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Abstract

Errors in validation of user inputs lead to serious security vulnerabilities. Many web applications
contain such errors, making them vulnerable to remotely exploitable input validation attacks such as
SQL injection, and cross site scripting. In this paper, we present a dynamic taint analysis technique
to detect the input validation attacks. More specifically, our technique is based on tracking flow of
taint information from untrusted input into the parts of the generated output (or commands). A
unique benefit of our approach is that it can be applied to all of the web application development
languages whose interpreters are implemented in C. We demonstrate this ability by applying our
technique on web applications which use PHP, and bash scripts. Our technique is implemented as
a fully automatic source-to-source transformation. We present experimental evaluation to establish
effectiveness of our approach, paying particular attention to its attack detection ability. Experiments
demonstrate that our technique detects all the attacks accurately with no false alarms.

Key Words: Input Validation Errors, Fine-grained Information Flow Tracking

1 Introduction

Web applications have been playing a critical role in many areas such as financial transactions,
commercial business, cyber community services. As a consequence, web applications also become
interesting targets for attackers. Most research efforts have been put on detecting and preventing
buffer overflow attacks, however, there are less research work on attacks that exploit input validation
vulnerabilities, which have been shown as a more significant problem in web applications. In fact,
according to [15], input validation attacks are the No. 1 type of web attacks.

Web applications usually take inputs from users through form fields, cookies, or some other
standard channels, and use these input data in further processing operations, such as querying
databases, generating web pages, or executing commands. Because the input data are from the
remote users and may contain malicious values, they need to be validated before use. Once a
web application fails to do so, attacks can exploit the vulnerabilities to launch particular attacks.
Examples of popular input validation attacks are SQL injections, cross site scripting, and command
injections. These attacks can cause many serious problems, such as leak of sensitive information
and corruption of critical data.

One way to detect the above types of attacks is to properly sanitize user input, for example,
to ensure that no special characters or SQL keywords are used in untrusted input. This can
work, but it requires the developers to perform the checks. As illustrated by the buffer overflow
problems, developers often do not have the time, know-how or willingness to check their code for
all security vulnerabilities. Even if they did introduce security checks in their code, these checks
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may be incomplete, still leaving the door open for attackers to sneak through. Consequently, it is
important to develop techniques that can largely automate the process.

Several static analysis approaches have been proposed to address this problem. These ap-
proaches use type analysis or pointer analysis on the source code to statically examine whether a
user input will be used in security sensitive operations along some execution paths in a program.
Any such instance will be reported as a possible vulnerability. Because static analysis always need
to make approximations, the analysis results are usually not very accurate and false alarms can
be very high. Furthermore, it is legitimate for web applications to use user inputs in even secu-
rity sensitive operations as long as these inputs are properly sanitized. It just makes the analysis
results even less welcome by reporting every link from a user input to a security operation as a
vulnerability.

Recently dynamic information flow tracking techniques have been proposed to detect control
flow hijacking attacks such as buffer overflow attacks and format string attacks [18, 14]. In this
paper, we present a runtime information flow tracking technique to detect input validation attacks
in web applications.

We have made the following contributions with our approach:

• We present a practical runtime technique which can accurately detect input validation errors
in web applications. This technique can be used as the second line of defense to account for
programmer’s negligence. In addition, our automatic technique can also address the unknown
input validation vulnerabilities.

• We present an information flow tracking technique that is much more comprehensive than previ-
ous similar approaches. Indirect flows such as assignments through control flows, or assignments
through translation tables are taken care of in our approach. We also carefully handle external
functions.

• Our technique can be applied to various scripting languages that are used in web application
developments. We achieve this by providing a transformation tool that works programs written
in C, and using this tool to transform interpreter programs for the scripting languages.

• Our approach support versatile policy enforcement. Because information flow tracking results
are available at the time of policy enforcement, the checking functions can make use of these
tracking results, and provide much more accurate and reasonable checking results.

• We have implemented a prototype tool, and evaluated our technique on two scripting languages
and a number of web applications. The results show that our technique has accurate attack
detection and reasonable performance overheads thankful to our optimization techniques.

In the rest of the paper, we first give a background description on input validation attacks in
Section 2. Then we give an overview of our approach in Section 3, and present transformations
in Section 4 and optimizations in Section 5. In Section 6 we provide our implementation and
experiment results. After that, we discuss some of related work in Section 7 and conclude the
paper in Section 8.

2 Background: Input Validation Vulnerabilities

A web application is typically a client/server software that handles user requests coming from
clients such as web browsers. To serve the user requests, it often requires accessing system resources
such as databases and files at the server end. Figure 1 shows a simplified architecture of a web
application. The system resources are a part of trusted environment and often contain security-
critical data. Hence the resources need appropriate protection to maintain their confidentiality and
integrity. User input, however, cannot be trusted. It cannot be directly used to access the system
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Figure 1: Web application architecture

resources. Checks should be performed to validate the user input before it can be used in the trusted
environment. Lack of validity checks or inadequate checks can result in exploitable vulnerabilities.
In this section, we present only a few examples of such vulnerabilities. Comprehensive information
on the vulnerabilities can be obtained from [7, 17, 15].

2.1 SQL Injection

SQL Injection vulnerabilities occur when untrusted user input is used to construct SQL commands.
Malicious input can alter the semantic meaning of an SQL command, which on execution performs
actions different from the one intended. Consider the following statement in PHP application used
for constructing a SQL command:
$cmd = "SELECT COUNT(*) FROM users

WHERE name = ’" . $name . "’

AND passwd = ’" . $pwd . "’";

The variables $name and $pwd respectively hold user name and password provided by the user. The
SQL command authenticates a user by returning 1 for a valid user name and password combination,
otherwise it returns 0. An attacker can enter the same value: ’ 1=1 for both $name and $pwd. The
resulting SQL command would be:
SELECT COUNT(*) from users

WHERE name = ’’ OR 1=1

AND passwd = ’’ OR 1=1

The above statement always returns 1, thereby authenticating the attacker. The attacker can also
use ’ OR 1=1 -- for the user name. The two hyphens (--) in Microsoft SQL server is the comment
symbol, and therefore the part of SQL query after the symbol is commented out. The attack still
succeeds. Worse attack can be launched by using ’ ; DROP TABLE users -- as the value for user
name. The semicolon symbol (;) divides the command string into two different SQL statements,
both of which get executed. As a result of this, the table users is dropped. Possibilities of attacks
are numerous !

In order to detect SQL injection attacks accurately, first we need to identify parts of the SQL
query string which depend on the user input. If any of the part contains non-permissible SQL
keywords, or meta-character such as ; and --, the SQL query should be rejected.

2.2 Cross-Site Scripting (XSS)

Many web sites have options that allow users to enter data and then dynamically generate web
pages based on the input. A cross-site scripting vulnerability may occur if the user input is not
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properly validated. Attackers exploit this vulnerability by embedding malicious script into the
generated page. The script is automatically executed on the machine of any user who views the
generated page.

Consider an example of a web service which allows viewing of remote documents by including
the document name in the query string as shown below:
http://www.trustedsite.com/searchdoc.cgi?file=designDoc

If the requested document does not exist, the web site returns an error message such as:
<HTML>

Document does not exist: designDoc

...

</HTML>

Note in the above output that the search string designDoc is directly included from the URL of
query string. This may seem harmless. However, an attacker can construct a XSS attack in the
following way. First, he lures the victim into clicking the below URL:
http://www.trustedsite.com/searchdoc.cgi?file=<script>

window.open("http://www.attacker.com/malicious_script.js")

</script>

A link to the URL can be included in an e-mail to the victim, or it can be included in a web page
that the victim visits. Once the victim opens the URL, the error output containing the malicious
script is delivered to the victim on behalf of the trusted web server. However, the victim’s browser
now interprets the output in a different way. Since <script>...</script> are the HTML tags
for executing scripts, the browser executes the malicious script instead of literally displaying the
argument of the query string. The trust level associated with the malicious script will be the same
as that with the trusted web server, which means that script can at the minimum read the cookies
set by the server. Cookies can be effectively used to steal the identity of the victim. Note that
depending on the trust level, the script may be have additional privileges such access to file system,
etc.

A cross-site scripting seems to be an easy attack to detect. The web server should just check
the input for existence of HTML tags such as <script>, and not let them through where it is not
allowed. However, checking every input is tedious and error-prone job. Also, this particular type
of check can be easily bypassed by using character encodings on the malicious part of the input
string.

2.3 Command Injection

Web applications often use functions to manipulate system resources. Examples of functions include
fopen(), unlink(), system(), exec(), etc. Command injection vulnerabilities occur when the
arguments to these functions are constructed from untrusted data.

Recently a command injection vulnerability was discovered in ePing plugin [6]. It contains a
PHP script for executing ping command. Vulnerable portion of the PHP code is shown below:
$eping_do = $eping_cmd . " " . $eping_count .

" " . $eping_host;

If (eping_validaddr($eping_host))

{

...

system($eping_do, ..);

}

The function eping validaddr checks the validity of the input string corresponding to the IP
address of the host being pinged. However, it has a bug due to which even improper IP addresses are
validated. Attackers can exploit this bug by injecting malicious command in the input $eping_host.
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For example:
?eping_host=127.0.0.1;cat%20/etc/passwd

Thus, on execution of the PHP system function, password file is displayed (%20 is the HTML
encoding for the space character).

Strict validation of every input that is used in the arguments of vulnerable functions can prevent
command injection types of attacks. For the above example, we can specifically check if the input
contains any meta-characters (e.g., ;) or any other commands.

3 Overview of Approach

All the attacks described in Section 2 are caused by the same type of bugs in web applications:
failure to validate untrusted input data prior to using them in security sensitive operations. By
studying these attacks, we have made the following important observation: if special characters
(e.g. SQL keywords) are found in those parts of security sensitive operation arguments (e.g. SQL
queries) that are directly copied from untrusted input, then it is a very strong indicator of an attack.
Based on this observation, we develop the following approach to detect input validation errors:

• Identify untrusted input and security-sensitive operations. Untrusted input may include any
input that is read from a remote client by a server. Security-sensitive operations may include
database queries, execution of shell commands, invocations of important system calls or library
calls such as system and popen; and so on. Both untrusted input and security-sensitive opera-
tions are identified by generic annotations on relevant functions, and this does not require much
application-specific knowledge.

• Use information flow tracking to identify, at a fine level of granularity, how arguments to sensi-
tive operations are derived from untrusted user inputs. We use runtime tracking of information
flows (rather than static analysis) to obtain the degree of accuracy necessary for a preventive
approach.

• Express and enforce security policies that can use the content of sensitive arguments, together
with information flow. A simple example of such a policy is: “only those characters in the query
string that weren’t derived from untrusted input can be special characters.” More complex
polices can be defined based on knowledge of security sensitive operations, For example, a
policy may parse the query to identify SQL keywords, and then require that no component of
any keyword is derived from untrusted input.

The most important and challenging step is to correctly and efficiently track flows of untrusted
data at a fine level of granularity. In our approach, we developed a source-to-source transformation
technique to instrument programs for tracking flows of untrusted data at the byte level. There are
two significant advantages of the source code transformation technique:

• Efficiency. Tracking flows of untrusted data in transformed programs can be made efficient,
especially when static program analysis is used to eliminate unnecessary tracking statements.

• Wide applicability. We notice that although web applications are developed in various scripting
languages such as PHP, Perl, Bash, most of these languages are interpretation-based and their
interpreters are written in a common language, namely C. By developing a program transformer
for the common language and using the transformer to transform the interpreters, our technique
can be easily applied to all the languages. Furthermore, the transformation can be made
transparent to web applications, and thus make the deployment much smoother.

In addition, source code transformation makes it much easier to track indirect flows. Tracking
such flows, as described later, are very important to improve the precision of tracking and attack
detection.
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4 Transformation

4.1 Basic transformation for tracking untrusted data

Our approach is based on precise “taintedness” tracking on program memory at runtime. A memory
unit is marked as “tainted” when the stored value is copied from untrusted data. Annotations are
provided to mark as “tainted” the untrusted input data from untrusted sources. Programs are
transformed to insert additional code for tracking the propagation of “tainted” input data.

4.1.1 Taint tagmap We use a memory “mirror” to track the propagation of untrusted input data
in programs. Each byte in the program memory is associated with a taint tag indicating whether
this byte is “tainted” or “untainted”. The taint state of each byte is represented as a bit in the
“mirror”, a global bit array tagmap, which is indexed by the program memory address of each byte.
A bit value of 1 represents “tainted”, while 0 represents “untainted”. In a 32-bit architecture, a
program may allow to use up to 4GB virtual memory. So the array tagmap is defined as large as
512MB in virtual memory. However, the actual memory usage of tagmap depends on how much
actual memory is used by the program and it is usually much smaller than 512MB.

Accessing the tagmap involves two steps. The first step is to locate the tag word in the array
using the highest bits in an address, while the second step is to locate the tag bit within the tag word
using the lowest bits in the address. A number of accessor functions are defined to facilitate reading,
writing, and copying tags in tagmap. These functions are frequently called in the instrumentation
code to update the “taintedness” state of the program memory. These functions are specialized for
different sizes of memory blocks, and most of them are implemented as macros to avoid overheads
due to function calls.

Initialization of tagmap. The taint tagmap is initialized as all “untainted”. Taint tags for global
variables that have initial values are initialized in module constructor functions. The tag values
depend on whether the initial data values are untrusted.

4.1.2 Tracking explicit assignments An assignment statement lhs = rhs updates the lhs

variable value with the value of the expression rhs. The taintedness tag of the lhs variable should
also be updated according to that of the expression rhs. To track this taintedness propagation, the
transformation inserts additional statements into the program. These additional statements are in
the form of:

tag = taint_get_tag(&rhs);

taint_set_tag(&lhs, tag);

An expression could be a constant, a variable, or a complex expression formed by sub-expressions
and operators. However, when computing the taint tag for an expression, we only consider the sub-
expressions of which the values are directly used in evaluating the whole expression. Sub-expressions
for addressing or indexing are excluded. This is because what we want to track is how untrusted
values propagate from one location to another. However, sometimes indirect expressions can also
be used to propagate values. We will discuss this later.

4.1.3 Tracking Functions. Function argument passing in C follows the “copy-by-value” style,
in which values of actual arguments are copied to the corresponding formal parameters upon each
function invocation. To pass the taintedness tags of actual arguments into the callee function, two
auxiliary stacks are used. The first stack, called taint in args, stores the taint tag of each actual
input argument of invoked functions, while the second stack, called taint out args, stored the taint
tag of return values of functions.

At each function call site, the tags of actual arguments are pushed onto the taint tag stack
taint in args before the call, and the tag of return value is popped off from taint out args and is set
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to the tag of the actual receiving variable.

taint_push_in_arg(&arg1);

taint_push_in_arg(&arg2);

ret = foo(arg1, arg2);

tag = taint_pop_out_arg();

taint_set_tag(&ret, tag);

When transforming each function, at the function entry the taint tag of each formal parameter
is initialized to the passed taint tag of the corresponding actual argument.

tag1 = taint_pop_in_tag();

taint_set_tag(&form1, tag1);

tag2 = taint_pop_in_tag();

taint_set_tag(&form2, tag2);

Before each return statement, the taint tag of the return value is pushed onto the taint out args
stack so that this taint tag can be passed back to the call site.

taint_push_out_arg(&ret);

4.2 Improvements on taint tracking

4.2.1 Tracking Indirect Data Propagation Although most propagation of untrusted input
data are through explicit assignments, there are certain cases where untrusted input data are
propagated in an indirect manner. To precisely track the flows of untrusted input data, we must
track these kinds of indirect propagation as well. However, tracking indirect flows may introduce
false dependencies among program variables, and thus cause false taintedness. The biggest challenge
is to find the trade-off between the precision of tracking and false alarm rates.

Propagation through translation tables. Input and output strings in web applications are
usually encoded in various formats. Web applications need to decode these strings before processing
them, and encode them before sending them back to users. Many encoding and decoding functions
make use of translation tables. In these functions, each character in the input string, or a computed
value from the input character, is treated as an offset to the translation table to get a translated
value. This value may be used as the final translation result or for further translation computations.
For example, to decode a base64 encoded string, a translation table lookup as shown below is used.

res = reverse_table[ch];

To correctly track the taintedness propagation indirectly through ch in the above assignment, the
taintedness tag of res is defined as depending not only on the taintedness of (reverse table[ch]),
but also on ch.

C permits uses of pointers, however, the above assignment can be rewritten slight differently
by using pointers:

p = reverse_table;

p += ch;

res = *p;

Although the above statements achieve the same effect, the way to track the taintedness prop-
agation due to ch is completely different. Now the pointer arithmetic involving ch should taint p.
Because p is tainted, the value obtained by the dereference of p is then tainted. As a result, res is
tainted. The method requires that pointer arithmetic and dereferences should be tracked. While
this is usually enforced in taint analyses for detecting control hijacking attacks, we do not take this
approach for the fear of introducing too much false positives.
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Propagation through control flows. Sometimes the encoding and decoding of strings take
advantage of control flows. For example, the space characters in URLs are usually represented as
+ signs. The following code snippet decodes such + signs into spaces:

if (*data == ’+’)

*dest = ’ ’;

Another similar example is to convert dots and spaces in variable names to characters for
better compatibility. The code below achieves this:

switch (ch) {

case ’ ’:

case ’.’:

res = ’_’;

break;

}

In both examples, the result strings are completely determined by the input strings with the
help of control flow constructs. Consequently the taint tags of the result strings should also reflect
the taint tags of input strings. To track such kinds of taintedness propagation, a notion of pctag,
the taint tag for the current program counter, is introduced. pctag is initialized to “untainted”.
Before the program steps into one branch of a control flow construct such as if, switch, while, the
current pctag value is saved, and the taint tag of the condition expression is set as the new pctag

value. When computing the taint tag value for an expression within the branch, not only tags
of variables in the expression should be considered, but pctag should also be counted. Once the
program exits from the branch, the saved pctag value is restored. Using pctag, the first example
will be transformed as follows:

oldpctag = pctag;

pctag = taint_get_tag(data);

if (*data == ’+’) {

*dest = ’ ’;

taint_set_tag(dest, pctag);

}

pctag = oldpctag;

It is easy to see that the taintedness dependency between *dest and *data is well captured
by pctag. Unfortunately, unrestricted uses of pctag will cause far too many dependencies among
variables which in turn will greatly degrades the quality of taint tracking. In our implementation,
we only use pctag to track indirect assignments through controls flows which are based on a single
equality check and constant assignment, and the assignment should appear in the immediate inner
branch of the control flow construct where the check appears. This can sufficiently handle the
above two examples.

4.2.2 String encoding/decoding vs hashing. It is very common to encode/decode strings
in web applications. The encoding/decoding processes usually involve complex computations on
input strings. For example, below is part of the code used for base64 decoding:

result[j++] |= ch >>2;

result[j] = (ch & 0x03) << 6;

Certainly we would like to track the value propagation from ch to result. However, sometimes
the similar computation is used to compute a hash value from the input string:

while (arKey < arEnd) {

h += (h << 5);

h ^= (ulong) *arKey++;
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To avoid unnecessary dependencies, and thus improve the precision of taint tracking, it would
be desirable to treat hash values as “untainted” all the time. Unfortunately, it is hard for the
transformer to distinguish these two cases unless additional annotations are provided. Our current
implementation treats these two cases in the same way and tracks both.

4.3 Dealing with External Functions.

External library functions can also propagate untrusted data from one argument to another. Ideally
we should also transform these library functions to track the data propagation happened inside
them. However, for various reasons (e.g. the source code is not available) sometimes we cannot
transform certain library functions. To account for the data propagation effects caused by these
external functions, we use wrapper functions, or summarization functions, which summarize how
the associated external function propagate data values between its arguments and global variables.

Because the transformer operates on each individual file and does not hold the whole program,
it has no knowledge about which functions are external. We create a small tool that traverses all
the source files of a program and generates a list of all external functions used by the program. This
list will then be used by the transformer as a guideline to report warnings whenever an external
function needs a summarization function but the summarization function is not present.

Summarization functions are created manually based on the semantic of each function. They
are compiled into standalone libraries which will be provided to the transformer for linking against
transformed programs. The summarization functions are invoked in the transformed program
whenever the associated library function is called.

When an external library function has no return value, its summarization function takes exactly
the same arguments as the library function. When an external library function has return values,
the variable that receives the return values will additionally be passed as the first argument to the
summarization function. Summarization functions can make use of the taint tagmap macros to
read, write, or copy taint tags.

It is rather straight-forward to write summarization functions for standard C library functions
as the semantics of these functions are well defined and well known. We write summarization
functions for most library functions used in the test interpreter programs. Most of them are string
library functions. Other library functions include realloc, realpath, tolower, and so on. Below is
the summarization function for memcpy, one of the most used library functions in the test programs.

void memcpy_smr

(char *dest, const char *src, int n) {

taint_copy_buffer(dest, src, n);

}

Writing summarization functions for non-standard library functions is more involved. This is
largely because the semantic of each function is less well known compared to standard C library
functions. In our implementation, we create a number of such summarization functions for Apache
library functions. Here is an example:

void apr_pstrdup_smr

(char **ret, apr_pool_t *p, const char *s) {

int sz = strlen(s);

taint_copy_buffer(*ret, s, sz);

}

5 Optimizations

Although the transformation presented in Section 4 brings the comprehensive fine-grain taint track-
ing into transformed programs, the performance penalty caused by the inserted taint tracking
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statements is quite high. To reduce the performance overheads, we have designed and implemented
several local optimizations. As we show later in Section 6, these optimizations are very effective in
improving the performance of transformed programs.

• Use local taint tag variables whenever possible. One major source of taint tracking overheads
is frequent accesses to tagmap. These accesses involves expensive memory load instructions and
complex bit operations for locating tag bits within tagmap. To reduce such overheads, we use
shadow taint tag variables to store taint tags of original program variables. A shadow variable
has the same scope and lifetime as the original variable itself, and is updated along with updates
to the original variable to reflect changes to its taint tag. Because shadow taint tag variables
are of simple data types (more precisely integers) and tend to go in registers, accesses to these
variables are usually much faster.

We only use shadow taint tag variables for program variables that have no aliases. When a
program variable is aliased by other variables, the memory location represented by the variable
may be updated through different aliases. We then need to track all the aliases to make sure
that updates to these aliases should result in updates to the same shadow taint tag variable.
This is rather difficult, especially when the program variable is passed beyond the function
scope.

To be conservative and keep the transformation simple, we restrict the use of shadow taint tag
variables to only local variables. Our criteria to generate a taint tag variable for a local variable
is that the address of the local variable must not be assigned to other variables, i.e., there are
no aliases to the local variable.

• Do not track local variables that are independent of tainted inputs. One important direction of
optimizations is to minimize the number of variables to be tracked. The intuition is that if we
statically know that a variable is never tainted, then there is no need to track such a variable.

We use an intra-procedural flow-insensitive dependency analysis to find out all local variables
that are independent of tainted inputs. Initially all global variables and formal parameters
are marked as “tracked”. After that, all variables whose values may come from the “tracked”
variables are also marked as “tracked”. We repeat this step until no more “tracked” variables
can be added. In the end, all the unmarked local variables are independent variables and require
no tracking at all.

A special case is that if an assignment is self-updating (i.e., the only variable in the rhs expression
is the lhs variable, for example, p=p+1), there is no need to insert taint tracking statements as
the taint tag of the lhs variable remains unchanged.

Here we also outline some global optimization ideas. Although we have not implemented these
global optimizations, we believe that they will further significantly reduce the overheads caused by
taint tracking.

• Use global dependency analysis. In the second local optimization we assume that all formal
parameters may be tainted, and thus should be tracked. However, this is an overly conservative
assumption. With the help of a simple global analysis, we should be able to find out which
formal parameters should be tracked.

• Create multiple versions of functions. Another approach to alleviate the above problem is to
use polymorphic functions. In another word, to create multiple versions of the same function,
each representing different taintedness of formal parameters.
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6 Evaluation

6.1 Implementation

To evaluate our technique, we have implemented a program transformation tool that instruments
C programs with taint tracking statements. The transformer is written in Objective Caml and
uses a nice toolkit CIL [10] as the front end to manipulate C constructs. For greater scalability,
each source file is transformed separately. There are no changes required to Makefiles. Only the
C compiler is replaced with the transformer by redefining the CC variable.

Using this transformer, we have successfully transformed the interpreters of two popular script-
ing languages, PHP4 and Bash, which are commonly used in web application development. For the
purpose of evaluation, we use Apache 2 as the web server.

PHP. As an HTML-embedded scripting language, the goal of PHP is to allow web developers to
write dynamically generated pages quickly. In the architecture of PHP4 interpreter, a component
called Zend Engine acts as the language parser; an abstract layer SAPI is defined to allow PHP
modules to communicate with web servers; and extensions such as interfaces to various databases
are supported through extension APIs.

There are several ways by which PHP applications can get untrusted inputs: query strings
(HTTP GET), form fields or hidden form fields (HTTP POST), and cookies. We identified these
input points in the SAPI component of the PHP interpreter, and created annotations as well as
marking functions for these untrusted input functions. The marking functions simply initialize all
bytes of each untrusted input string as “tainted”.

The PHP interpreter calls about 1,000 external functions. Many of these functions are part of
the standard C library. However, there are also a number of functions belonging to other libraries,
such as XML libraries and Apache libraries. We have also transformed some libraries such as
the XML library expat. For other libraries, we carefully studied their functions, and provided
summarization functions whenever needed. Most of these functions have a semantic similar to
functions in the standard C library. So it is not difficult to write summarization functions for them.
For example, apr pstrndup, one of Apache portability library functions, is similar to strndup.

Bash. Not only bash is a handy UNIX/Linux shell, but it is a powerful shell programming language
that can be used to develop advanced web applications. To get untrusted inputs, bash programs
need to either read from standard inputs (HTTP GET), or parse the environment variables (HTTP
POST and cookies). We marked all file read functions as input points where untrusted data
(“tainted”) may come in.

6.2 Effectiveness

We studied the effectiveness of our approach on detection of input validation attacks. Based on
their popularity and availability of known vulnerabilities, three PHP web applications are selected
for the experiments.

• phpBB2 is an electronic bulletin board application. In one of its older versions, there is an input
validation error which exists in viewtopic.php and is vulnerable to SQL injection attacks. The
variable $topic id, controlled by remote users, gets passed directly to SQL server in queries.
Attackers can exploit this vulnerability to pass a special SQL query string which can used to
see MD5 password hash for any user for phpBB.

• SquirrelMail is a web-based email client. One of its plugins, calendar, directly output values of
user-controlled variables such as dyear when generating response HTML pages. Attackers can
take advantage of this error and craft cross site scripting attacks.
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• phpSurveyor is an on-line multi-user survey management system. Its user management compo-
nent allows users to change their passwords by invoking the command htpasswd with arguments
$user and $pass. Unfortunately, the values of these two variables are from untrusted inputs and
not checked before being used in htpasswd. This makes command injection attacks possible.

We first successfully reproduced the attacks on these application in our testing environment.
Then we deployed the transformed PHP interpreter module along with sensitive operation annota-
tions and their associated security policies.

• Detection of SQL injection attacks. The PHP extension APIs that are used to send SQL queries
to database servers are annotated as sensitive operations. The associated security policy “no
tainted strings should contain SQL keywords and meta characters” is enforced to detect SQL
injection attacks.

• Detection of Cross Site Scripting attacks. The print variable family functions in Zend Engine
are annotated as sensitive operations as they generate dynamic output HTML pages. The policy
being enforced is “no HTML tags (especially <script>) should appear in tainted strings”.

• Detection of command injection attacks. The standard C library functions popen and execve are
annotated as sensitive operations. The security policies are “no commands should be tainted”
and “no tainted strings should contain special characters (e.g. ’;’)”.

By enabling tracking of explicit assignment and indirect propagations in the transformed PHP
interpreter module, all the attacks are detected successfully, without any false alarms. Because
our tracking is still conservative, sometimes data that are “untainted” are incorrectly marked as
“tainted”. However, only when such data are used as arguments to sensitive operations and their
values violate the corresponding security policies, a false alarm will be alerted. According to our
experience, the likelihood of this type of false alarms is small.

Indirect propagation plays a very important role in precisely tracking flows of tainted input
strings. Once indirect propagation is disabled, we missed many attacks.

Tracking pointers, on the other hand, greatly increases the rate of incorrect taintedness, has
minimal impact on improving the coverage of attack detection.

6.3 Performance

To study the performance overheads incurred by our technique, we ran the Apache server in single
thread mode. We then compared the performance of the above testing applications under the
original and transformed PHP interpreters. The experiments are performed on a PC with Pentium
IV 1.7GHz CPU, 512MB RAM, Red Hat Linux 9.0.

Two measurements are used for performance comparison: CPU time of Apache server + PHP
interpreter, and average client-side response time. The CPU time measurement can be thought of as
micro-benchmark testing, while average response time reflects the real world end-user experiences.
The experiments show that CPU overheads due to taint tracking and policy checking are about
100%, while overheads for client response time are about 30-40%.

Optimizations vastly improve the performance of transformed programs. The first optimization,
using local tag variable whenever possible, reduces the CPU time overheads from about 400% to a
little over 100%. The second optimization, only tracking variables dependent on untrusted inputs,
also cuts the CPU time overheads by 20-30%. We expect to obtain an average CPU time overhead
of 30-40% once the global optimizition is implemented.
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7 Related Work

There have been a number of approaches to detect and prevent attacks on security vulnerabilities in
web applications. These approaches can be broadly classified into three categories: testing, static
analysis, and runtime monitoring. We briefly summarize some of representative approaches in each
category below, and compare them with our approach.

Testing. Currently the most widely used approach to find out security vulnerabilities in web
applications is to perform extensive penetration testings on the web applications [1]. In these
testings, a set of random or malicious inputs are generated and sent to web applications in attempts
to exploit vulnerabilities in such applications or simply crash them. Usually the inputs include the
ones which can cause exploits on known vulnerabilities for regression tests. However, it is always
hard for testing-based approaches to come up with a comprehensive list of test inputs. So these
approaches are less effective in finding out security vulnerabilities.

Static analysis. Input validation vulnerabilities are basically the problem of insecure information
flows. Information flow analysis has been researched for a very long time[2, 5, 4, 9, 19, 12, 11, 16].
Early research was focused on multi-level security, where fine-grained analysis was not deemed
necessary [2]. For instance, the analysis will make the conservative conclusion that if a program
read a file, then any output from the program is derived from this file. Subsequent works proposed
information flow tracking at the level of variables in a program [5].

WebSSARI [7] uses a type inference based information flow analysis to analyze input validation
vulnerabilities in PHP programs. [8] extends a intro-procedural pointer analysis to analyze flows
from untrusted inputs to sensitive operations. Static analysis approaches are inherently less precise.
They approximate program states by combining effects of multiple branches even if these branches
are not all executed at runtime.

Runtime monitoring. Approaches such as application level proxy [17] use application level prox-
ies or firewalls to validate untrusted inputs outside of the protected web applications. Although
it is good that the input validation process is transparent to web applications, the two factors,
semantic gaps between proxies and web applications, and multiple encodings of data, make this
kind of approaches prone to both high false positives and false negatives.

Instruction set randomization techniques are proposed to detect attacks such as SQL injec-
tions [3] by hiding the actual encoding of instruction set from attackers. Unfortunately, the ob-
scurity of instruction set is largely static and can be circumvented by attackers without too much
efforts.

There have been a number of proposals to track information flow at a very low level, e.g., by
using hardware tags for each memory location and register, and using the tag to track propagation of
information (through assignments) at runtime [18]. The work of [14] is an independently developed,
very similar approach, but using an instruction level emulator (Valgrind [13], in particular) instead
of relying on hardware assistance. However, all these works were focused mainly on detecting
control-flow hijack attacks. In contrast, our approach is targeting at input validation attacks on
web applications, which are more data-flow dependent.

Perl has a taint mode [20] in which taintedness of variables are tracked and checked before
executing security critical operations. Compared to this, our approach tracks program memory at
a finer level (byte). In addition, our approach is a transformation technique for C and works for
more scripting languages provided their interpreters are developed in C.
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8 Summary and Future Work

In this paper, we presented a taint analysis based solution to combat input validation attacks.
We demonstrated how precise taint tracking enables detection of various types of input validation
attacks. We presented a fully automatic and practical implementation approach, which could be
easily applied to web applications implemented in different languages.

Runtime overheads incurred by our approach are moderate: between 40 to 100 %. We have iden-
tified a few optimization strategies. As a part of future work, we will implement these optimizations
to bring down the runtime overheads.
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