attack surface by leveraging the concept of
clearance [34, 147, 74, 110], an eagerly enforced upper bound on the secrecy
of the execution context, effectively blending in eager enforcement of a more
relaxed policy and deferred enforcement of a more flexible, yet stricter IFC
policy that uses declassification to account for exceptions. Other works at-
tempt to control these covert channels; Reference [123] mitigates timing and
termination channels in multithreaded systems by making the observation of
their temporal behavior a sensitive operation that forces the observer to in-
herit the secrecy label of the observed thread. Other works simply apply IFC
to a threat model where the main concern is developer error, not malicious
code.

Figure 34 summarizes related IFC works along the design choices we
described. The DLM and DC label models have already been described
in Section 5.2. They are both models where the readers for a label are
named explicitly. On the other hand, the tag model abstracts away the

WebSheets 137

Name Enforcement Granularity Labels Clearance Implementation
Asbestors OS Process ? Yes New OS
Histar OS Thread ? Yes New OS
Flume OS Process Tags Yes Linux LSM
Laminar Both Security Region Tags Yes Linux LSM + JVM
Jif Language Variable DLM No Compiler + JVM
Aeolus Language Thread Tags No JVM
Reference [98] Language Green Thread Tags Yes Message Passing
Resin Language Variable PHP Code No PHP Taint-Tracking
SAFEWEB Language Variable Tags Yes Ruby Taint-Tracking
Hails Language Thread DC Yes LIO Library
WebSheets Language Cell WF Formula No Cell Provenance Tracking

Figure 34: Organization of IFC solutions

concept of readers, making the label itself simply a unique identifier with
no implicit meaning: for each tag t, its creator must explicitly grant other
users permission to declassify and remove the tag (sometimes noted as t−)
and, if clearance is supported, permission to add the label t (also noted as
t+) and allow the flow of information with tag t. The ? model has similar
capabilities, despite having abstractions and semantics more similar to the
DLM model. Reference [86] compares the expressive power of tags, ?, DLM
and DC label models.

7.3 Principled Security in Web Applications

IFC is a powerful, yet heavyweight approach to principled security. It re-
quires extensive modifications to the type system and the compiler (static
language-based IFC), the underlying runtime (runtime language-based IFC)
or the OS (OS-Based IFC). Web applications currently implement their se-
curity policies using scattered checks, so even traditional access control, if
applied judiciously with the intent of separating application logic and secu-
rity policies, can represent an improvement over the status quo. In particular,
centralizing the specification of the security policy and applying the least-
privilege principle to web application components can reduce the number of
vulnerabilities, simplifying reasoning about the policy and limit the damage
if a vulnerability is exploited.

Reference [128] presents a Trust Management system that supports decen-
tralized access control policies and protects DBMS data directly within the
DBMS by extending SQL with attribute-based GRANT statements. These
statements can provide more expressive access control policies compared to

WebSheets 138

traditional SQL GRANT statements, because instead of applying to an ex-
plicit set of users, they can apply to a subset of users based on their attributes
(e.g. whether they have been endorsed by a third-party to assume a specific
role). Also, unlike traditional GRANT statements, the privileges are ex-
tended to new users or revoked from existing users as their user attributes
are updated. Thus, the system implements a form of Attribute-Based Access
Control (ABAC) that is limited to user attributes; WebSheets implement a
more expressive version of ABAC that can predicate on the current user, the
current cell, or any other cell in the repository. For example, our HotCRP
implementation from Section 6.1.1 mandated that users can read the review
for a paper under three conditions: (a) they are members of the PC group,
and (b) either they are reviewers for the paper and they have already sub-
mitted a review themselves or they are not reviewers and they don’t have a
conflict with the author. RBAC can only express condition a), while Ref-
erence [128]’s form of ABAC can only enforce b) and c) using a hack, by
polluting the users’ attribute sets with object-related attributes.

GuardRails [15] proposes data-centric policy enforcement for Ruby On
Rails (RoR), a popular MVC Web Application Framework: it provides a
source- to-source translator to parse policy annotations and add policy checks
throughout the web application code whenever data is fetched from the
database. Since in RoR the database is always accessed through an ORM,
GuardRails replaces the ORM objects at runtime with proxies that enforce
the appropriate policy. However, applying these policies at the framework
level does not protect against malicious code that has been loaded by a vul-
nerable or an untrusted application, because the runtime still runs with full
privileges. Therefore, researchers have also developed systems that parti-
tion the web application into components and restrict the privilege of each
component.

Least privilege can be seen as a static version of coarse-grained IFC: in
IFC, components start with full privileges and drop privileges to consume
labelled data, while in least-privilege isolation components start with a fixed
set of limited privileges. CLAMP [100] is a modification to the traditional
LAMP stack that enforces strong isolation between users, to limit the damage
from not only missing checks, but also malicious code. Least- privilege is
enforced for the whole web server using virtualization: each user is served by
a dedicated server that is created on demand, and a SQL proxy restricts the
amount of information available to each user.

A more lightweight approach compared to virtualization is to leverage

WebSheets 139

an object-capability language [85], so that the runtime does not need to be
modified to enforce least-privilege policies. In an object-capability language,
the language semantics prevent untrusted code from referencing anything
but a limited set of objects that have been explicitly provided, which can
encapsulate access to privileged resources. Capsules [73] uses the Joe-E lan-
guage [83], a capability-safe subset of Java, to restrict the privilege of J2EE
Servlets. Given the recent advancements on the client-side in making Java-
Script capability-safe [81, 84, 1, 135], a similar approach could also be applied
to an existing server-side JavaScript framework.

Another lightweight approach is to run the components in different pro-
cesses and use existing OS mechanisms for process isolation. For example,
Passe [11] partitions web applications written in the Django framework into
components isolated using AppArmor. Passe also features a training mecha-
nism that uses IFC to automatically infer a minimal set of privileges for each
component, enforcing them without IFC in enforcement mode. Note that
while CLAMP restricts access based on the current user, Passe partitions
the web application into modules and uses the current user and the current
module to make access control decisions, thus performing data separation [36]
along with traditional user-based access control.

8 Conclusions

While the awareness about web application vulnerabilities has increased in
the past decade, these continue to plague applications. Many of these vulner-
abilites share the same root cause: the security policy of the web application
is implemented using ad-hoc checks scattered throughout their codebase; this
is paired with a reactive approach to security: vulnerabilities are adressed and
fixed after they are found (and possibly exploited with severe consequences)
and reported.

In this dissertation, we have shown two approaches to securing web appli-
cations: in Part I, we focused on popular vulnerabilities that can be mitigated
without developer involvement, and we described two defenses against XSS
and CSRF attacks. In Part II, we devised a new web application development
paradigm where security policies are clearly separated from the application
logic, and where users retain control of their data.

We have shown that both approaches are valid and provide a tangible
benefit in terms of security. The first approach is more useful for legacy

WebSheets 140

applications or to provide security-unaware developers with some degree of
protection. On the other hand, the second approach provides broader guar-
antees and leads to cleaner, more streamlined web applications whose policies
can be more easily specified, maintained and audited.

References

[1] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and
F. Piessens. Jsand: complete client-side sandboxing of third-party ja-
vascript without browser modifications. In ACSAC 2012.

[2] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. ACM Sigplan Notices, 44(8), 2009.

[3] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In IEEE S&P
2008.

[4] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in Web applications. In IEEE S&P,
2008.

[5] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. Venkatakrishnan.
CANDID: preventing sql injection attacks using dynamic candidate
evaluations. In Proceedings of the 14th ACM conference on Computer
and communications security, pages 12–24. ACM, 2007.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for Cross-
Site Request Forgery. In CCS, 2008.

[7] D. Bates, A. Barth, and C. Jackson. Regular Expressions Considered
Harmful in Client-Side XSS Filters. In WWW, 2010.

[8] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical
foundations. Technical report, DTIC Document, 1973.

[9] K. J. Biba. Integrity considerations for secure computer systems. Tech-
nical report, DTIC Document, 1977.

[10] P. Bisht and V. Venkatakrishnan. XSS-Guard: Precise Dynamic De-
tection of Cross-Site Scripting Attacks. Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 23–43, 2008.

[11] A. Blankstein and M. J. Freedman. Automating isolation and least
privilege in web services. In IEEE S&P 2014.

[12] S. L. Brand. Dod 5200.28-std department of defense trusted computer
system evaluation criteria (orange book). National Computer Security
Center, 1985.

[13] K. Brandeisky. What to do if your social security number was
leaked. http://time.com/money/3620100/sylvester-stallone-
social-security-number/.

[14] D. Bricklin. VisiCalc: Information from its creators. http://

www.bricklin.com/visicalc.htm, 2014.

[15] J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans.
Guardrails: a data-centric web application security framework. In
USENIX WebApps, 2011.

[16] Y. Cao, V. Yegneswaran, P. A. Porras, and Y. Chen. Pathcutter:
Severing the self-propagation path of xss javascript worms in social
web networks. In NDSS 2012.

[17] R. J. Casimir. Real programmers don’t use spreadsheets. ACM SIG-
PLAN ’92.

[18] W. Cheng, D. R. Ports, D. A. Schultz, V. Popic, A. Blankstein, J. A.
Cowling, D. Curtis, L. Shrira, and B. Liskov. Abstractions for usable
information flow control in aeolus. In USENIX ATC, 2012.

[19] S. Chong, K. Vikram, A. C. Myers, et al. Sif: Enforcing confidentiality
and integrity in web applications. In USENIX Security 2007.

[20] C. Clack and L. Braine. Object-oriented functional spreadsheets. In
Glasgow Workshop on Functional Programming, 1997.

[21] CVE Editorial Board. CVE-2007-3574. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2007-3574, 2007.

[22] CVE Editorial Board. CVE-2009-2073. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2009-2073, 2009.

[23] CVE Editorial Board. CVE-2009-4076. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2009-4076, 2009.

http://time.com/money/3620100/sylvester-stallone-social-security-number/
http://time.com/money/3620100/sylvester-stallone-social-security-number/
http://www.bricklin.com/visicalc.htm
http://www.bricklin.com/visicalc.htm
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-3574
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-3574
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2073
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-2073
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4076
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4076

[24] CVE Editorial Board. CVE-2009-4906. http://web.nvd.nist.gov/
view/vuln/detail?vulnId=CVE-2009-4906, 2009.

[25] CVE Editorial Board. CVE-2010-1482. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-1482, 2010.

[26] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens. Flowfox:
a web browser with flexible and precise information flow control. In
ACM CCS 2012, 2012.

[27] W. A. De Hoon, L. M. Rutten, and M. C. D. van Eekelen. Implementing
a functional spreadsheet in clean. Journal of Functional Programming,
1995.

[28] P. De Ryck, L. Desmet, T. Heyman, F. Piessens, and W. Joosen. Cs-
Fire: Transparent client-side mitigation of malicious cross-domain re-
quests. In ESSOS, 2010.

[29] D. E. Denning. A lattice model of secure information flow. Communi-
cations of the ACM, 19(5), 1976.

[30] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7), 1977.

[31] Department of Homeland Security. Common Vulnerabilities and Ex-
posures. http://cve.mitre.org/.

[32] Django Software Foundation. Django URL Dispatcher. http://

docs.djangoproject.com/en/1.1/topics/http/urls/.

[33] P. Efstathopoulos and E. Kohler. Manageable fine-grained information
flow.

[34] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris. Labels and event
processes in the asbestos operating system. In SIGOPS 2005.

[35] EllisLab Inc. Code Igniter. http://codeigniter.com/, 2002.

[36] A. P. Felt, M. Finifter, J. Weinberger, and D. Wagner. Diesel: Applying
Privilege Separation to Database Access. In ACM AsiaCCS 2011.

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4906
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-4906
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1482
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1482
http://docs.djangoproject.com/en/1.1/topics/http/urls/
http://docs.djangoproject.com/en/1.1/topics/http/urls/
http://codeigniter.com/

[37] K. Fernandez and DP. XSSed. http://xssed.com/.

[38] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. http:

//www.ietf.org/rfc/rfc2616.txt, 1999.

[39] J. Finkle and D. Volz. Database of 191 million u.s. voters exposed on
internet. http://uk.reuters.com/article/us-usa-voters-breach-
idUKKBN0UB1E020151229.

[40] C. H. Q. Forster. Programming through spreadsheets and tabular ab-
stractions. J. UCS, 2007.

[41] J. Fraser. Backwards compatible window.postMessage(). http:

//www.onlineaspect.com/2010/01/15/backwards-compatible-
postmessage/, 2010.

[42] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazieres, J. C. Mitchell,
and A. Russo. Hails: Protecting data privacy in untrusted web appli-
cations. In OSDI, 2012.

[43] Giorgio Maone. NoScript. http://noscript.net/.

[44] D. Goodin. How a website flaw turned 22,000 visitors into a botnet of
ddos zombies. http://arstechnica.com/security/2014/04/how-a-
website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-

zombies/.

[45] T. P. Group. Php: Prepared statements and stored procedures. http:
//php.net/manual/it/pdo.prepared-statements.php.

[46] S. Guarnieri and V. B. Livshits. GATEKEEPER: Mostly static en-
forcement of security and reliability policies for javascript code. In
USENIX Security 2009.

[47] F. Guisset. JavaScript-DOM Prototypes in Mozilla. https://

developer.mozilla.org/en/JavaScript-DOMPrototypesinMozilla,
2002.

[48] E. M. Haber, E. Kandogan, A. Cypher, P. P. Maglio, and R. Barrett.
A1: Spreadsheet-based scripting for developing web tools. In LISA,
2005.

http://xssed.com/
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://uk.reuters.com/article/us-usa-voters-breach-idUKKBN0UB1E020151229
http://uk.reuters.com/article/us-usa-voters-breach-idUKKBN0UB1E020151229
http://www.onlineaspect.com/2010/01/15/backwards-compatible-postmessage/
http://www.onlineaspect.com/2010/01/15/backwards-compatible-postmessage/
http://www.onlineaspect.com/2010/01/15/backwards-compatible-postmessage/
http://noscript.net/
http://arstechnica.com/security/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
http://arstechnica.com/security/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
http://arstechnica.com/security/2014/04/how-a-website-flaw-turned-22000-visitors-into-a-botnet-of-ddos-zombies/
http://php.net/manual/it/pdo.prepared-statements.php
http://php.net/manual/it/pdo.prepared-statements.php
https://developer.mozilla.org/en/JavaScript-DOM_Prototypes_in_Mozilla
https://developer.mozilla.org/en/JavaScript-DOM_Prototypes_in_Mozilla

[49] W. G. Halfond and A. Orso. Amnesia: analysis and monitoring for
neutralizing sql-injection attacks. In ACM ASE 2005.

[50] R. Hansen. XSS Cheat Sheet. http://ha.ckers.org/xss.html.

[51] D. H. Hansson. Ruby on Rails. http://rubyonrails.org, 2011.

[52] N. Hardy. The Confused Deputy: (or why capabilities might have been
invented). ACM SIGOPS Operating Systems Review, 22(4):36–38, Oct.
1988.

[53] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and J. Schwenk.
Scriptless attacks: stealing the pie without touching the sill. In ACM
CCS 2012.

[54] M. Heiderich, J. Schwenk, T. Frosch, J. Magazinius, and E. Z. Yang.
mxss attacks: Attacking well-secured web-applications by using inner-
html mutations. In ACM CCS 2013.

[55] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. Fast
and precise sanitizer analysis with bek. In USENIX Security 2011.

[56] P. Hosek, M. Migliavacca, I. Papagiannis, D. M. Eyers, D. Evans,
B. Shand, J. Bacon, and P. Pietzuch. Safeweb: A middleware for
securing ruby-based web applications. In Proceedings of the 12th In-
ternational Middleware Conference, 2011.

[57] A. Inc. Learn more about the cyber attack against anthem. https:

//www.anthemfacts.com/faq.

[58] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi. A proposal and
implementation of automatic detection/collection system for cross-site
scripting vulnerability. In Proceedings of the 18th International Confer-
ence on Advanced Information Networking and Application (AINA04),
2004.

[59] K. Jayaraman, G. Lewandowski, P. Talaga, and S. Chapin. Enforcing
Request Integrity in Web Applications. Data and Applications Security
and Privacy, 2010.

[60] Jeremias Reith. NoXSS. https://addons.mozilla.org/en-US/
firefox/addon/noxss/.

http://ha.ckers.org/xss.html
http://rubyonrails.org
https://www.anthemfacts.com/faq
https://www.anthemfacts.com/faq
https://addons.mozilla.org/en-US/firefox/addon/noxss/
https://addons.mozilla.org/en-US/firefox/addon/noxss/

[61] Jesse Ruderman. Heuristics to block reflected XSS (like in IE8). https:
//bugzilla.mozilla.org/showbug.cgi?id=528661, 2009.

[62] T. Jim, N. Swamy, and M. Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In WWW. ACM, 2007.

[63] M. Johns, B. Engelmann, and J. Posegga. XSSDS: Server-side Detec-
tion of Cross-site Scripting Attacks. In ACSAC, 2008.

[64] M. Johns and J. Winter. RequestRodeo : Client Side Protection against
Session Riding. In OWASP Europe, 2006.

[65] S. P. Jones, A. Blackwell, and M. Burnett. A user-centred approach to
functions in excel. In ACM SIGPLAN, 2003.

[66] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request
forgery attacks. In Securecomm, 2007.

[67] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool
for detecting web application vulnerabilities. In IEEE S&P 2006.

[68] T. Kim, R. Chandra, and N. Zeldovich. Efficient patch-based auditing
for web application vulnerabilities. In OSDI 2012.

[69] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A client-
side solution for mitigating cross-site scripting attacks. In Proceedings
of the 2006 ACM symposium on Applied computing, page 337. ACM,
2006.

[70] E. Kohler. Hot Crap! In WOWCS 2008.

[71] E. Kohler. Hotcrp conference management software. http://

read.seas.harvard.edu/~kohler/hotcrp/index.html, 2016.

[72] W. Kongdenfha, B. Benatallah, J. Vayssière, R. Saint-Paul, and
F. Casati. Rapid development of spreadsheet-based web mashups. In
WWW ’09.

[73] A. Krishnamurthy, A. Mettler, and D. Wagner. Fine-grained privilege
separation for web applications. In ACM WWW 2010.

https://bugzilla.mozilla.org/show_bug.cgi?id=528661
https://bugzilla.mozilla.org/show_bug.cgi?id=528661
http://read.seas.harvard.edu/~kohler/hotcrp/index.html
http://read.seas.harvard.edu/~kohler/hotcrp/index.html

[74] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information flow control for standard os abstractions.
In SIGOPS 2007.

[75] S. Lekies, B. Stock, and M. Johns. 25 million flows later: large-scale
detection of dom-based xss. In ACM CCS 2013.

[76] J. Lin, J. Wong, J. Nichols, A. Cypher, and T. A. Lau. End-user
programming of mashups with vegemite. In International conference
on Intelligent user interfaces. ACM, 2009.

[77] B. Lisper and J. Malmström. Haxcel: A spreadsheet interface to
haskell. In Workshop on the Implementation of Functional Languages,
2002.

[78] M. Louw and V. Venkatakrishnan. Blueprint: Robust prevention of
cross-site scripting attacks for existing browsers. In IEEE S&P, 2009.

[79] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R.
Shockley. The seaview security model. IEEE Transactions on Software
Engineering, 1990.

[80] W. Maes, T. Heyman, L. Desmet, and W. Joosen. Browser protection
against cross-site request forgery. In SecuCode, 2009.

[81] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and isolation
of untrusted web applications. In IEEE S&P 2010.

[82] M.C. Straver. The PaleMoon project homepage. https://

www.palemoon.org/, 2016.

[83] A. Mettler, D. Wagner, and T. Close. Joe-e: A security-oriented subset
of java. In NDSS 2010.

[84] M. S. Miller et al. Secure ecmascript 5. http://code.google.com/p/
es-lab/wiki/SecureEcmaScript, 2011.

[85] M. S. Miller and J. S. Shapiro. Robust composition: towards a unified
approach to access control and concurrency control. 2006.

[86] B. Montagu, B. C. Pierce, and R. Pollack. A theory of information-flow
labels. In CSF 2013.

https://www.palemoon.org/
https://www.palemoon.org/
http://code. google. com/p/es-lab/wiki/SecureEcmaScript
http://code. google. com/p/es-lab/wiki/SecureEcmaScript

[87] A. C. Myers. Jflow: Practical mostly-static information flow control.
In POPL 1999.

[88] A. C. Myers. Mostly-static decentralized information flow control. PhD
thesis, MIT, 1999.

[89] A. C. Myers and B. Liskov. A decentralized model for information flow
control. In SOSP 1997.

[90] Y. Nadji, P. Saxena, and D. Song. Document structure integrity: A
robust basis for cross-site scripting defense. In NDSS, 2009.

[91] B. A. Nardi and J. R. Miller. The spreadsheet interface: A basis for
end user programming. Hewlett-Packard Laboratories, 1990.

[92] E. V. Nava and D. Lindsay. Our favorite xss filters/ids and how to
attack them. Black Hat USA 2009.

[93] E. V. Nava and D. Lindsay. Universal xss via ie8’s xss filters. Black
Hat Europe 2010.

[94] Nick Nikiforakis. Bypassing Chrome’s XSS Filter. http://

blog.securitee.org/?p=37, 2011.

[95] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and W. Joosen. Ses-
sionshield: Lightweight protection against session hijacking. In ESSOS
2011.

[96] T. Oda, G. Wurster, P. van Oorschot, and A. Somayaji. SOMA: Mutual
approval for included content in web pages. In CCS, 2008.

[97] J. Pagliery. Opm hack’s unprecedented haul: 1.1 million finger-
prints. http://money.cnn.com/2015/07/10/technology/opm-hack-
fingerprints/.

[98] I. Papagiannis, M. Migliavacca, D. M. Eyers, B. Shand, J. Bacon, and
P. Pietzuch. Enforcing user privacy in web applications using erlang.
W2SP, Oakland, CA, 2010.

[99] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang, A. Sadhu, and
P. Saxena. Auto-patching dom-based xss at scale. Foundations of
Software Engineering (FSE) 2015.

http://blog.securitee.org/?p=37
http://blog.securitee.org/?p=37
http://money.cnn.com/2015/07/10/technology/opm-hack-fingerprints/
http://money.cnn.com/2015/07/10/technology/opm-hack-fingerprints/

[100] B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Per-
rig. Clamp: Practical prevention of large-scale data leaks. In IEEE
S&P, 2009.

[101] Paul Mutton. Italian Bank’s XSS Opportunity Seized by
Fraudsters. http://news.netcraft.com/archives/2008/01/08/
italianbanksxssopportunityseizedbyfraudsters.html.

[102] R. Pelizzi. WebSheets – Source Code. https://github.com/
BruceBerry/websheets, 2016.

[103] R. Pelizzi. Websheets docker image. https://hub.docker.com/r/
rpelizzi/websheets/, 2016.

[104] R. Pelizzi and R. Sekar. Protection, usability and improvements in
reflected xss filters. In ASIACCS, 2012.

[105] R. Pelizzi, T. Tran, and A. Saberi. Large-Scale, Automated XSS De-
tection using Google Dorks. http://www.cs.sunysb.edu/~rpelizzi/
gdorktr.pdf, 2011.

[106] Pylons. Pylons Project. http://pylonsproject.org/, 2011.

[107] Riccardo Pelizzi and R. Sekar. XSSFilt: an XSS Filter for Firefox.
http://www.seclab.cs.sunysb.edu/seclab/xssfilt/, 2012.

[108] D. Ross. IE 8 XSS Filter Architecture/Implementation.
http://blogs.technet.com/srd/archive/2008/08/19/ie-8-xss-
filter-architecture-implementation.aspx.

[109] RoundCube.net. RoundCube - Free Webmail for the Masses. http:

//roundcube.net/, 2010.

[110] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel.
Laminar: practical fine-grained decentralized information flow control.
In PLDI 2009.

[111] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame
busting: A study of clickjacking vulnerabilities on popular sites. In 4th
Workshop in Web, volume 2.

http://news.netcraft.com/archives/2008/01/08/italian_banks_xss_opportunity_seized_by_fraudsters.html
http://news.netcraft.com/archives/2008/01/08/italian_banks_xss_opportunity_seized_by_fraudsters.html
https://github.com/BruceBerry/websheets
https://github.com/BruceBerry/websheets
https://hub.docker.com/r/rpelizzi/websheets/
https://hub.docker.com/r/rpelizzi/websheets/
http://www.cs.sunysb.edu/~rpelizzi/gdorktr.pdf
http://www.cs.sunysb.edu/~rpelizzi/gdorktr.pdf
http://pylonsproject.org/
http://www.seclab.cs.sunysb.edu/seclab/xssfilt/
http://blogs.technet.com/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://blogs.technet.com/srd/archive/2008/08/19/ie-8-xss-filter-architecture-implementation.aspx
http://roundcube.net/
http://roundcube.net/

[112] A. Sabelfeld and A. C. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1), 2003.

[113] J. H. Saltzer and M. D. Schroeder. The Protection of Information in
Computer Systems. In SOSP. ACM, 1974.

[114] P. Saxena, S. Hanna, P. Poosankam, and D. Song. Flax: Systematic
discovery of client-side validation vulnerabilities in rich web applica-
tions. In NDSS 2010.

[115] P. Saxena, D. Molnar, and B. Livshits. Scriptgard: automatic context-
sensitive sanitization for large-scale legacy web applications. In ACM
CCS 2011.

[116] D. Schultz and B. Liskov. Ifdb: decentralized information flow control
for databases. In EuroSys 2013.

[117] R. B. Security. Data breach quickview 2015 data breach trends. https:
//www.riskbasedsecurity.com/2015-data-breach-quickview/.

[118] R. Sekar. An efficient black-box technique for defeating web application
attacks. In NDSS, 2009.

[119] P. Sestoft. Implementing function spreadsheets. In ACM Workshop on
End-user software engineering, 2008.

[120] E. Sheridan. OWASP: CSRFGuard Project. https://www.owasp.org/
index.php/Category:OWASPCSRFGuardProject, 2011.

[121] A. Singh, C. Ramakrishnan, I. Ramakrishnan, S. D. Stoller, and D. S.
Warren. Security policy analysis using deductive spreadsheets. In Pro-
ceedings of the 2007 ACM workshop on Formal methods in security
engineering, pages 42–50. ACM, 2007.

[122] S. Stamm, B. Sterne, and G. Markham. Reining in the web with
content security policy. In WWW, 2010.

[123] D. Stefan, A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and
D. Maziéres. Addressing covert termination and timing channels in
concurrent information flow systems. In ACM ICFP 2012.

https://www.riskbasedsecurity.com/2015-data-breach-quickview/
https://www.riskbasedsecurity.com/2015-data-breach-quickview/
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

[124] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction
category labels. In Information Security Technology for Applications.
2011.

[125] Stefano Di Paola. DOM XSS Test Cases Wiki Cheatsheet Project.
https://code.google.com/p/domxsswiki/, 2013.

[126] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns. Precise client-
side protection against dom-based cross-site scripting. In USENIX
Security 2014.

[127] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns. From facepalm
to brain bender: Exploring client-side cross-site scripting. In ACM CCS
2015.

[128] S. D. Stoller. Trust management and trust negotiation in an extension
of SQL. In TGC 2008.

[129] Z. Su and G. Wassermann. The essence of command injection attacks
in web applications. In POPL, 2006.

[130] S. Technology. Csrf archives - routercheck. http://

www.routercheck.com/category/router-vulnerability/csrf/.

[131] The jQuery Project. .live() - jQuery API. http://api.jquery.com/
live/, 2011.

[132] The MITRE Corporation. 2011 CWE/SANS Top 25 Most Dangerous
Programming Errors. http://cwe.mitre.org/top25/.

[133] The Open Web Application Security Project (OWASP). OWASP
Top Ten Project. http://www.owasp.org/index.php/Category:
OWASPTopTenProject, 2010.

[134] Tim Tomes. DOM-based Cross-Site Scripting, Revisited. http://

www.lanmaster53.com/2014/03/dom-based-xss-revisited/, 2014.

[135] T. Tran, R. Pelizzi, and R. Sekar. Jate: Transparent and efficient
javascript confinement. In ACSAC 2015, 2015.

https://code.google.com/p/domxsswiki/
http://www.routercheck.com/category/router-vulnerability/csrf/
http://www.routercheck.com/category/router-vulnerability/csrf/
http://api.jquery.com/live/
http://api.jquery.com/live/
http://cwe.mitre.org/top25/
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.lanmaster53.com/2014/03/dom-based-xss-revisited/
http://www.lanmaster53.com/2014/03/dom-based-xss-revisited/

[136] M. Van Gundy and H. Chen. Noncespaces: Using randomization to en-
force information flow tracking and thwart cross-site scripting attacks.
In NDSS, 2009.

[137] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross-site scripting prevention with dynamic data tainting and
static analysis. In NDSS, 2007.

[138] D. Wakeling. Spreadsheet functional programming. Journal of Func-
tional Programming, 2007.

[139] P. Waktinks. Cross-Site Request Forgeries (Re: The Dangers of Allow-
ing Users to Post Images). http://www.tux.org/~peterw/csrf.txt,
2001.

[140] M. Weissbacher, T. Lauinger, and W. Robertson. Why is csp failing?
trends and challenges in csp adoption. In RAID 2014.

[141] M. Weissbacher, W. Robertson, E. Kirda, C. Kruegel, and G. Vigna.
Zigzag: automatically hardening web applications against client-side
validation vulnerabilities. In USENIX Security 2015.

[142] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In 15th USENIX
Security Symposium, pages 121–136, 2006.

[143] E. Z. Yang. CSRFMagic. http://csrf.htmlpurifier.org/, 2008.

[144] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automat-
ically enforcing privacy policies.

[145] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving ap-
plication security with data flow assertions. In ACM SIGOPS, 2009.

[146] A. G. Yoder and D. L. Cohn. Real spreadsheets for real programmers.
In International Conference on Computer Languages. IEEE, 1994.

[147] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making
information flow explicit in histar. In OSDI 2006.

[148] W. Zeller and E. Felten. Cross-site request forgeries: Exploitation and
prevention, 2008.

http://www.tux.org/~peterw/csrf.txt
http://csrf.htmlpurifier.org/

[149] M. Zhou, P. Bisht, and V. Venkatakrishnan. Strengthening XSRF
Defenses for Legacy Web Applications Using Whitebox Analysis and
Transformation. In ICISS, 2011.

	1 Introduction
	1.1 Black-Box Automatic Defenses
	1.2 Towards a principled approach
	1.3 Contributions
	1.3.1 XSSFilt
	1.3.2 jCSRF
	1.3.3 WebSheets

	I Black-Box Defenses
	2 XSSFilt: Protection, Usability and Improvements in Reflected XSS Filters
	2.1 Background on XSS Attacks
	2.2 Limitations of existing filters
	2.3 Overview of XSSFilt and Contributions
	2.4 Design
	2.4.1 XSSFilt Overview
	2.4.2 Identifying Reflected Content
	2.4.3 XSS Policies

	2.5 Implementation
	2.5.1 Deployment on the PaleMoon browser

	2.6 Evaluation and Comparison
	2.6.1 Protection Evaluation
	2.6.2 Compatibility Evaluation
	2.6.3 Partial Injection Prevalence
	2.6.4 Performance Evaluation
	2.6.5 Security Analysis

	2.7 Related Work
	2.7.1 Systematization of XSS Filters
	2.7.2 New Surveys and Attacks

	3 jCSRF: A Server- and Browser-Transparent CSRF Defense for Web 2.0 Applications
	3.1 Approach Overview
	3.1.1 Injecting jCSRF-script into web pages
	3.1.2 Protocol for Validating Requests
	3.1.3 Design and Operation of jCSRF-script

	3.2 Evaluation
	3.2.1 Compatibility
	3.2.2 Protection
	3.2.3 Performance

	3.3 Related Work
	3.3.1 Server-side Defenses
	3.3.2 Browser Defenses
	3.3.3 Hybrid Defenses

	II Principled Security for Web Applications
	4 WebSheets
	4.1 Overview
	4.1.1 TODO-list
	4.1.2 Event RSVP
	4.1.3 Faculty Candidate Review

	5 Language and Design
	5.1 The WF Language
	5.2 Semantics
	5.2.1 Simplified Semantics
	5.2.2 Comparison with other DIFC systems
	5.2.3 Semantics vs. Implementation

	5.3 Implementation
	5.3.1 Overview
	5.3.2 Expression View
	5.3.3 Value View
	5.3.4 Editing Tables
	5.3.5 Dependency Recalculation
	5.3.6 Built-in Functions
	5.3.7 Scripts
	5.3.8 Status

	6 Evaluation
	6.1 Case Study
	6.1.1 HotCRP

	6.2 Covert Channels
	6.3 Security of WebSheets

	7 Related Work
	7.1 Spreadsheets
	7.2 Information-Flow Control
	7.3 Principled Security in Web Applications

	8 Conclusions
	References

