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Abstract of the Thesis

Efficient Audit Data Collection for Linux

by

Rohit Aich

Master of Science

in

Computer Science

Stony Brook University

2021

Forensic analysis is a well-established practice for detecting long-term and
stealthy attacks such as APTs. System audit logs provide crucial information
required for such detailed analyses. Contemporary audit logging techniques
available for Linux-based systems require kernel modifications, risky and im-
practical for the real world. We present an audit logging system based on eBPF,
a framework that can run sandboxed programs safely inside the kernel with-
out modifying the kernel source code. Our system can record audit data at the
granularity of system calls and is safe to use. Experiments show that the system
adds a run-time overhead of just 1%.
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1 INTRODUCTION

Despite the use of defense mechanisms such as firewalls, encryption and anti-malware
systems, large enterprises continue to experience stealthy and long-term cyber-attacks,
commonly known as Advanced Persistent Threats (APTs). Recent APTs such as “Crouching
Yeti” [4], “Darkhotel” [10], “LightSpy” [31] and the “SUNBURST” [9] are rapidly infecting
thousands of systems worldwide. “Crouching Yeti” and “Darkhotel” used three methods to
infect the victims: Spearphishing using PDF documents embedded with flash exploits, tro-
jans inside legitimate software installers, and waterhole attacks using a variety of exploits.
The iOS-based “LightSpy” attack is a watering hole attack discovered in January 2020. It
lures victims from a news forum to another, disguised as a legitimate one. The attackers
then inject an iframe that loads the exploit. LightSpy attack takes control of the machine
and exfiltrates crucial and sensitive data, such as hardware information, contacts, browser
history, etc. Another very recent supply-chain attack was recently discovered by FireEye
that trojanizes software updates from SolarWinds Orion business software to distribute a
malware called “SUNBURST”.

The attack techniques described above are stealthy and long-term in nature. In many
cases, the malware introduced would remain dormant for a long time before starting oper-
ation. By employing advanced social engineering and exploit techniques, these APTs can
circumvent deployed security mechanisms such as firewalls, antivirus software, and so on.
Often, the APTs stay hidden and operate for months or years. Ultimately, when security per-
sonnel detect suspicious activity, they need to determine the root cause, so that they can
eliminate all infected files and malware from the system. Forensic analysis is the method
used to identify the root cause as well as the after-effects of such malware. For a success-
ful forensic analysis, we need a detailed record of system activity, typically obtained from
various system and application logs.

Many types of audit logs are available. We can log activities of web servers, specific soft-
ware applications, etc. These logs could be useful for the specific purposes they’re origi-
nally designed for. For example, logs for a banking website will show details of successful
and failed transactions, etc. These are high-level logs and are easy to read and understand
from the application’s perspective. However, when we are dealing with malicious software,
their operations on the system may go unrecorded by these application-specific logs. Let
us consider a scenario where a malware gains access to a system via a compromised web
server. The program remained dormant for several months and then started corrupting
applications inside the victim machine. Now, if we just maintain an audit log for the web-
server, the corrupted files or applications would not be reflected in the logs.

To detect such attacks, and to find the malware’s footprint across a system, we need to
capture system-wide activities. We need complete mediation, i.e., track the system ac-
tivities at such a granular level that every possible action of malicious software could be
captured. A major share of the servers and systems of commercial enterprises run Linux
or UNIX like operating systems [30, 34]. In this thesis, we’ll focus on Linux-based systems,
and talk about audit logging techniques available for Linux.
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There’s an existing audit logging framework present for Linux systems, known as the
Linux Audit Daemon. However, the Linux Audit Daemon suffers from many known prob-
lems, such as run-time performance and space overhead. That is why many current pieces
of research have focused on developing alternative mechanisms that try to provide full sys-
tem audit data with improved performance. Different audit loggers have different goals.
There are audit logging systems that collect audit logs to detect attacks and find malicious
processes running in the background, while other types of systems are interested to find
the complete ownership history of kernel objects. Either way, it is imperative to achieve
complete mediation, i.e., no system activities should escape the logger.

The main issues with available audit logging systems are deployability and performance.

To our knowledge, all of the available techniques to log audit data require loading one
or more kernel modules in the system. In large organizations comprising of hundreds of
systems, it is not possible to rebuild kernels with new modules. Such changes are not only
infeasible but also are very difficult to maintain (for instance, a scheduled upgrade in the
Linux kernel may require changes to the audit logger). A few solutions require users to
use a modified kernel [29, 27, 24], and another few require the application developers to
use certain logger libraries while coding [1], significantly increasing the user efforts. These
solutions, hence, are impractical and not feasible to implement in large enterprises.

On the other hand, widespread auditing systems such as Linux Audit Daemon are often
unnecessarily verbose, and it has a high run-time overhead. Our experiments show that
with Linux Audit Daemon, the run-time of resource-heavy operations can increase five-
fold. Moreover, most existing auditing systems generate a lot of data, usually in the order
of several gigabytes per day. Storing and maintaining this much data is always a challenge,
and doing successful forensic analyses through a large data to uncover malicious activity is
time consuming. With the increasing number of large organizations falling victim to APTs
worldwide, the need for a smart auditing technique offering better performance (both run-
time and storage-wise) is also increasing.

Our goal is to build an audit data collection system that is suitable to deploy in real sys-
tems and offers better performance. Towards that, we present a lightweight audit logging
system that leverages a new performance and security monitoring framework for Linux
called eBPF. Our system does not introduce any new module to the kernel, and hence, does
not require a kernel build or any type of kernel modifications. The system hooks into sys-
tem calls at predefined tracepoints and traces the arguments and return values of system
calls. We discuss the eBPF framework and our system implementation in subsequent sec-
tions.

Our experiments show that our eBPF-based system has a minimal run-time overhead:
about 1%–4% and the output log generated by our audit log reducer is much smaller in size
compared to Linux Auditd logs. On top of this, this eBPF-based system is thread-safe, and
suited for multiprocessing environments.

The rest of the report is structured as follows: Section 2 describes the eBPF framework.
Section 3 then presents our solution and Section 4 presents a performance analysis. Section
5 discusses related works in the area. Section ?? concludes the report.
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2 OVERVIEW OF EBPF FRAMEWORK

The Linux kernel is the best place to implement tracing, networking, and security function-
alities. However, installing new instrumentation code inside the Linux kernel always comes
with a substantial risk. Kernel coding is difficult and involves much more safety checking
than user-space coding. Also, the kernel space is an unforgiving environment, and loading
a poorly designed module in the kernel could have disastrous results.

eBPF and related technologies have helped in developing profiling, tracing, and perfor-
mance monitoring tools that can give us information at run-time with low performance
impact. In Linux, eBPF (Extended Berkeley Packet Filters) [6] is a virtual machine-based
framework that can run sandboxed programs inside the kernel without requiring kernel
source-code modifications or loading new kernel modules.

eBPF traces its origin back to the Berkeley Packet Filter [22] aka BPF, which became a
part of the Linux kernel in 1993. The Berkeley Packet Filter was originally designed for pro-
filing and filtering network packets before they were processed by the kernel or copied into
userspace. This filtering functionality was implemented as functions in a register-based
virtual machine inside the kernel, with two 32 bit registers and a small RISC-based ISA.

While the idea of executing user-supplied programs safely inside the kernel proved to be
very useful, the capacities of the original BPF were only limited to network packet filter-
ing and profiling. It was not capable of doing other things, like tracing kernel functions
and performance monitoring. This prompted the creation of eBPF, which significantly ex-
tended the functionalities of BPF. Moreover, eBPF uses just-in-time (JIT) compiled, which
ensured faster execution of eBPF functions inside the kernel.

The eBPF framework and the projects built around it are still in an early stage. It is
rapidly evolving, and newer functionalities and support get added to the framework reg-
ularly. Some of these features are available only for the latest Linux kernel versions (5.8 and
above) and require more documentation. The tracing abilities of the framework that we
have used in our projects are available for kernel version(s) above 5.4 [11, 6, 5, 14, 23, 3].

2.1 EBPF ARCHITECTURE

Figure 2.1 presents a diagram to show the eBPF architecture. Below, we discuss the salient
features of eBPF programs, and how they work.

• Hooks: eBPF programs are event-driven. When the kernel or an application passes a
certain execution point (known as a hook), the eBPF program will be triggered. There
are pre-defined hooks already defined in the kernel, for system calls, function en-
try/exit, kernel tracepoints, network events, and several other points. In case we want
to trace a kernel/user application function that has got no pre-defined hooks, we can
use a ’kprobe’ or ’uprobe’ features of eBPF to monitor them.

• eBPF Programs: Linux expects eBPF programs to be in byte-code. While it is possible
to write the byte-code directly, programs are typically written indirectly, via projects

3



Figure 2.1: eBPF Architecture and Workflow (taken from [11])

such as BCC(explained in further detail in the later sub-section) or bpftrace. Here,
programs written in BPF-C (a restricted version of C) are compiled with LLVM to gen-
erate eBPF byte-code.

• eBPF Verifier & JIT Compiler: Once the hooking event has been identified, the eBPF
program can be loaded in the kernel using the bpf(2) system call. After this, there
remain two more steps for the program to run. Since the programs are allowed to
directly run inside the kernel, it is of extreme importance that the code does not cor-
rupt memory or crash the kernel. The eBPF verifier takes care of this. It validates that
the eBPF program meets several safety conditions (no loops or unauthorized mem-
ory accesses etc.). We have discussed the safety features of eBPF in detail in the next
subsection.

Once the eBPF program has been verified, the eBPF byte-code is translated to a machine-
specific instruction set. This makes the eBPF programs run as efficiently as code
loaded as a kernel module or natively compiled programs.

• eBPF Maps & Helper functions: One interesting feature of eBPF is the ability to share
data between different eBPF programs, as well as with user-space applications with a
system call. The programs achieve these by using a set of data structures, collectively
known as “eBPF maps” [6, 3]. There can be various kinds of maps depending on their
usages, such as hashmaps, arrays, stack traces, ring-buffers, etc.

Also, eBPF programs cannot call arbitrary kernel utility functions. This ensures the
safety and also addresses compatibility issues (for instance, if eBPF programs were
allowed to directly call into kernel functions, they would be bound with specific ker-
nel versions, leading to compatibility issues). Instead, eBPF programs have a set of
well-documented helper functions. For example, helper functions can generate ran-
dom numbers, provide accurate timestamps for events, provide pids (process ids)
and other details of traced processes, etc.
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2.2 SAFETY FEATURES IN EBPF

To ensure that the kernel remains safe, the eBPF framework verifies programs against cer-
tain safety conditions before they are executed in the eBPF virtual machine. We have de-
scribed these below:

• Only privileged processes are allowed to run eBPF programs. So, users who have no
root access will not be able to start an eBPF program.

• The verifier checks that the program does not cause any unauthorized memory ac-
cess so that it does not harm or crash the kernel at any point.

• The eBPF bytecode does not allow any loops. This ensures that no programs could
run indefinitely inside the kernel.

• The eBPF verifier also ensures that all branches of the code are essentially complete
and reach the end of the program.

2.3 PROGRAMMING IN EBPF

As explained in the earlier section, it is not very convenient to write eBPF byte-code directly.
A better and more practiced way is to use toolkits such as “bpftrace” or “BPF Compiler Col-
lection”. These toolkits provide developer-friendly environments and ways for writing effi-
cient eBPF programs. In our experiments, we have used both of these toolkits and evalu-
ated their performances.

eBPF sends the tracing outputs to user-space in three main ways. For sending small
one-liner performance profiling outputs, eBPF has a feature that prints into the common
trace_pipe of the system (/sys/kernel/debug/tracing/trace_pipe). For more structured and
complex outputs, eBPF uses a data structure called PERF_OUTPUT. This is a high-speed
ring-buffer shared between the user and kernel spaces. The PERF_OUTPUT takes the data
and the size as an input and sends it from kernel to userspace. There is another way, where
we can asynchronously read data from shared eBPF maps. These maps can have many util-
ities, such as displaying frequency counts, performance histograms, summary statistics,
etc. In our experiments, we have used the first two techniques, i.e., the trace_pipe-based
simple printing technique, and the ring buffer based data sharing technique.

2.3.1 BPFTRACE

bpftrace is a small toolkit developed over the eBPF framework. bpftrace uses a simple
script-based coding language, much like shell scripts. These scripts are typically of one
or two lines and can trace the arguments and return values of kernel programs. bpftrace is
typically used for very specific program monitoring or profiling purposes. For example, if
we want to list the number of successful read(2) system calls over some time, we can write
a one-liner bpftrace code for that.

bprtrace uses a built-in printf() function that prints to the system’s common trace_pipe.
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Hence, we would be able to directly see the output data on the console.

2.3.2 BPF COMPILER COLLECTION

The BPF Compiler Collection, more commonly known as BCC, is a toolkit for creating ef-
ficient kernel profiling and manipulation programs. BCC makes eBPF programs easier to
write. BCC provides kernel instrumentation in C (and includes a C wrapper around LLVM),
and front-end programs in Python or Lua.

A BCC program comprises a Python (or Lua) front-end, which contains two parts: A
string that comprises the entire kernel-space program written in BPF C, and a method that
polls from the PERF_OUTPUT buffer. BCC provides seamless integration between these
two parts. As a result, the Python front-end gets the accurate data-type information of the
traced function arguments and return values. This makes it further easy for the Python
front end to encapsulate the incoming data into the correct data type for further process-
ing.

BCC is suited for many tasks, including performance analysis and network traffic filter-
ing. BCC provides a basic troubleshooting mechanism as well. For example, if there’s an
error while loading the eBPF program (for example, the eBPF verifier throws an error), BCC
provides messages aka ’hints’ to tell the programmer why the loading could have failed.

BCC also provides few workarounds for some of the limitations of the eBPF bytecode. In
the next section, we have discussed these in detail.

2.4 LIMITATIONS

Despite being a very useful technology, eBPF has its own set of limitations. A few of the
major limitations are as follows:

• No loops are allowed in eBPF bytecode. In case we are using BCC, there is a workaround.
In BCC We can only use bounded loops in the BPF-C side, with the pragma unroll
directive of LLVM. This directive helps to unroll the C-code and generates an eBPF
bytecode that does not have any backward branches.

• The total eBPF program stack size has to be under 512 bytes.

• An eBPF program can contain no more than 4096 instructions. However, eBPF pro-
vides a functionality known as tail calls. These tail calls can be made from one eBPF
program to execute another eBPF program and replace the execution context.

• The current toolkits (such as BCC or bpftrace) built over the eBPF framework does not
allow the usage of global variables yet [5]. This is not a limitation of the eBPF virtual
machine [14], as the virtual machine does not prohibit the usage of static memory.
As a workaround, the BCC toolkit provides a specific eBPF map called BPF_PER_-
CPU_ARRAY, which can be used to achieve the same purpose.

• While sending the traced data to user-space, BCC uses a high-speed ring-buffer called
’BPF_PERF_OUTPUT’. This buffer is not lossless, and if the user-space application is
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not consuming the data fast enough, there could be a loss of data. In case of such a
data loss, BCC provides functionality to show exactly how many bytes were lost.

3 OUR SOLUTION

As explained in Section 1, performance and deployability are the two most desirable quali-
ties of any audit logging system, and our goal is to build a system that displays both of these
qualities. From an implementation perspective though, there are two parts of a good au-
dit logging system: A) Recording the system activities and B) Presenting the data concisely.
To ensure that a system can be deployed without any kernel modifications, and also offers
superior run-time performance, we need to choose a suitable technique to record system
data. Also, for an audit log to be useful for forensic analyses, we need to arrange the audit
records concisely, so that the most relevant and important information could be identified
easily.

Since our target is to uncover APTs, we need to track all kernel activities at the granular-
ity of system calls. To do so, we need to instrument system calls to record arguments and
return values as necessary. There are two ways to achieve instrumentation, static instru-
mentation and dynamic instrumentation.

• Static Instrumentation means that the instrumentation code for tracing information
is already present in the kernel. The toolkits built on the eBPF framework, such
as “bpftrace” or “BCC” provide a macro called TRACEPOINT_PROBE, that is built
around kernel tracepoints. Tracepoints are predefined kernel hooks, available in
many kernel functions including system call implementations. Tracepoints are de-
fined in the path “/sys/kernel/debug/tracing/events”. The TRACEPOINT_PROBE cre-
ates a wrapper around kernel tracepoints and provides a built-in structure that holds
the arguments and returns values of the system calls. We can just hook our eBPF code
into these static points and read the values of the arguments as we want.

• Dynamic Instrumentation techniques enable programmers to insert instrumentation
code into functions at run-time, and record the arguments and return values. Again,
dynamic instrumentation techniques such as kprobe, kretprobe, kfunc etc. available
in eBPF toolkits such as “bpftrace” or “BCC” enables us to place custom hooks di-
rectly into any kernel functions, at any points that we choose.

Naturally, static instrumentation is simpler and faster. So in our experiments, we have
hooked our eBPF programs to static tracepoints.

We have developed two systems in total. After each experiment, we have evaluated the
system performance and analyzed the flaws of the system. In the next iteration of exper-
iments, we have tried to build a better system and again repeat the performance analy-
ses. The first version of our system is written using “bpftrace,” a script-based project built
around the eBPF framework. The next version of the system is written using three lan-
guages. The kernel tracing code uses a restricted version of C, known as BPF C. This tracing
code reads system call arguments and return values at specific tracepoints, and puts the
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Figure 3.1: System Architecture (inspired from [6, 11])

data inside a high-speed shared ring-buffer. The user-space application has two compo-
nents: a python engine to read from the ring-buffer, and a c++ audit log reducer which
generates a compact and concise audit log, ideal for forensic analyses. The basic architec-
ture of our system is given in the figure 3.1.

In the coming sections, we have detailed the experiments one by one. But before that, we
need to describe our experimental setup.

3.1 EXPERIMENTAL SETUP

There are many system calls in Linux [21]. However, when it comes to audit logging, not
all of these are equally important. For example, system calls such as execve(2) play a cru-
cial role in forensic analysis, as do system calls which operate on processes or files are im-
portant as well. System calls related to network communication are also very important.
Naturally, the most important syscalls needed to be monitored more closely. During our
experiments, we need to understand which should be the most important system calls to
include in our system. Also, in most cases, the arguments are the most important artifacts
to trace and record. However, in syscalls such as fstat(2) or lstat(2), the pointers in the argu-
ments are updated when the call completes successfully. So, in those cases, we needed to
trace the system calls during exit, and trace the updated values of the pointer-valued argu-
ments. To understand which are the most frequent system calls, we have relied on a system
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developed in one of our lab projects, called the “Linux Audit Consumer”.

3.1.1 LINUX AUDIT CONSUMER

The Linux Audit Consumer project was created to parse the logs generated by the Linux Au-
dit Daemon. The consumer can parse these logs and generate an output log that is compact
and is optimized for forensic analyses. Naturally, for forensic analyses, the most important
artifacts are file descriptors and network endpoint details, user and process ids, frequency
of system calls, crucial arguments such as programs and paths passed into execve(2), etc.
Also, memory access requests such as mmap(2) hold important clues to find malicious soft-
ware. The consumer can identify all of these artifacts and concisely present them. We refer
to the output of Audit Consumer as “record files”.

To understand the most frequent system calls, we ran Linux Audit Daemon during nor-
mal system activities (e.g.: during system startup, kernel build), and ran the log through the
Audit Consumer to generate such a summary. From the summary, we found that the top
20 frequent system calls form more than 95% of the total system calls made by the system.
These top 20 frequent syscalls are open, openat, close, read, write, mmap, mprot, munmap,
execve, wait, fcntl, fork, dup, exit, connect, setuid, setgid, accept, recvmsg and sendto. Our
initial goal was to cover these most frequent syscalls first, so that our audit logging system
can cover most of the system activity. Our system currently supports most of these frequent
system calls, and also a few others which are not in this list, but is crucial for detecting ma-
licious activity in the system. The complete list is given in the next subsection.

3.1.2 SYSCALLS SUPPORTED BY OUR SYSTEM

The system calls which operate on processes and files are most crucial, as they help us to
detect possible threats in the system. System calls like execve(2) are also very important
for forensic analyses. For our purpose, we have picked the system calls that perform file,
process, and network-related operations. Some of these system calls are the most frequent
ones as well. So far, our system can support the following system calls. It can trace all
arguments and return values as necessary, with crucial data such as process ids, user ids,
group ids, timestamps, etc.

• File operation related system calls: open, openat, close, read, write, stat, fcntl,
dup.

• Network operation related system calls: accept, getpeername, connect, socket.

• Process and user related system calls: waitid, fork, exit, setgid, setuid.

• Memory mapping related system calls: mmap, mprotect, munmap.

• System calls for executing programs: execve.

Few other system calls such as remove and rename are also important to trace from a
security perspective. However, due to time constraints, we have not added the support for
those system calls in our audit logger yet.
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3.1.3 EVALUATION CRITERIA

For each system that we have built in the course of this project, we have defined three
benchmarks to evaluate their performance. These benchmarks were designed or chosen
because they would put heavy workloads on the system. We wanted to see that how an
eBPF-based audit logging framework would perform when heavy resource-consuming pro-
cesses are already running in the system.

We used the bash commands “tar” and “find” to design these benchmarks. Specifi-
cally, we used the commands: “tar cf - �one-file-system / | wc -l” and “find /

-type f -exec stat {} -print | wc -l”.

Apart from this, we have used two macro-benchmarks. First, we have used Linux ker-
nel build and as a benchmark. Linux kernel build is resource-heavy and utilizes different
components of a system. Second, we ran the PostMark [25] benchmark with Phoronix Test
Suite [28], simulating the operation of an email server. Both these macro-benchmarks have
previously been used for other audit logging systems [29, 27].

After each experiment, we have recorded and compared the run-time with a normal run
(run-time of the benchmarks without our audit-logging system running in the background)
and presented the data. We have used the bash command “time” to measure the run-times
of these benchmarks in all our experiments. We have compared and reported the “elapsed
time” for all experiments. Also, for each experiment, we ran our benchmarks thrice and
took the average of the three-time records.

We have also compared the run-time of our with the Linux Auditd logs. For this compar-
ison, we have configured the Linux Audit Daemon to record exactly similar system calls as
our system. The performance tables 4.1, 4.2, and 4.3 discussed in Section 4 present these
experimental results in detail. We have also compared our logged data with the Linux Au-
ditd logs to check correctness. To do this, we have run the two systems on the same bench-
mark, and compared the names of opened files, or the counts of reading and write opera-
tions. We found that on all occasions, our eBPF-based audit logging system has captured
the details correctly.

3.1.4 SYSTEM SPECIFICATIONS

We have run our experiments in a virtual machine. It simulates a Intel Xeon (Skylake, IBRS)
processor with 64 bit CPU with 4 cores. The clock speed of the processor is 2.2 GHz, and it
has 16 GB RAM.

4 EXPERIMENTS & PERFORMANCE

This section presents the implementation steps in detail and the experimental results. The
goal of any implementation should be to write code that is maintainable and reusable. Our
final system is well structured and designed, and support for a new system call tracing can
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be added by adding only about 5-10 lines of code.

4.1 EXPERIMENT WITH BPFTRACE

We planned to start with bpftrace because it was the most basic wrapper project around
eBPF. It is relatively small, but still supports the main eBPF features such as the ability to
hook into static/ dynamic instrumentation points and send data to user-space quickly. Our
system consists of 40 one-liner scripts, one each for entry and exit tracepoints of the 20
most frequent system calls described above. Once it was run, bpftrace uses a simple printf()
method to directly print the values of arguments and return types to the Linux Terminal.
We wrote a few lines of additional shell scripts to redirect the output to a log file instead.

Though the system call data was captured by bpftrace, there were few problems with
this bpftrace based tracing program. Though it provided a better performance result as
compared to the Linux Audit Daemon, it was not fast enough. The main reasons for the
poor performance were:

• Output handling: Since it was originally intended for short one-liner performance
monitoring scripts, bpftrace did not provide tailor-made data structures to send out-
put to the end-user. It had an in-built print function, which wrote directly into the
terminal. Of course, we did not want our audit log to be lost, so we redirected this
output to a file. This entire process comprises a lot of system I/Os; the system writing
on the terminal, and the same thing is written into a file, etc. This resulted in more
time consumption.

• Loss of events: Since our system mediated a lot of system calls, it generated a lot of
printed outputs as well. Unfortunately, the Linux terminal could not process this
many print statements at a time, as it has a print buffer of a limited small size. As a
result, many audit events would be captured but would be lost as the Linux terminal
is a very slow consumer.

• Tracing arguments in exit tracepoints: bpftrace does not provide us with any shared
data structures such as arrays or maps. Also, there is no way to trace arguments dur-
ing exit tracepoints. In bpftrace, exit instrumentation points are only for tracing re-
turn values, and entry instrumentation points are only capable of tracing the argu-
ments. Now, there are system calls with pointer-valued arguments, and these argu-
ments are updated with valid data when the system call returns successfully. In case
we want to trace these arguments, bpftrace does not give us a chance to do that (nei-
ther does it allow such instrumentation, nor does it have any shared data structures
to hold the addresses of the pointer values arguments, so that we can get the updated
values later). This lack of functionality seriously impedes the usefulness of a bpftrace
based tracing system.

So how good is this bpftrace based implementation, in terms of recording audit data and
presenting it? As explained above, obviously the tracing capacities are limited. Also, bpf-
trace uses a simple printf() method to print audit data out. Using only printf(), the only way
to represent that log legibly and concisely is to add additional comments into the printed
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strings, so that the individual arguments and return values and process ids be understood
from seeing the log. Other than this, the capacities of bpftrace are quite limited in this
regard.

The next section presents the performance comparison of the bpftrace system with the
Linux Audit Daemon. Though technically, the bpftrace based system does not offer a full-
fledged audit data collection mechanism, it offers a basic idea of how an eBPF based log-
ging system would work. Also, if logging in on a low scale (e.g., logging the arguments only
for one system call in a standalone system with timestamp), bpftrace can still be a good
choice.

4.1.1 PERFORMANCE ANALYSES

Table 4.1 compares the run-time and log-sizes of an audit logger built using the bpftrace
framework with the Linux Audit Daemon. The four evaluation benchmarks correspond to
the experiments described in Section 3.1.3. The second column shows the base run-time
of these benchmarks; i.e., time taken for these operations to complete without any audit
logging operations running in the background. The columns for “Linux audit daemon”
and “bpftrace system” display the percentage increases in run-time. There are a couple of
interesting observations that can be made from this table.

• Firstly, the run-time overhead of the bpftrace based system is about 50%, when we
log the audit records.

• To find out why the audit logging system is taking this much time, we designed an
experiment where we just traced the system call argument data but did not log it in
any file. This system, with no file writing operations, shows only about 5% run-time
overhead. This tells us that the main issue with a bpftrace based audit logging system
is the framework’s bad handling of output.

• This system outperforms the Linux Audit Daemon both in run time and space con-
sumption. Nevertheless, due to significant run-time overhead, this system does not
serve the purpose of a full-fledged audit logger.

4.2 EXPERIMENTS WITH BCC

The above problems with bpftrace pushed us to use BCC, a more robust and complete
project built on the eBPF framework. As compared to bpftrace, there are a few features
of BCC that offers much more flexibility to programmers.

• Ability to use eBPF data-structures: BCC offers an easy-to-use interface to use and op-
erate on the eBPF Maps and other data structures. These eBPF maps are thread-safe,
and they are protected by an RCU locking mechanism. As a result, systems written in
BCC are robust enough to work on multiprocessing environments.

One point to note here is, “eBPF Maps” does not necessarily mean Map-type data
structures only. EBPF offers a set of various types of data structures, but all of them
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Evaluation
Benchmarks

Base
run-time
(minutes)

bpftrace
system

Linux
Auditd

Overhead
without
logging

Overhead
with

logging

Overhead
with

logging
tar 2:23.50 4% 48% 327%

find 16:34.45 3% 39% 195%
kernel 10:45.31 5% 43% 203%

postmark 12:47.23 5% 47% 369%a

Table 4.1: Performance of the bpftrace based system

aThe run with Linux auditd took too long to complete, so we terminated it after one hour. We used one hour
as the runtime for overhead calculations.

are collectively referred to as “maps”. These maps add a lot of other benefits from the
implementation perspective. In our case, we have leveraged these data structures in
four salient ways:

– Handle entry and exit points of syscalls: Typically, the syscall arguments hold
the most crucial information, and tracing these values is more important. So, it
is useful to trace most syscalls at their entry points. However, in certain cases
(such as fstat(2)), there are pointer values arguments of the syscall which only
gets populated with the information once the system call has returned. In these
cases, we need to track the updated values of the arguments at the time of re-
turn.

The BPF-C back-end of BCC provides us a way to achieve this, with eBPF maps.
We store the pointer-valued arguments in system call specific eBPF hashmaps,
with the process id as their key. While tracing the exit point of the syscall, we
check the process id and get the corresponding pointer-valued argument from
the map, which, by then, has been updated with return data. In this way, we can
trace the updated values of arguments as well.

– create thread-safe global variables: eBPF bytecodes do not have any access to the
.data section, and cannot have static memory such as global variables. However,
BCC allows us to use eBPF maps, which can be used much like static memory.
A particular map called BPF_PER_-CPU_ARRAY can be re-purposed to create a
static shared memory, which could be used as a global variable if needed.

– large memory to store filenames etc.: eBPF tracing functions have a maximum
stack size limit of 512 bytes. In rare cases, the size of a full pathname passed
as an argument to a syscall can be of more than 512 bytes. Again, by declaring
eBPF maps outside the tracing methods, we can create a space to hold bigger
filenames.

– Ring buffer to send output: BCC uses a high-performance ring buffer called
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BPF_PERF_OUTPUT to send data to the userspace. The userspace code is writ-
ten in Python, which can interpret the datatype of the variables sent, and pro-
cess them accordingly. This buffer is thread-safe and can work in a multi-processing
environment.

• Better performance: Since BCC avoids the pitfalls of the script-based bpftrace toolkit,
the run-time performance is superior. Also, the structured output buffer is a far better
option than printing directly to the trace_pipe. The buffer ensures that we do not lose
data unnecessarily. Furthermore, we have full control of the audit data and can print
only pertinent information in the log, resulting in more crisp and concise audit log
representations.

As we can see, BCC is a more versatile toolkit as compared to bpftrace, and using it, we
can build full-fledged audit systems which are lightweight and yet robust. Not only it can
record all kinds of arguments and return values in non-trivial scenarios, but also it helps
the developers to process and present audit data more smartly.

4.2.1 EXPERIMENT WITH A STRUCTURED BUFFER

The BPF Compiler Collection provides us with a macro called TRACEPOINT_PROBE. This
macro provides a structure called “args,” which holds the arguments traced in that tra-
cepoint. In our first BCC-based system, we have created similar structures. Whenever a
syscall is traced, we would read all pertinent information (arguments, process ids, etc.)
from the args structure to the structure we defined. Along with this, we would invoke eBPF
helper methods to fill in important information such as user and group ids, or timestamps.

Once the structures are filled with the tracing information, we can send it to the python
front-end with the help of the ring buffer. Once we have got the information in the python
end, we can choose to print the information as we like. For example, we can print out all
the information in the logs in detail, or we can just print a few necessary information in a
tabulated form.

This sounds like a good audit logging system, but there are still potential problems with
this implementation. For a start, the structure has to be initialized inside the individual
tracing functions for each syscall. This will mean that the structures will be initialized in the
stack, and can be of a maximum of 512 bytes. So, we will not be able to send information
larger than that size.

There were other cases as well, since we were using a generic structure definition for all
system calls, there were plenty of fields inside the structure which would often go unused.
For example, if we have defined a field called “pathname,” that might be useful while trac-
ing openat(2) or fstat(2), but will not be useful while tracing fork(2). However, for each
syscall, we have to send this huge amount of unnecessary data to the userspace. One solu-
tion would be to define individual structures for individual syscalls. But that would make
the addition of new syscalls into the system quite difficult. We’ll also have to keep in mind
that eBPF programs can be of a maximum size of 4096 bytes, so size is a concern as well.

Table 4.2 shows the overall performance of this system. The column “BCC system with
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Evaluation
Benchmarks

Base
run-time
(minutes)

BCC system
with structure buffer

Linux
Auditd

Overhead
of syscall

tracing

Overhead
of syscall

processing

Overhead
of syscall
logging

Overhead of
audit

logging
tar 2:23.50 0.1% 0.45% 0.89% 327%

find 16:34.45 0.14% 0.48% 1% 195%
kernel 10:45.31 0.15% 0.51% 0.92% 203%

postmark 12:47.23 0.15% 0.51% 0.96% 369%a

Table 4.2: Performance of the “BCC” based system with a structured buffer

aThe run with Linux auditd took too long to complete, so we terminated it after one hour. We used one hour
as the runtime for overhead calculations.

structured buffer” displays the run-time overheads for each set of experiments. There are
three sub-columns under this, as we conducted three experiments in total. Apart from
recording the run-time overhead of the BCC based audit logging system, we wanted to
know the run-time overhead if a) we just intercepted the system calls and traced the data
(we call this interception overhead), and b) we intercepted the data and process it (fill our
predefined structures with the arguments and other process-related tracing data), but did
not send it to the user-space. This table shows the results from those experiments. We
see that there is a negligible overhead just to trace the system calls. This low overhead is
primarily due to the usage of static tracepoints to instrument our system calls.

The most interesting thing to be noticed is the decrease in the run-time overhead of the
BCC system with logging enabled. As explained before, the “BCC” framework provides a
shared ring buffer to send data to user-space. The user-space comes with a python front-
end, which has built-in methods to poll data from the buffer and process them. In our case,
we have just inserted the data into a log file.

The run-time performance of this system looked good. Presentation-wise, we still had
scopes of improving the log, and present it in a more readable and concise way. These
bottlenecks pushed us to develop a system more generic in nature. Specifically, we were
trying to address two problems:

• A generic and versatile way to send the traced data to user-space, that uses and trans-
mits only the required data. This would ensure that syscalls such as fork(2), where
there’s a little tracing data to be sent, and syscalls such as fstat(2), where there are
quite a lot of bytes to be sent, can be handled by one single buffer.

• A more structured and concise way to represent the audit log. In this regard, we
thought of integrating the logs generated by the system with the Linux Audit Con-
sumer project, described in Section 3.1.1. The Audit Consumer already processed
logs from the Linux Audit Daemon, so it was perfectly able to process and concisely
present the logs from our BCC-based system as well.
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• Adding new code to support tracing and logging of newer system calls should be easy
and hassle-free.

4.2.2 EXPERIMENT WITH A GENERIC BUFFER

For our new buffer, we just created an array of unsigned 8-bit integer types. If we would
get character-type arguments or 8-bit integers, we would directly copy them to the 8-bit
buffer elements. For larger types, we would copy them serially into continuous elements of
the buffer. We added a header section to the buffer so that at the recipient end, the Audit
Consumer would know the count, size, and type of each type of element in the buffer.

With this setup, we repeated the previous experiment. Once the data reached the Python
end, we sent it to the Audit Consumer, written in C++. For a seamless communication
between the Python and the erstwhile C++ system, we have used a common Python utility
known as “ctypes”.

One important aspect of this third experiment is that the Audit Consumer processes the
audit records generated by the BCC-based system. Then, it produces a compressed and
concise log with the system call arguments and a summary, as opposed to the logs gener-
ated by the previous eBPF-based systems where we were just printing out the audit data to
a file. As a result, this version of the auditing system runs for a longer time. In the end, the
audit consumer produces a record file, which consumes much lesser space than the Linux
Auditd logs.

4.2.3 PERFORMANCE ANALYSES

The final performance data of this generic buffer-based system is given in table 4.3. In
this table, we compare the run-time overheads of our system with Linux Auditd. This table
also compares the sizes of the output log files. Since the Audit Consumer generates a com-
pressed record file as output, we have compared the size of the file with compressed Linux
Auditd logs.

• We see that the run-time overhead has increased from the earlier structured buffer-
based system. This additional run-time overhead is added due to the post-processing
and reduction of the audit data done by the Audit Consumer. The Audit Consumer
also compresses the output record file, which is time-consuming. In the end, the
entire pipeline adds 15% run-time overhead. However, the resultant record file is
ready for accurate forensic analyses.

• The table also compares the size of compressed log files, generated by the Audit Con-
sumer and Linux Auditd. The sizes of the record files produced by Audit Consumer
are much smaller than the sizes of corresponding Linux Auditd logs. So, not only do
we get concise audit records, but we also consume less storage space.

• If we modify the Audit Consumer to produce non-compressed record files, then the
run-time overhead decreases significantly. The third column of table 4.3 shows the
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Evaluation
Benchmarks

Base
run-
time

(minutes)

BCC System
with generic buffer

Linux
Auditd

Overhead of
tracing &

producing
record files

Overhead of
tracing &

producing
compressed
record files

Size of the
compressed
record files

(MB)

Overhead
of audit
logging

Size of
compressed

audit log
(MB)

tar 2:23.50 3% 14% 12 327% 165
find 16:34.45 4% 15% 14 195% 220

kernel 10:45.31 4% 15% 15 203% 229
postmark 12:47.23 3% 14% 14 369% a 453

Table 4.3: Performance of the “BCC” based system with generic buffer & Audit Consumer

aThe run with Linux auditd took too long to complete, so we terminated it after one hour. We used one hour
as the runtime for overhead calculations.

run-times. This proves that most of the run-time overhead comes from compressing
the record files.

5 RELATED WORK

Audit logs can be used for different purposes. Many auditing systems try to meticulously
capture the full movement of data through every layer of the system. On the other hand,
there are auditing systems that try to identify threats in the system, and generates logs more
suited for forensic analyses. Depending on their particular purpose, auditing systems em-
ploy different techniques (such as building around Linux Security Modules, mediating ker-
nel objects, tracing system calls, etc.). There have been researches in the past years to find
better audit logging solutions as an alternate for the Linux audit daemon.

The property that defines completeness of audit logs, i.e., logs should capture all system
events faithfully, is called fidelity. The best way to achieve fidelity is by tracing kernel ob-
jects, as in that way, all system-level activities could be traced. The auditing systems whose
goal is to achieve high fidelity try to capture the movement of data between different layers
of a system. Whenever kernel objects (like an inode, a process, etc.) are invoked/ accessed,
hooks placed inside the kernel are used to mediate those accesses and collect audit data.

Mediating kernel objects require researchers to put instrumentation code inside various
pre-defined kernel hooks. For example, Hi-Fi [29] has built their auditing system on the ex-
isting LSM and Netfilter frameworks. While LSM was created for mediating access to kernel
objects, Netfilter provides hooks to mediate and process Network packets. Another audit-
ing system, CamFlow [27], uses the same LSM and Netfilter hooks. Camflow also creates
graphs that capture the state changes of Kernel Objects. While these techniques require
new modules and code to be loaded into the Kernel, auditing systems such as PASS [24]
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modifies the Kernel with a new storage system, which can track the complete audit infor-
mation and lineage of data.

However, for detecting and preventing APTs, we need to track down malicious processes,
for which we need to do comprehensive forensic analyses. The best and optimum way to
do this is to track processes in the granularity of system calls, as the system calls would give
us the most crucial information for a successful forensic analysis. To achieve this, we need
to trace the arguments and return values of system calls.

ProTracer [19] uses a set of pre-defined static hooks in the Linux Kernel called tracepoints
to hook into Kernel Functions, and record the parameters. We have already discussed tra-
cepoints in Section 3. ProTracer collects logs of almost all system calls. There could be
custom-defined tracepoints as well, such as the Linux Trace Tools New Generation, more
commonly known as LTTng [8]. LTTng is a tracer core, offering an OS instrumentation.
This allows us to insert tracepoints inside kernel code, and record system activity. Koh-
yarnejadfard et al. has proposed a system performance anomaly detection system that has
been built on top of LTTng [16]. This work uses the LTTng core to trace system calls and
collect audit logs for distributed systems. Another work, LPROV [35] offers a kernel-level
system call tracer that combines the audit data for dynamic libraries as well. Typically just
syscall tracing would not include audit details of libraries that are linked dynamically and
executed in run-time. Upon a system call, LPROV finds out the library calls along with the
stack that induces it. In this way, this work tries to detect and protect systems against ma-
licious library attacks.

As explained above, other than introducing a huge run-time overhead, Linux audit dae-
mon also brings with it a very large storage space requirement, generating log data in the
order of several gigabytes per day. To reduce this storage overhead, yet preserve the de-
pendencies of events in the log (for forensic analyses), many research works focus on log-
reduction techniques. There can be two ways for log reduction. Either we can have the
audit logging systems generating fewer logs, or use specific dependency preserving log-
reduction algorithms. When it comes to developing audit systems that generate fewer logs
themselves, different works employ different techniques to generate reduced logs. Pro-
Tracer, described above, uses ’logging and tainting’ to store only the writes and create taint-
sets for the read operations. BEEP [17], on the other hand, divides program binaries into
logical units based on event-handling loops. Then, it proceeds to selectively log the op-
eration of those units and their dependencies. Another work also follows a similar style
of adaptive auditing technique; the researchers study precursory events to identify possi-
ble system or network activity that may follow and logs the important events adaptively.
Another system, KCAL [18] is an in-kernel cache-based log-reduction system. KCAL uses
multilayered caching schemes, distributed in many kernel data structures. to find and dis-
card redundant audit events. The scheme indexes largely scattered syscall events and sup-
presses the events if already recorded.

Other techniques to reduce unnecessary logs from storage is to include kernel modules
and libraries, that need to be installed into the kernel and can be used by user-space appli-
cations to generate customized audit logs. CPL[20] or Core Provenance Library presents
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a work, which can be used as an API while writing user-space programs (written in C,
Perl, or Java) and applications. With nominal extra coding efforts, this library can gener-
ate application-specific audit logs.

All of the above ways of log reduction involve kernel modifications in some way or the
other. Besides, often the above techniques result in loss of dependencies among events,
and as a result, forensic analyses using such logs are difficult. In certain cases, fine-grained
instrumentation is required. Techniques such as using a separate library require human
intervention and are impractical for large organizations to implement.

Other log-reduction techniques take the raw audit logs as inputs and develop parsing
mechanisms to analyze them to reduce size and verbosity, without losing information cru-
cial for forensic analysis. Xu et al. [36]proposed a similar work, where the researchers have
proposed aggregation algorithms to preserver the dependence of events during the logging
of audit data, and later using a reduction algorithm that preserves the dependence. Hossain
et al. [12] proposes efficient log-reduction techniques while preserving crucial dependence
information. These reduced logs can be used for crucial forensic analyses like backtracking
or impact analysis.

While the above works talk about developing audit loggers with better run-time and stor-
age performances than Linux Audit Daemon, it’s equally important to safeguard the logger
systems and data. If and when a system is compromised, the attackers will naturally try to
hide all the traces and would try to erase log data and corrupt the logging systems. Protect-
ing log data is trivial. We can simply redirect the logs to a remote secure server, ensuring
the logs stay unscathed even if the system is compromised. However, securing the logger
application is not trivial. Linux Provenance Modules [1] provides a trusted auditing envi-
ronment. This paper uses custom-made hooks rather than LSM or Netfilter hooks used in
previous works. This system can be extended to implement Hi-Fi and CamFlow systems
discussed above, making those more trustworthy and tamper-proof. Further, works like
SGX-LOG [13], CUSTOS [26] etc. uses Intel SGX, a hardware extension, so that the logging
system can execute in a separate secure container. SGX-LOG also uses syslog server to gen-
erate audit data and store it in persistent storage.

eBPF is yet another framework, which uses a virtual machine inside the kernel to trace
system calls (and all kernel activities) by hooking into specified Kernel Functions. eBPF
code is JIT compiled and needs no new modules to be installed in the Kernel. It is a very
new framework, and we believe eBPF’s full potential is yet to be explored. So far, eBPF has
been used to intercept external communications (network or peripheral based commu-
nications), kernel function tracing and profiling, and securing the system against threats.
Researchers have tried to use eBPF in different kinds of tracing and security policing sce-
narios, and develop complex network functions to intercept network communications us-
ing the tracing capacities of eBPF [23]. Bertrone et al. [2]uses eBPF hooks to intercept and
filter network traffic based on source and destination IP addresses. They try to develop a
prototype system of an eBPF-based iptable.

Linux (e)BPF Modules [33], an eBPF based framework, intercepts peripheral communi-
cation from devices connected via Bluetooth, USB/ NFC, etc. The design incorporates eBPF
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hooks in these drivers to intercept the communication traffic, and discard the packets with
suspicious contents. Another recent work(ITASEC) uses eBPF hooks in specific tracepoints
of network functions to develop a system-level security policer. This system can create
fine-grained security policies for different users, processes, or containers.

Sysdig [15] is yet another eBPF-based an open-source, cross-platform, powerful, and
flexible system monitoring and troubleshooting tool for Linux. Sysdig also works on Win-
dows and Mac OSX (but with limited functionality) and can be used for system analysis,
inspection, and debugging. There are other works that are built upon Sysdig.

Deri et al. [7] use Sysdig for collecting streams of system calls produced by all or selected
processes on the hosts and sending them over the network to a monitoring server. There-
after, machine learning algorithms are used to identify changes in process behavior due
to malicious activity, hardware failures, or software errors. Falco [32] is yet another eBPF
based framework that provides cloud-based run-time security.

6 CONCLUSION

The eBPF framework provides a safe and convenient way to write sandboxed code inside
the Linux kernel, without the requirement of loading new modules in the kernel. In this
project, we have used bpftrace and BPF Compiler Collection, two toolkits built over the eBPF
framework to collect system audit data. To trace system call arguments, we hook our eBPF
tracing code into predefined kernel tracepoints.

Our audit logging system offers low run-time overhead. So far, our system supports 20
system calls. However, this can support all the system calls in Linux Kernel. It has the
potential to be a full-fledged system for collecting audit data, and thus help in detecting
threats such as malware and APTs.

7 FUTURE WORK

The next goal is to extend the functionalities of this system so that it can support all other
system calls. It takes only a few lines of code to add support for a new system call in our
audit logger.

As explained in Section 2, the eBPF bytecode can only handle programs that have a max-
imum of 4096 instructions. Our system has almost reached that limit. As a result, the ad-
dition of a lot of newer system calls will not be possible if we continue to use the current
system. To solve this, the best way is to use different BCC programs for different groups of
syscalls, and use them separately or collectively as needed.

Other future work involves developing a selective logging mechanism in the system so
that the system could be configured to log only specific arguments of a system call. It is
possible to develop an audit-reduction mechanism as well. For instance, the system would
be able to detect and drop redundant audit records. The system could also be configured
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to generate aggregated output records (e.g.: show how many times a certain syscall was
invoked, rather than the individual arguments of each of those calls).

8 APPENDIX

This section lists the full set of system calls supported by the Audit Consumer, but not sup-
ported by our audit logging system yet. There are multiple reasons for our system not sup-
porting a certain syscall. In most cases, we did not manage enough time to add support for
all of them. The space constraint mentioned in Section 7 has also been a bottleneck.

In many cases where we haven’t added support for a certain syscall, we have added it for
at least one syscall with almost similar functionality. For example, support for preadv(2),
pread64(2) is not there, but read(2) is supported, and it will require a trivial effort to add
support for preadv and pread64.

Some network-related system calls have been left out in this version. Adding support
for these syscalls is non-trivial, because the address types (ipv6, ipv4), address length, etc.
depend on the socket families and other syscall-specific arguments. Our system supports
syscalls like connect(2) and accept(2), but the functionality for choosing the correct address
type and length is yet to be added. In few cases, such as stat(2), our system has logging
support, though the Audit Consumer does not support them yet.

21



Syscall
Number

Syscall
Name

Traced? Remarks
Trivial/

Non-trivial
0 read yes Trivial
1 write yes Trivial
2 open yes Trivial
3 close yes Trivial
9 mmap yes Trivial
10 mprotect yes Trivial
11 munmap yes Trivial

17 pread64 no

We have already added
support for read. We could
not add support for it due
to time-constraint.

Trivial

18 pwrt64 no

We have already added
support for write. We could
not add support for it due
to time-constraint.

Trivial

19 readv no

We have already added
support for read. We could
not add support for it due
to time-constraint.

Trivial

20 writev no

We have already added
support for write. We could
not add support for it due
to time-constraint.

Trivial

22 pipe no

This is an important syscall.
eBPF doesn’t provide access
to the flag argument passed
in this syscall. Also, the file
descriptors are passed on as
a pointer array which needs
to be dereferenced.

Non-trivial

32 dup yes Trivial

33 dup2 no

We have already added
support for dup. We could
not add support for it due
to time-constraint.

Trivial

41 socket yes Trivial

42 connect yes

Our system has support
for this syscall. But the
address format needs
to be handled.

Non-Trivial

43 accept yes

Our system has support
for this syscall. But the
address format needs
to be handled.

Non-Trivial
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Syscall
Number

Syscall
Name

Traced? Remarks
Trivial/

Non-trivial

44 sendto no
The dest_addr field needs
to be traced based on the
socket type.

Non-Trivial

45 recvfrm no

The address length needs
to be figured out depending
on the source address
and socket type.

Non-Trivial

46 sendmsg no

The address length, type
and field needs to be
decided based on the
msg_header.

Non-Trivial

47 recvmsg no

The address length needs
to be figured out depending
on the source address
and socket type.

Non-Trivial

49 bind no

The length and type of the
address depends on the
sockaddr structure. This
has to be traced first and
then the address can be
recorded.

Non-Trivial

50 listen no
This is trivial. We could not
add a support for this due
to time-constraint.

Trivial

51 getsknm no

The address and length
of the socket has to be
recorded from the pointer
-valued sockaddr buffer.

Non-Trivial

52 getpeer yes

Similar to accept(2),
our system has support
for this syscall. But the
address format needs
to be handled.

Non-Trivial

53 sckpair no
Similar to pipe(2), the
pointer valued fd array
needs to be dereferenced.

Non-Trivial

56 clone yes Trivial
57 fork yes Trivial

58 vfork no

We have already added
support for fork. We could
not add support for it due
to time-constraint.

Trivial

59 execve yes Trivial
60 exit yes Trivial
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Trivial/

Non-trivial
61 wait4 yes Trivial

62 kill no
We could not add a support
for this syscall due to time
constraint.

Trivial

72 fcntl yes Trivial

76 trunc no
We could not add a support
for this syscall due to time
constraint.

Trivial

77 ftrunc no
We could not add a support
for this syscall due to time
constraint.

Trivial

82 rename yes Trivial

83 mkdir no
We could not add a support
for this syscall due to time
constraint.

Trivial

84 rmdir no
We could not add a support
for this syscall due to time
constraint.

Trivial

85 create no
We could not add a support
for this syscall due to time
constraint.

Trivial

86 link no
We could not add a support
for this syscall due to time
constraint.

Trivial

87 unlink no
We could not add a support
for this syscall due to time
constraint.

Trivial

90 chmod no
We could not add a support
for this syscall due to time
constraint.

Trivial

91 fchmod no
We could not add a support
for this syscall due to time
constraint.

Trivial

92 chown no
We could not add a support
for this syscall due to time
constraint.

Trivial

93 fchown no
We could not add a support
for this syscall due to time
constraint.

Trivial
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Syscall
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Non-trivial

94 lchmod no
We could not add a support
for this syscall due to time
constraint.

Trivial

101 ptrace no
We need to trace the
pointer valued structures
addr and data.

Non-trivial

105 setuid yes Trivial
106 setgid yes Trivial

113 setreu no

We have already added
support for setuid. We could
not add support for it due
to time-constraint.

Trivial

114 setreg no

We have already added
support for setgid. We could
not add support for it due
to time-constraint.

Trivial

117 setresu no

We have already added
support for setuid. We could
not add support for it due
to time-constraint.

Trivial

119 setresg no

We have already added
support for setgid. We could
not add support for it due
to time-constraint.

Trivial

231 exitgrp no

We have already added
support for exit. We could
not add support for it due
to time-constraint.

Trivial

257 openat yes Trivial

258 mkdirat no
We could not add a support
for this syscall due to time
constraint.

Trivial

260 fchwnat no
We could not add a support
for this syscall due to time
constraint.

Trivial

263 unlnkat no
We could not add a support
for this syscall due to time
constraint.

Trivial

264 renmat no

We have already added
support for rename. We could
not add support for it due
to time-constraint.

Trivial

265 linkat no
We could not add a support
for this syscall due to time
constraint.

Trivial
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Non-trivial

268 fchmdat no
We could not add a support
for this syscall due to time
constraint.

Trivial

288 accept4 no

We have already added
support for accept. We
could not add support
for it due to time-
constraint.

Non-trivial

292 dup3 no

We have already added
support for dup. We could
not add support for it due
to time-constraint.

Trivial

293 pipe2 no

This is an important syscall.
The file descriptors are
passed on as a pointer array
which needs to be
dereferenced.

Non-trivial

295 preadv no

We have already added
support for read. We could
not add support for it due
to time-constraint.

Trivial

296 pwritev no

We have already added
support for write. We could
not add support for it due
to time-constraint.

Trivial

299 rcvmmsg no

The address length needs to
be figured out depending on
the source address and socket
type.

Non-Trivial

307 sndmmsg no

The address length, type
and field needs to be
decided based on the
msg_header.

Non-Trivial

316 renmat2 no

We have already added
support for rename. We could
not add support for it due
to time-constraint.

Trivial

322 execat no

We already have support
for execve(2). We could not
add support for this due to
time-constraint.

Trivial

327 preadv2 no

We have already added
support for read. We could
not add support for it due
to time-constraint.

Trivial

328 pwrtv2 no

We have already added
support for write. We could
not add support for it due
to time-constraint.

Trivial
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