
STONY BROOK UNIVERSITY

A study of Binary Instrumentation
techniques

Soumyakant Priyadarshan

August 30, 2019

1

Abstract

Low-level vulnerabilities have remained an important source of compromise
in computer systems. Despite the deployment of various protection mecha-
nisms at the OS level/hardware level, attackers have been able to exploit mem-
ory corruption vulnerabilities to compromise a program execution. Many com-
piler or source code based solutions have been proposed to check memory
corruption, control flow diversion, etc. However, the unavailability of source
code limits the large scale deployment of such solutions. Binary instrumen-
tation can play an important role in enforcing low-level security policies such
as CFI (Control flow integrity), SFI (Software fault isolation) and code random-
ization. Binary instrumentation is the process of introducing new code into a
program without changing its overall behavior. Binary instrumentation can be
done either at the runtime (Dynamic binary instrumentation) or offline (Static
binary instrumentation). Static binary instrumentation (SBI) results in efficient
instrumented binaries with less performance overhead. However, SBI is chal-
lenging because of data embedded within code and indirect branches. To en-
force DEP (Data execution prevention) fully, modern compilers have started to
separate data from code by assigning different sections to code and data. Also,
to employ ASLR (Address space layout randomization), x86-64 bit programs are
being compiled as position independent executable. All the commonly used
binaries on most of the x86-64 LINUX distributions are PIE. PIE executables
have relocation information which can be exploited to recover indirect branch
targets. Exploiting these factors can help SBI become robust, complete and ac-
curate.

This report presents a survey of various static and dynamic binary instru-
mentation techniques and security policies such as CFI and code randomiza-
tion that are enforced using binary instrumentation. At the end of this report,
we introduce our fine-grained code randomization approach for x86-64 PIE bi-
naries. We exploit the relocation information of the PIE binaries to achieve
complete and correct disassembly. This helps us in achieving fine-grained code
randomization at the basic block level, without using any symbol or debugging
information.

2

CONTENTS

1 Introduction 4

2 Static Binary Instrumentation 5
2.1 Accurate disassembly . 5

2.1.1 Linear disassembly . 6
2.1.2 Recursive disassembly . 6
2.1.3 PEBIL’s disassembly . 8
2.1.4 Angr’s disassembly . 8
2.1.5 BinCFI disassembly approach . 10
2.1.6 SecondWrite disassembly approach . 11

2.2 Preserving control flow branches . 13
2.2.1 Fixing direct control flow branches . 13
2.2.2 Fixing indirect control flow branches . 13
2.2.3 Callbacks . 15

3 Dynamic Binary Instrumentation 17
3.1 Assembly to assembly transformation - a case study of PIN 17
3.2 Disasssemble and resynthesize - a case study of Valgrind 22

4 Security policy enforcement using instrumentation 25
4.1 Control Flow Integrity . 26

4.1.1 Related works on CFI . 27
4.2 Code Randomization . 30

4.2.1 Related works on code randomization 30

5 Static Code randomization technique for x86-64 position independent
executables 34
5.1 Disassembly approach . 35

5.1.1 Control flow graph . 36
5.2 Code Randomization . 37
5.3 Experimental evaluation . 40

6 Conclusion 42

3

1 INTRODUCTION

Program instrumentation is the process of adding new instructions into a program or mod-
ifying existing code of a program. Program instrumentation is primarily used for security
policy enforcement: CCFIR [28], BinCFI [29] use static binary instrumentation to enforce
CFI (control flow integrity) on COTS binaries. ILR [11] uses dynamic binary instrumenta-
tion to perform code randomization during the runtime. PIP [22] uses program instrumen-
tation to intercept system calls and enforce policies in order to protect benign applications
from getting affected by untrusted applications.A second major application of program in-
strumentation is monitoring and debugging. For instance, Valgrind [15] uses dynamic in-
strumentation to track dangerous uses of undefined values. Other applications of program
instrumentation include program optimization [6], exploit detection/prevention,etc.

Program instrumentation can be achieved either by modifying the source code and re-
building the program or by changing the binary executable itself. Applying instrumenta-
tion or fixing vulnerabilities at the source code level is less complicated and can be highly
efficient and accurate because at the program. Instrumenting binaries, on the other hand,
can be challenging and less accurate in stripped (COTS) binaries. One major challenge is
the content classification problem. To achieve accurate instrumentation correct and com-
plete code discovery is important but distinguishing code from data in a binary can be hard
in the absence of symbolic information. However, binary instrumentation can be advanta-
geous because:

• No need for source code: Commercial of the shelf (COTS) programs are available in
the form of binary only. Even when application’s source code is available, it may use
external third-party libraries for which source code may not be available. In contrast,
binary executables are readily available, making binary based instrumentation tech-
niques more widely applicable.

• Completeness: Operating on binary makes it possible to apply instrumentation through-
out the program and across all the modules (including third-party shared libraries).
This is essential for enforcing security policies such as CFI.

• Language and compiler independent: Source-code based tools are specific to each
programming language. Moreover, they are often limited to a single compiler. In con-
trast, binary instrumentation can be applied to binaries compiled from any source
language by any compiler.

Apart from the above mentioned advantages, binary based techniques empower end-
users to analyze and/or mitigate vulnerabilities, instead of always having to wait for new
features or updates from vendors

Binary instrumentation can be achieved in two ways.

• Dynamic binary instrumentation (DBI): Instrument and execute code blocks during
the runtime, just before a code block is executed.

• Static binary instrumentation (SBI): Instrument the binary offline or statically.

Both approaches have their pros and cons. Runtime disassembly and instrumentation

4

help in avoiding misinterpretation of data as code, allowing DBI to be more robust [14].
However, runtime code translation and instrumentation results in significant performance
overhead. On the other hand, data between code and indirect branches make static binary
instrumentation error prone. However, static binary instrumentation can be very efficient
as it introduces no extra performance overhead.

With the evolution of compilers, binaries are becoming more static binary instrumen-
tation friendly. For example, to enforce DEP (Data execution prevention) fully, compilers
have started creating separate sections for code and data. Similarly, to support ASLR, x86-
64 bit programs are being compiled as position independent executables (PIE). The reloca-
tion information is an inherent part of PIE executables. Exploiting relocation information
can help recover the indirect branch targets. We have exploited the relocation informa-
tion in x86-64 bit PIE executables to achieve a complete and correct disassembly and apply
fine-grained code randomization at basic block level. In this report, we survey few existing
binary instrumentation techniques for stripped binaries, examine their shortcomings and
propose an effective binary instrumentation technique that exploits the relocation infor-
mation to overcome the shortcomings. The remainder of this report is organized as fol-
lows. In section 2 we discuss static binary instrumentation, challenges in SBI, code discov-
ery techniques and various SBI tools such as PEBIL [13] and Secondwrite [20]. In section
3 we discuss Dynamic binary instrumentation techniques and in section 4 we discuss our
proposed fine-grained code randomization technique for x86-64 position independent ex-
ecutables.

2 STATIC BINARY INSTRUMENTATION

Static binary instrumentation involves offline disassembly, instrumentation and regener-
ation of a program binary. SBI results in efficient binaries. The only factor that adds to
the performance overhead is the execution of the instrumentation code. However, static
instrumentation of stripped binaries without any supplemental information is highly error
prone. The following subsections discuss the challenges in static binary instrumentation
and survey a few existing disassembly and static binary instrumentation techniques.

2.1 ACCURATE DISASSEMBLY

A good instrumentation tool should be able to instrument all code that is to be executed.
100% code coverage is essential for effective implementation of security policies. Undiscov-
ered code may contain vulnerabilities that will be left out from being rectified or protected
by the security policy. At the same time, incorrect disassembly will lead to incorrect instru-
mentation which can result in crashes or malfunction. There are two types of disassembly
techniques:

• Linear disassembly: The simplest way to disassemble a binary is to linearly disassem-
ble the code section instruction by instruction, starting from the first byte of the code

5

Original Code Objdump output
.L1:

jmp .L2
.byte 0x0f

.L2:
movq $0x10, %rax
push %rax
call C

C:

0: eb 01 jmp 3 <C-0xd>
2: 0f 48 c7 cmovs %edi,%eax
5: c0 10 00 rclb $0x0,(%rax)
8: 00 00 add %al,(%rax)
a: 50 push %rax
b: e8 00 00 00 00 callq 10 <C>

Table 2.1: Linear disassembly example

section. This is called linear disassembly and is used by the GNU utility Objdump
[10].

• Recursive disassembly: Recursive disassembly approaches follow the control flow of
the program while disassembling the instructions.

2.1.1 LINEAR DISASSEMBLY

Linearly disassembling the code section provides maximum code coverage. However, em-
bedded data and alignment padding can be a problem. Because of the dense encoding of
x86 and x86-64 CISC architecture, there is a very high probability that any data byte se-
quence will get translated to valid instruction. Furthermore, because of the variable-length
instruction set of x86 and x86-64 architecture, subsequent valid instructions can get incor-
rectly translated. As shown in table 2.1, the original code contains a data byte 0x0f in the
middle of the code. Objdump treats it as a valid instruction opcode(cmovs) and treats the
subsequent code bytes as its operands and hence misinterprets the next instruction as well.

This can create a serious problem as data being interpreted as valid code can end up
being instrumented/relocated and can lead to malfunction.

2.1.2 RECURSIVE DISASSEMBLY

One way to avoid errors due to embedded data is to follow the control flow path of a pro-
gram. Under ideal conditions, recursive disassembly can provide 100% accurate code re-
covery. Direct control-flow transfer instructions whose target is embedded in the instruc-
tion are easy to decipher. But, the indirect control-flow transfer instructions whose target
is determined at the runtime pose a problem. A good binary instrumentation tool needs to
have an effective mechanism that can determine all possible indirect jump targets. Indirect
branch targets can be classified into following three categories:

• Code pointer constants: These are constants used as indirect branch targets. They

6

.1665746: leaq .1825984(%rip),%rbp

.1665753: movslq 0x0(%rbp,%rax,4),%rax

.1665758: addq %rax,%rbp

.1665761: jmp *%rbp

————–Jump table—————————-
.1825984: 0xfffd9160
.1825988: 0xfffd90b8
.1825992: 0xfffd9008
.1825996: 0xfffd8e5d
——————————————————–

.1665746: RBP = 1825984/0x1bdcc0,
RAX = index of jump table.
Assuming RAX = 0

.1665753: RAX = 0xfffd9160, RBP = 0x1bdcc0

.1665758: RBP = RAX + RBP = 0x196e20

.1665761: Jump to 0x196e20

Table 2.2: An example of Jump table obtained from glibc

are generated during compile time and may be present as constants stored in data
sections or as immediate operands. Function pointers of high-level languages are
compiled into stored code pointers. A simple approach to obtain stored pointers
would be to scan the entire binary, byte-by-byte to find constant values that fall within
the range of code section. However, data can be misinterpreted as an indirect branch
target which may result in disassembly and instrumentation of something that is not
valid code.

• Computed code pointers: These are constants on which arbitrary computations may
be performed before they are used as targets. Arbitrary computation makes it hard to
accurately determine the targets statically. Known cases of computed code pointers
are:

– Jump tables: Switch-case blocks of high-level C/C++ programs are encoded into
jump tables. The entries of the jump tables undergo computation at runtime,
typically of the form *(C1 + ind) + C2. Where C1 and C2 are constants and ind is
the index of the jump table. Table 2.2 shows an example of ICF target computa-
tion using jump table.

– Exception handler addresses: In ELF binaries, try/catch blocks for C++ excep-
tions are present in the eh_frame, eh_frame_hdr and gcc_except_table sections.
They are encoded in a specific format (usually as an offset from the start of a
function) and need to be decoded during the runtime. Addresses of all try/catch
blocks can be obtained by statically parsing the eh sections (eh_frame, eh_frame_hdr
and gcc_except_table).

• Runtime generated pointers:

– Return Addresses: Return addresses are addresses immediately following a call
instruction and are pushed on to stack by the call instruction. They can be com-
puted easily after disassembly is complete.

– Instruction pointer relative addresses: In PIE (Position independent executable)
binaries where the instruction addresses are not known until runtime, pointers

7

PIE executables non-PIE executables
lea 0x24a(%rip), %r8
...
jmp *(%r8)

mov $0x400b10, %r8
...
jmp *(%r8)

Table 2.3: Code pointers as operands

can be loaded as values relative to current instruction pointer value (Table 2.3).

Unstripped programs have symbol tables that contain information regarding function
start and range. Exploiting symbol tables can help in recovering all indirectly called func-
tions. PEBIL [13] is one such static binary instrumentation tool that exploits symbol table.
However, symbol table will not help in recovering computed code pointers such as jump
table targets. The following section describes the recursive disassembly approach of PE-
BIL.

2.1.3 PEBIL’S DISASSEMBLY

PEBIL [13] works under the assumption that an executable has a symbol table and uses it
to obtain function entry points. It then follows a control-driven disassembly starting from
each function entry. As, most of indirect branch targets found in binaries compiled from
high level languages are function pointers, leveraging on symbol table and export table
helps PEBIL in recovering most of the indirect branch targets. The only indirect branch
targets left are the intra-function indirect branches, e.g. jump table targets. PEBIL employs
a peephole examination to determine such indirect branch targets.

Compilers use simple calculations that usually follow a fixed pattern of adding an offset
to a given address to access a value related to an indirect jump target. If PEBIL’s peep-
hole examination of preceding instructions reveals a fixed memory address, this address is
treated as the first entry of a jump table. PEBIL makes an iterative pass over the table to de-
termine all possible targets, stopping when it finds a target larger than the current function
range. Authors claim that PEBIL is able to disassemble 99% of code bytes in SPEC CPU2000
Integer benchmarks.

However, symbol table is not available with stripped COTS binaries. A second solution
to recover indirect branch targets can be the application of heuristics such as function pro-
logue signature matching to recover possible function entries. All functions usually have
a similar code at the entry point, that prepares stacks and registers for use within func-
tion. This can be exploited to recover function entry points. Angr’s [19] CFGFast algorithm
employs this approach.

2.1.4 ANGR’S DISASSEMBLY

Angr’s [19] CFGFast approach tries to achieve high code coverage and detect all the func-
tions and their contents. It uses heuristics to identify functions. The disassembly steps of

8

CFGFast are summarized below:

• Function identification: Hard-coded function prologue signatures are used to iden-
tify function entry points.

• A Recursive disassembly is performed starting from the entry point as well as identi-
fied function entry points to recover all the directly reached basic blocks.

• Indirect branch resolution: Lightweight alias analysis and data-flow tracking is used
to resolve intra-function indirect control flow transfers. alias analysis is the tech-
nique of identifying program variables that may refer to same memory location. data-
flow tracking is the technique of determining a set of possible values of a variable at
various points in a computer program.

Relying on function prologue matching allows CFGFast to have high code coverage with-
out any extra effort for discovering indirect branch targets. However, the generated CFG
lacks much of the control flow. Angr employs CFGAccurate algorithm that tries to recover,
where possible, all jump targets of each indirect branch. CFGAccurate iteratively recov-
ers the control flow graph, starting from the basic block at the entry point. Three steps as
mentioned below are followed in order to accurately recover as much code as possible.

• Forced execution: Forced execution ensures that both the branches of a conditional
branch are executed at a branch point. Starting from the entry-point, this step ex-
ecutes the direct branches and adds the recovered basic blocks to the CFG. Forced
execution can be inaccurate in recovering indirect branch targets, as the basic blocks
are executed in an unexpected order that differs from the actual program execution.
For example, forced execution may result in a state where a jump target is being read
from an uninitialized memory location. Hence, all the indirect branches are skipped
for later analysis. This step acts as a fast pass to recover all the directly reached basic
blocks.

• symbolic execution: For every indirect branch identified by forced execution, the CFG
is traversed back until the first merge-point (multiple paths converging on the way to
indirect branch) is encountered or a threshold number of blocks have passed (Angr
uses 8 basic blocks as threshold). Then a symbolic execution followed by a constraint
solver is applied to recover the branch targets.

CFGAccurate considers a jump to be successfully resolved if the number of resolved
targets is less than a threshold, i.e. 256. This step is repeated until no new indirect
branches are recovered.

• Backward slicing: The symbolic execution analysis will fail to resolve some indirect
branches because of the lack of context. For example, if an indirect branch target is
passed as an argument to another function, then symbolic execution will be unable
to resolve it. Hence, a backward slice is computed starting from the indirect branch
and extending up to the previous call context. Then a symbolic execution similar to
the previous step is performed to recover the targets.

CFGAccurate can still fail in recovering targets for some indirect branches. Hence, em-
ploying CFGAccurate alone will result in incomplete disassembly. CFGFast and CFGAc-

9

curate was evaluated on CGC (DARPA Cyber grand challenge) binaries. In the absence of
ground truth regarding the control flow graph, the results were compared to that of IDA
pro. While CFGFast had a slightly better code coverage than than IDA pro, CFGAccurate
lagged in terms of code coverage but was better in terms of reachability (Number of basic
blocks reachable from program entry point) (Figure 2.1). A separate evaluation performed
on CFGFast, shows 70-80% code coverage for SPEC CPU2000 benchmarks [3].

Approach Functions Function Edges Blocks Block Edges Bytes Time (s)
M A M A M A M A M A M A

IDA Pro 6.9 48 52.96 76.5 99.62 829 3589.93 1188 6487.68 14037 104779.66 1.14 1.80
angr - CFGFast 61 70.08 88 118.74 843 3609.45 1193 6538.52 14296 105007.49 0.87 5.01

IDA Pro 6.9 - reachability 37 40.96 74 90.76 496 1043.81 759 1693.01 7874 21721.85 1.14 1.80
angr - forced execution 31 33.24 48 55.22 349.5 413.85 612 751.96 6125 13963.5 23.50 36.96

angr - symbolic back traversal 32 33.76 50 56.28 368 635.41 645 1089.78 6323 10883.51 27.22 34.10
angr - backward slicing 30 32.80 47.5 53.89 344.5 653.56 594 1178.98 6109.5 14641.85 24.78 79.46

TABLE II
EVALUATION OF CFGFAST’S AND CFGACCURATE’S RECOVERED CFG VERSUS THE CFG RECOVERED BY IDA PRO. THE MEDIAN NUMBER (M) AND

AVERAGE NUMBER (A) OF EACH VALUE ACROSS ALL BINARIES ARE SHOWN.

Technique Replayable Semantic Insight Scalability Crashes False Positives
Dynamic Symbolic Execution Yes High Low 16 0

Veritesting Yes High Medium 11 0
Dynamic Symbolic Execution + Veritesting Yes High Medium 23 0

Fuzzing (AFL) Yes Low High 68 0
Symbolic-Assisted Fuzzing Yes High High 77 0

VSA No Medium High 27 130
Under-constrained Symbolic Execution No High High 25 346

TABLE IV
EVALUATION RESULTS ACROSS ALL VULNERABILITY DISCOVERY TECHNIQUES.

crashes identified by our techniques, we have included the
number of crashes identified by the competitors at the actual
CGC Qualification Event, in Table III. The overall scores
of the teams relied on more than just crash counts, so the
placement in the qualifying event is not correlated with
the position of the competitors. Two of these competitors,
the first-place team [27] and the seventh-place team [57],
have written blog posts describing their techniques in the
competition. Both teams used a symbolically-assisted fuzzing
technique, conceptually similar to Driller. Note that, while
our implementation of Driller identifies the same number of
vulnerabilities as the first place team, this is a coincidence
(likely driven by the similarity between the techniques).

Dynamic symbolic execution. We chose to evaluate dynamic
symbolic execution both alone and in the presence of the
Veritesting path explosion mitigation technique. We describe
the implementation details of these approaches in Section IX.

As expected, dynamic symbolic execution frequently suc-
cumbed to the path explosion problem. In total, the standard
approach identified vulnerabilities in 16 of the CGC binaries.
Veritesting, which is designed to partially mitigate the path
explosion problem, identified only 11, for a combined count
of 23 applications in which vulnerabilities were identified.

We were initially surprised to find that, despite the better
results, the Veritesting approach found less vulnerabilities
than dynamic symbolic execution alone. Investigating these
four binaries, we identified an interesting trade-off inherent to
Veritesting. Veritesting uses efficient path merging to combat
path explosion, which is responsible for its ability to explore
deeper paths in the binary before path explosion renders
further progress impossible. However, such path merging
introduces complex expressions (e.g., if the value of register
eax differs between two merged paths, the value of the
merged path must be a complex expression encoding both

previous values) and overloads the constraint solver. Thus, the
solve times of the constraint solver tend to increase as more
and more of these merges are done. As constraint solving
is an NP-complete problem, the increased complexity leads
to vulnerabilities becoming unreachable within a reasonable
time. The result of this is that Veritesting is able to identify
shallow bugs that dynamic symbolic execution otherwise
experiences a path explosion with, but overwhelms the
constraint solver for longer paths.

Symbolic-assisted fuzzing. Assisted fuzzing has proven to
be extremely effective in the literature. In Section XI, we
discuss an implementation of a symbolic-assisted fuzzing
method, dubbed Driller [54].

This symbolic-assisted fuzzer uses AFL for the fuzzing
component. Each input that AFL produces is traced in the
dynamic symbolic execution engine to identify code sections
that could be reached by careful mutation of the input. This
careful mutation is carried out by the symbolic constraint
solver, and the input is reintroduced to AFL for further
execution and mutation. Because the individual inputs traced
by the DSE engine do not branch (as all the input is concrete),
there is no path explosion during tracing, and AFL limits the
number of inputs passed to the DSE engine by filtering out
all the inputs that do not increase code coverage.

It should be mentioned that AFL alone is able to identify
vulnerabilities in a significant amount of the CGC services. In
fact, of the 77 vulnerabilities that our symbolic-assisted fuzzer
detected, 68 were detected by AFL alone. The remaining 9
were found through the use of symbolic assistance.

DSE vs. fuzzing. The difference between the results of
the various dynamic symbolic execution approaches are
surprising. One might reasonably expect DSE to identify
roughly as many vulnerabilities as symbolically-assisted

154

Figure 2.1: Angr’s CFGFast and CFGAccurate evaluation. Figure referred from [19]

Binary instrumentation tools such as BinCFI [29] and Secondwrite [20] try to incorporate
the properties of both linear and recursive disassembly to achieve complete and correct
disassembly.

2.1.5 BINCFI DISASSEMBLY APPROACH

BinCFI [29] eagerly disassembles the entire binary using a linear disassembly. It then fol-
lows error detection and error correction process to ensure correct disassembly. The error
correction process depends on the indirect branch target recovery. BinCFI employs follow-
ing techniques to recover all possible indirect branch targets.

INDIRECT BRANCH TARGET DETECTION :

• Stored code pointers or Code pointer constants are obtained by performing a byte-by-
byte search of the code and data section of the program. This process will generate an
over-estimation of the actual set of stored code pointers as it is hard to differentiate
between a code pointer and a data constant in a binary without any access to the
source code.

• Computed code pointers: The authors have pointed out that although it is theoret-
ically possible for a program to perform an arbitrary calculation on a value before
using it as a target. However, such pointer arithmetic in a high-level language is not
meaningful and hence is very less probable to appear in binaries compiled from high-
level languages like C/C++. Such computations are only found in the case of switch-
case blocks that are compiled into jump tables. The jump table entries mostly un-
dergo a fixed format of calculation like *(C1 + ind) + C2. BinCFI identifies the jump ta-

10

ble locations by performing static analysis on a window of 50 instructions ending with
the computed jump instruction. The analysis is performed on all the paths within the
function boundary that reach the ICF instruction. Function boundary information is
obtained from the export table.

• Other computed jump targets include the exception handlers and the return addresses.
The exception handlers are obtained by exploiting the eh_frame, eh_frame_hdr and
gcc_except_table section of the binary. The return addresses are obtained by exam-
ining all the call instructions.

The above described techniques are conservative and will always result in an over-estimation
of indirect branch target set.

ERROR DETECTION :

• Invalid opcode: Due to the dense encoding of x86/x86-64 CISC architecture, the prob-
ability of getting an invalid opcode is extremely small. However, if found, it certainly
indicates incorrect code discovery.

• Jump outside the current module: Any direct control transfer outside the current
module that doesn’t go through the program-linkage table is considered as incorrect
code discovery.

• Jump into the middle of an instruction: Any jump into the middle of an instruction in-
dicates either the target is disassembled incorrectly or the jump itself is disassembled
incorrectly. BinCFI considers both the possibilities.

ERROR CORRECTION : A detected error indicates the presence of data or alignment bytes
that has been misinterpreted as code. BinCFI identifies the extent of these gap in applica-
tion code and marks it. It considers the last unconditional jump found prior to the error
bytes as the beginning and the smallest indirect control flow target that is larger than the
address of the error bytes as the end of the gap respectively. BinCFI then disassembles the
binary again, avoiding the marked gaps. If more errors are encountered then, the process
is repeated again.

The conservative disassembly approach of BinCFI makes sure that all code locations are
discovered and disassembled. However, there is a chance of some data being misinter-
preted as code.

2.1.6 SECONDWRITE DISASSEMBLY APPROACH

Secondwrite [20] binary instrumentation tool employs recursive disassembly to discover all
code locations reachable by direct control transfer instructions. It then speculatively treats
the remaining unreachable program bytes as a possible target of ICF instructions and dis-
assembles them. While performing the speculative disassembly it checks for the encoun-
tered errors like invalid opcode or jump into the middle of a valid instruction and discards

11

any speculatively disassembled code sequence containing such errors. The speculative ap-
proach helps to locate all the valid code locations conservatively and may misinterpret any
embedded data as code reachable by an ICF instruction. The speculative approach creates
a large target set for ICF instructions and may prohibit the implementation to scale to large
binaries. Hence the authors suggest below methods that can be used to further reduce the
speculated target set.

• Binary characterization: The underlying assumption is that every ICF instruction
must have an address operand that must appear within the code/data segment. Sec-
ondwrite scans the binary for stored constants. Any stored constant value in the
range of the code section is treated as a valid ICF target. The speculated targets that
are not found to be stored in the binary are discarded. Binary characterization can-
not conclusively predict if a stored constant is an address, but it can conclusively
predict if a stored constant is not an address. Hence it predicts an over-estimated set
of speculated targets which is smaller than the earlier set of all unreachable code lo-
cations. As mentioned in the Secondwrite [20] paper, this helps in eliminating 99% of
the speculative target.

This method doesn’t apply to scenarios where the address is computed at the run-
time. For example, in PIE programs, an address may be computed as an offset from
the current instruction pointer value or a return address stored on the stack. The
authors mention that Position independent code is out of scope for the solution dis-
cussed in the paper and will be a part of their future work.

After reducing the speculated target set using Binary characterization, the target set
can be further reduced using constant propagation and/or alias analysis. Authors
point out the constant propagation is not helpful in case of x86 architecture. So, Sec-
ondwrite employs alias analysis to further reduce the target set.

• Alias analysis: Alias analysis can predict if a speculated ICF target is not being loaded
into the operand of an ICF instruction even if the operand is being passed through via
global memory or as a function argument. Secondwrite validates each ICF instruc-
tion operands against each member of the reduced target set provided by the Binary
characterization process. It keeps all the values that may alias an operand of an ICF
instruction and discards the rest.

JUMP TABLE HANDLING : Secondwrite assumes that the jump tables are present as an ar-
ray of stored code pointers and Secondwrite’s Binary characterization process can identify
them as stored code pointers. This assumption can fail in case of PIE executables where
jump table entries are not absolute addresses and are offsets from a base address.

The speculative approach of Secondwrite can misinterpret some embedded data as code.
Hence, to protect embedded data, Secondwrite keeps the original code and data unchanged
and creates a new section for instrumented code.

12

2.2 PRESERVING CONTROL FLOW BRANCHES

Instrumentation results in introduction of new code and relocation of the original code. As
a result, the control flow branches (Both direct and indirect) need to be fixed up.

2.2.1 FIXING DIRECT CONTROL FLOW BRANCHES

Direct control flow branch instructions have their target embedded within the instruction.
Hence, retrieving the direct branch targets is trivial. Direct branch targets can be fixed up
in the following ways.

• Patching the branch instructions: The branch instructions can be patched to point to
the new location of relocated target. However, this can be inefficient in cases where
the original jump is a short jump and needs to be converted to a 5-byte long jump to
account for the relocated target. This will require the instructions around the jump
to be moved to make space for the 5-byte jump.

• Symbolizing all targets and re-assembling: A simpler way to deal with direct branches
can be to associate a symbol with the direct branch targets. The direct branch instruc-
tions can be modified to point to these symbols and the code can be re-assembled. By
doing so, the assembler will automatically fix up the direct branches. This approach
is used by static binary instrumentation tools such as BinCFI [29].

2.2.2 FIXING INDIRECT CONTROL FLOW BRANCHES

Pre-translating the indirect branch targets would be the best solution to deal with indirect
branches. However, pre-translation requires accurate identification of all indirect branch
targets with zero false positives. CCFIR [28] exploits the relocation information available
with the Windows PE binaries to locate and translate the pointers statically. However, the
availability of relocation information is not a certainty in non-PIE binaries of Unix systems
do not have any relocation information. Ramblr [24] employs a best effort static analysis
approach to classify pointers and data that doesn’t guarentee the recovery of all indirect
branches. Tools such as BinCFI [29] and Secondwrite [20] generate an over-estimation of
indirect branch targets. In such a case, pre-translating the identified targets can be a pro-
gram. Because, changing something that is not a code pointer can lead to malfunction.
One solution can be to employ usage point address translation (i.e., to translate an indirect
branch target just before the indirect branch is executed).

usage point address translation: Tools such as BinCFI [29], Secondwrite [20] and Binary-
stirring [26] instrument every indirect branch instruction to do a runtime address lookup.
BinCFI and Secondwrite use a look-up table that contains a mapping for all the pre-identified
indirect branch target, to their corresponding new address. On the other hand, Binary-
stirring [26] uses the original code section as a look-up table. The old address in the original
code section is patched with the new address and the indirect branches are instrumented

13

to look-up the new address just before branching. This approach introduces comparatively
less performance overhead as compared to the table look-up approach of BinCFI and Sec-
ondwrite. Evaluation performed on SPEC CPU 2000 benchmarks shows that the overhead
due to runtime address translation is 2.12% and is higher in case of C++ programs where
it reaches to a value close to 20%. BinCFI’s address translation introduces an overhead of
8.54%.

In place patching: One way to avoid runtime address translation is to make sure that the
code locations are not changed by instrumentation process. A common technique used
on fixed-length platforms to transfer control to the instrumentation code is to replace a
single instruction at the instrumentation point with an unconditional jump and moving
the replaced instruction to the instrumentation code site. Advantages are:

• Doesn’t cause any change to the code and data location and sizes and thereby nulli-
fying the necessity of changing any direct or indirect code and data references.

• Unlike other approaches that need runtime address translation, this approach is more
efficient and causes less performance overhead as the only performance overhead
that will be introduced is due to the execution of the instrumentation code and the
extra jump instruction.

However, it is not so straight forward in platforms with variable-length instruction sets,
such as x86 and x86-64 architectures. An unconditional branch instruction that uses a 32-
bit offset requires 5 bytes of memory. As instructions can be as small as 1 byte, instrumenta-
tion points may not have enough space to put a 5-byte jump instruction. A viable solution
can be to put a short jump (2 bytes long) to a nearby location that has a long jump into
the instrumentation code. However, there is still a chance that we may not have 2 bytes of
space at all instrumentation points. Furthermore, there is a chance that we may not have
an additional space of 5 bytes at a nearby location to put the required long jump. Another
option is to put a 1-byte interrupt (int3) instruction. This sounds perfect, but can be less
efficient. Frequent invocation of heavyweight system call conventions can add to perfor-
mance overhead [13].

PEBIL [13] is one such tool that avoids the use of runtime address translation. PEBIL
relocates and reorganizes code at function level. PEBIL’s instrumentation steps (Figure 2.3)
can be summarized as below:

• New segments are allocated for instrumentation code and data by statically modify-
ing the ELF control structures (Figure 2.2).

• Functions containing instrumentation points are relocated to the instrumentation
code segment and link the original entry point with a jump to the relocated function.

• Relocated function is re-organized to create extra space at instrumentation points
to accommodate instrumentation code. Note that the figure 2.3 shows addition of
extra jump at instrumentation points. However, PEBIL has an option to inline the
instrumentation code.

• All the intra-function direct branches need to be adjusted to account for the code

14

(a) Layout of an unmodified ELF file. (b) Layout of a PEBIL-instrumented ELF file.

Fig. 1. (a) and (b) show that the text required by an instrumentation tool is prepended to the application text and the data required by an instrumentation
tool is appended to the data application data.

iterative pass over this table to determine the target address
for each entry in the jump table, stopping when it finds a
value in the table that yields a target address that is outside
the function. Once found and treated correctly, the jump table
code and targets can be integrated into the control flow graph
of the function, where it and the data that accompanies it can
be modified to accommodate the insertion of instrumentation
code.

B. Instrumentation Code and Data

Instrumentation generally requires the use of code and
data that are not part of the original executable. In order to
insert additional code and data into an executable, additional
space needs to be allocated within the executable in such
a way that they will, at load time, be treated as code and
data respectively. Most compilers produce an ELF executable
whose structure is similar to that shown in Figure 1(a). To
accommodate the code and data needed for instrumentation,
PEBIL appropriates a segment for instrumentation text and
a segment for instrumentation data. It also extends the
existing text segment in a way that allows some of the
existing control structures of the ELF file to be upgraded
and expanded to contain the extra information needed for
instrumentation. This scheme, demonstrated in Figure 1(b),
has the added benefit of causing no immediate disturbance to
the original application’s code and data, greatly simplifying
the implementation of any code modification undertaken later
on during the instrumentation process.

The code introduced by PEBIL to perform instrumen-
tation serves several functions. It saves any machine state
that can be destroyed by the instrumentation, performs the
instrumentation task, restores the machine state after the
instrumentation task is completed, and finally restores control
to the original code. When control is transferred from the

application to the instrumentation code, it is necessary to
maintain the machine state of the application since the
instrumentation code may use and destroy some of that
state and the original application behavior must be observed.
This machine state can contain anything modified by the
instrumentation code, but in practice is usually limited to a
relatively limited set of registers and some information about
the call stack.

Since instrumentation tools may also need additional data
to support the needs of the instrumentation tool, PEBIL
provides mechanisms to insert and initialize additional data
within the executable. These additional code and data that
are used by the instrumentation tool are included in the extra
text and data segments of the ELF file respectively, as shown
in Figure 1(b).

III. EFFICIENCY OF INSTRUMENTED CODE

The goal of PEBIL is to provide a toolkit that enables the
construction of instrumentation tools that produce efficient
instrumented executables. Several techniques are employed
to accomplish this. Fast constructs are used to get control
to and from the instrumentation code, which requires the
application code to be relocated and transformed in order
to accommodate them. PEBIL also supports the use of
lightweight instrumentation snippets that can be used in
place of instrumentation functions, as well as the inlining of
these snippets in order to avoid potential control interruptions
around their execution at instrumentation points.

A. Code Relocation and Transformation

On platforms with fixed-length instruction sets, a common
strategy used by static instrumentation toolkits to transfer
control from application code to instrumentation code is to
replace a single instruction at the instrumentation point with
an unconditional branch instruction that performs the transfer.

177

Figure 2.2: Figure referred from [13]

relocated by step 2. All the intra-function short jumps are first converted to 5-byte
long jumps to accommodate the targets that may have been relocated to a place out
of range for a short jump. The jumps are then patched to point to new targets.

• If the function has any jump table associated with it, then the jump table is re-created
accordingly. Note that the jump table identification by PEBIL has been discussed in
section 2.1.3.

The extra jump instruction that every call to a relocated function has to go through and
the conversion of all the intra-function short jumps to 5-byte jumps can create extra perfor-
mance overhead. To quantify the overhead, the performance was tested on SPEC CPU2000
Integer Benchmarks with null instrumentation. The average overhead is reported to be
1.2% with a maximum of 4.8%. With basic block counting instrumentation, PEBIL was
found to have an overhead of 28%-111% with an average of 62%.

2.2.3 CALLBACKS

In some cases, a function pointer is passed to an external module which uses the pointer to
place a call. One such example is the passing of a pointer to main function to the standard
library function _libc_start_main. Such cases pose a challenge for the static binary instru-
mentation tools that employ runtime address translation. BinCFI handles such cases by
instrumenting all the external libraries used by a program.

Another example where a callback is used is signal handling. In case of signal han-

15

(a) An unmodified application function. (b) The application function after it has been relocated and the
old function entry has been linked to it.

(c) The application function after the branches have been
converted to use 32-bit offsets.

(d) The application function after it has been padded with 5
bytes at each instrumentation point.

(e) The application function after a single basic block (Basic
Block 1) has been instrumented.

Fig. 3. The steps taken in order to prepare a function for instrumentation that will be inserted at every basic block.

point of another nearby function. The original entry point of
the function is then linked to the new location by inserting an
unconditional branch at the original function entry to transfer
control to the displaced function entry. Linking is done in
this fashion because most references to the entry point of a
function are in the form of function calls, which routinely
are indirect references (i.e. their value is computed or looked
up at runtime) and can be difficult to resolve without runtime
information.

Branch Conversion is shown in Figure 3(c). The code is
reorganized in the following step, which may strain the limits
of smaller 8-bit or 16-bit offsets. Therefore all branches are
converted to use 32-bit offsets so that the targets of each
branch will still be reachable without the need to make further
changes to the code. Note that there may be some opportunity
here to reduce space by using the smallest branch offset
size that accommodates the branch, but currently a single
unified technique is used to simplify the implementation. The
experimental evidence shown in Section IV indicates that the
opportunities for improving the efficiency for this step are
minimal.

Instruction Padding, seen in Figure 3(d), pads each instru-
mentation point with enough empty space so that a 5-byte
branch can be accommodated.

Instrumentation replaces the instructions at each instru-

mentation point with a branch that transfers control to the
instrumentation code, which is shown in Figure 3(e).

There are several ways that this proposed method for
preparing the application code for instrumentation can ad-
versely affect the performance of the instrumented executable
aside from of the overhead that will be imposed by the
instrumentation code. Each function call now has an extra
control interruption associated with it since control must
be passed first to the original function entry point and
subsequently to the relocated function entry point. In addition
it is possible that using 32-bit offsets for every branch rather
than some smaller number of bits has an overhead associated
with it. Finally since the code is being reorganized and
expanded, some positive alignment and size optimizations
that the compiler might have made on the instructions in the
function might be destroyed.

To quantify the impact of this relocation method on the
performance of an executable, for the SPEC CPU2000 In-
teger Benchmarks, we generated executables in which the
executable is set up for instrumentation (extra text and
data segments are present but unused and any extra ELF
control information is added), functions are relocated, and
branches are converted to use 32-bit offsets. Note that this
experiment does not measure the destruction of alignment
that will occur when 5 bytes are reserved for a control

179

Figure 2.3: PEBIL-function relocation. Figure referred from [13]

dling, a program registers a signal handler against a particular signal by making the "sig-
nal/sigaction" system call. the "signal/sigaction" system call takes a pointer to a handler
function as an argument. When a signal is delivered to the program, the control passes to
the OS and OS calls the registered handler function. BinCFI intercepts sigaction and signal
system calls ang changes the signal handler argument.

Secondwrite’s [20] solution for callbacks can be summarized as below.

• Identifying function pointer arguments: This approach involves collecting the proto-
types of all the functions present in commonly used shared libraries such as the C
runtime libraries and detecting calls to all such functions that take a function pointer
as an argument and instrumentation code is added to perform a runtime translation
.

• segmentation handler: For cases where the prototype of a given function is not avail-

16

able, any callback from that function will land in the original code. The original code
is marked as non-executable and hence will result in a segmentation fault. Second-
write registers a custom segmentation handler which translates the original code ad-
dress to the instrumented code address using the look-up table.

3 DYNAMIC BINARY INSTRUMENTATION

Dynamic binary instrumentation tools perform disassembly, analysis and code transfor-
mation while the program executes. Performing instrumentation at the runtime can have
the following advantages:

• Unlike static binary instrumentation, DBI tools do not face the content classification
problem. Following the program execution and disassembling on the fly helps in
getting around the data embedded in code.

• complete coverage of code without any source code or supplemental information.

• No need of altering the program binary.

However, performing disassembly and instrumentation at the runtime can add to the
performance overhead.

The standard components of a DBI tool are (i) JIT (Just in time) compiler that disassem-
bles, optimizes, instruments and reassembles the code and (ii) a Code Cache that stores the
instrumented code to be rerun when necessary. The DBI tool either injects itself into the
client program’s memory or loads the client program into its memory. After gaining control
of the target program, it starts translating, instrumenting and executing the client’s code
one block at a time. The definition of code block varies from tool to tool. Depending on the
just in time code transformation technique, the DBI tools can be further classified into two
categories:

• Assembly to assembly transformation: The machine code is translated to assembly
form. The original code is kept mostly unchanged except the changes to branch in-
structions. Each instruction is annotated with a description of its effects. Annotations
are used by the tool to guide instrumentation. Instrumentation can be done either by
placing a call to the analysis code or by in-lining the analysis code. The instrumented
code is re-assembled back to machine code and executed.

• Disassemble and resynthesize: Machine code is converted to an IR. This IR is instru-
mented and then recompiled back to the machine code. The original code is dis-
carded. The effects of every instruction need to be accurately reflected by the IR to
ensure correct code generation and accurately guide the instrumentation process.

3.1 ASSEMBLY TO ASSEMBLY TRANSFORMATION - A CASE STUDY OF PIN

Pin [14] was designed to provide a robust, portable and easy to use instrumentation tool
that can overcome challenges faced by Static instrumentation tools, such as data between

17

code and indirect branch instructions. By deferring code discovery and instrumentation to
the runtime, PIN successfully overcomes these challenges.

Pin consists of a virtual machine, a code cache and an instrumentation API used by Pin-
tools. Pintools are instrumentation tools designed PIN users to carry out specific instru-
mentation tasks such as instrumentation every load/store instructions, etc. Components
of VM are:

• JIT compiler: Translates and instruments client’s code at the runtime.

• Dispatcher: Dispatcher launches the translated code stored in the code cache. It takes
care of storing and restoring the client application’s registers while entering/leaving
the VM from/to the code cache.

• Emulation unit: Takes care of special cases such as system calls that can not be exe-
cuted directly from the client’s code.

JIT Compiler

Emulation Unit D
is

p
a
tc

h
e
r

Virtual Machine (VM)

Code

Cache

Instrumentation APIs

A
p

p
li

c
a

ti
o

n

Operating System

Hardware

Pin

Pintool

Address Space

Figure 2. Pin’s software architecture

mentation API invoked by Pintools. The VM consists of a just-in-
time compiler (JIT), an emulator, and a dispatcher. After Pin gains
control of the application, the VM coordinates its components to
execute the application. The JIT compiles and instruments applica-
tion code, which is then launched by the dispatcher. The compiled
code is stored in the code cache. Entering/leaving the VM from/to
the code cache involves saving and restoring the application register
state. The emulator interprets instructions that cannot be executed
directly. It is used for system calls which require special handling
from the VM. Since Pin sits above the operating system, it can only
capture user-level code.

As Figure 2 shows, there are three binary programs present
when an instrumented program is running: the application, Pin, and
the Pintool. Pin is the engine that jits and instruments the applica-
tion. The Pintool contains the instrumentation and analysis routines
and is linked with a library that allows it to communicate with Pin.
While they share the same address space, they do not share any li-
braries and so there are typically three copies of glibc. By making
all of the libraries private, we avoid unwanted interaction between
Pin, the Pintool, and the application. One example of a problematic
interaction is when the application executes a glibc function that
is not reentrant. If the application starts executing the function and
then tries to execute some code that triggers further compilation, it
will enter the JIT. If the JIT executes the same glibc function, it
will enter the same procedure a second time while the application
is still executing it, causing an error. Since we have separate copies
of glibc for each component, Pin and the application do not share
any data and cannot have a re-entrancy problem. The same prob-
lem can occur when we jit the analysis code in the Pintool that
calls glibc (jitting the analysis routine allows us to greatly reduce
the overhead of simple instrumentation on Itanium).

3.2 Injecting Pin

The injector loads Pin into the address space of an application. In-
jection uses the Unix Ptrace API to obtain control of an application
and capture the processor context. It loads the Pin binary into the
application address space and starts it running. After initializing
itself, Pin loads the Pintool into the address space and starts it run-
ning. The Pintool initializes itself and then requests that Pin start
the application. Pin creates the initial context and starts jitting the
application at the entry point (or at the current PC in the case of
attach). Using Ptrace as the mechanism for injection allows us to
attach to an already running process in the same way as a debug-
ger. It is also possible to detach from an instrumented process and
continue executing the original, uninstrumented code.

Other tools like DynamoRIO [6] rely on the LD PRELOAD en-
vironment variable to force the dynamic loader to load a shared li-
brary in the address space. Pin’s method has three advantages. First,
LD PRELOAD does not work with statically-linked binaries, which
many of our users require. Second, loading an extra shared library
will shift all of the application shared libraries and some dynami-
cally allocated memory to a higher address when compared to an
uninstrumented execution. We attempt to preserve the original be-
havior as much as possible. Third, the instrumentation tool cannot
gain control of the application until after the shared-library loader
has partially executed, while our method is able to instrument the
very first instruction in the program. This capability actually ex-
posed a bug in the Linux shared-library loader, resulting from a
reference to uninitialized data on the stack.

3.3 The JIT Compiler

3.3.1 Basics

Pin compiles from one ISA directly into the same ISA (e.g., IA32
to IA32, ARM to ARM) without going through an intermediate
format, and the compiled code is stored in a software-based code
cache. Only code residing in the code cache is executed—the origi-
nal code is never executed. An application is compiled one trace at
a time. A trace is a straight-line sequence of instructions which ter-
minates at one of the conditions: (i) an unconditional control trans-
fer (branch, call, or return), (ii) a pre-defined number of conditional
control transfers, or (iii) a pre-defined number of instructions have
been fetched in the trace. In addition to the last exit, a trace may
have multiple side-exits (the conditional control transfers). Each
exit initially branches to a stub, which re-directs the control to the
VM. The VM determines the target address (which is statically un-
known for indirect control transfers), generates a new trace for the
target if it has not been generated before, and resumes the execution
at the target trace.

In the rest of this section, we discuss the following features of
our JIT: trace linking, register re-reallocation, and instrumentation
optimization. Our current performance effort is focusing on IA32,
EM64T, and Itanium, which have all these features implemented.
While the ARM version of Pin is fully functional, some of the
optimizations are not yet implemented.

3.3.2 Trace Linking

To improve performance, Pin attempts to branch directly from a
trace exit to the target trace, bypassing the stub and VM. We
call this process trace linking. Linking a direct control transfer
is straightforward as it has a unique target. We simply patch the
branch at the end of one trace to jump to the target trace. However,
an indirect control transfer (a jump, call, or return) has multiple
possible targets and therefore needs some sort of target-prediction
mechanism.

Figure 3(a) illustrates our indirect linking approach as imple-
mented on the x86 architecture. Pin translates the indirect jump
into a move and a direct jump. The move puts the indirect target
address into register %edx (this register as well as the %ecx and
%esi shown in Figure 3(a) are obtained via register re-allocation,
as we will discuss in Section 3.3.3). The direct jump goes to the
first predicted target address 0x40001000 (which is mapped to
0x70001000 in the code cache for this example). We compare
%edx against 0x40001000 using the lea/jecxz idiom used in Dy-
namoRIO [6], which avoids modifying the conditional flags reg-
ister eflags. If the prediction is correct (i.e. %ecx=0), we will
branch to match1 to execute the remaining code of the predicted
target. If the prediction is wrong, we will try another predicted tar-
get 0x40002000 (mapped to 0x70002000 in the code cache). If the
target is not found on the chain, we will branch to LookupHtab 1,
which searches for the target in a hash table (whose base address is

192

Figure 3.1: PIN- system overview. Figure referred from [14]

PIN’S EXECUTION OVERVIEW: Pin’s injector gains control of the client application using
UNIX ptrace API and loads Pin into the client’s address space. After the loading and initial-
ization of both Pin and pintool, Pin starts the client applications and starts jitting from the
entry point. So, during the runtime three applications share the same address space, Pin,
pintool and the client. Sharing of the same standard library between the 3 processes can

18

lead to complications. One such example provided by the authors is about non-reentrant
functions. If the client enters a non-reentrant function and needs to translate a code block,
the control will fall back to the JIT compiler. If the JIT compiler also calls the same function,
then it will try to enter the same function while the client is still inside the function, causing
an error. Therefore PIN is designed to use three separate copies of the standard library, one
each for PIN, pintool and the client.

One viable technique to inject the DBI tool into the client’s address space is to use LD_PRELOAD
environment variable in LINUX, as done by tools like DynamoRIO [6]. However, this ap-
proach will not work for statically linked binaries. Also, injecting an extra library may cause
other libraries to be shifted to a higher address. To maintain transparency and keep the ap-
plication process identical to the original behavior, the Pin’s designers avoided using this
approach. Also, using LD_PRELOAD will not allow Pin to gain control of the client until
after the loader is partially executed.

JIT COMPILATION AND INSTRUMENTATION: Pin compiles from one ISA (Instruction set ar-
chitecture, e.g. x86) directly into the same ISA without going through an intermediate for-
mat. The client code is compiled one trace at a time. Pin defines a trace as a linear block
of code that terminates when (i) an unconditional control transfer instruction is encoun-
tered, or (ii) a fixed number of conditional branch instructions is encountered, or (iii) a
fixed number of instructions have been fetched. So, a trace can have multiple exits. Each
exit point is redirected to a stub that in turn redirects the control to the VM. The VM deter-
mines the next target, generates a trace if the target has not been translated yet and resumes
execution.

Pin’s instrumentation API makes it possible to observe the client’s state such as the reg-
ister and memory contents, control flow branches, etc. The user writes procedures called
analysis routine and writes instrumentation routine to determine instrumentation points
and place calls accordingly. The JIT compiler calls the instrumentation routine after it has
generated a trace. The instrumentation routine traverses the trace and places a call to the
analysis routines at appropriate instrumentation points. Figure 3.2 shows an example of
the code that the user has to write to perform instrumentation. Here, RecordMemWrite is
the analysis routine and Instruction is the instrumentation routine. The JIT compiler calls
the Instruction function to perform instrumentation. Such a code is compiled to create a
Pintool. Note that, to prevent the inserted code from overwriting the client’s scratch regis-
ters, efficient register saves and restores needs to be performed at all the calls to analysis
code. Also, to guide the instrumentation (placing calls at instrumentation process) PIN
has to annotate every instruction with an appropriate description of their effects such as
register reads/writes, stack change, memory read/write, etc.

TRACE LINKING: Trace linking is essential for performance enhancement. It refers to the
process of directly branching to the target trace at the end of the execution of a trace by-
passing the VM. This is trivial in case of direct branch instructions where the target is stat-
ically known and can be replaced with the address of the corresponding translated trace.

19

dresses (both instruction and data) and same values (both register
and memory) as it would in an uninstrumented execution. Trans-
parency makes the information collected by instrumentation more
relevant and is also necessary for correctness. For example, some
applications unintentionally access data beyond the top of stack, so
Pin and the instrumentation do not modify the application stack.

Pin’s first generation, Pin 0, supports Itanium R©. The recently-
released second generation, Pin 2, extends the support to four1

architectures: IA32 (32-bit x86) [14], EM64T (64-bit x86) [15],
Itanium R© [13], and ARM [16]. Pin 2 for Itanium R©is still under
development.

Pin has been gaining popularity both inside and outside of Intel,
with more than 3000 downloads since Pin 2 was first released
in July 2004. This paper presents an in-depth description of Pin,
and is organized as follows. We first give an overview of Pin’s
instrumentation capability in Section 2. We follow by discussing
design and implementation issues in Section 3. We then evaluate in
Section 4 the performance of Pin’s instrumentation and compare it
against other tools. In Section 5, we discuss two sample Pintools
used in practice. Finally, we relate Pin to other work in Section 6
and conclude in Section 7.

2. Instrumentation with Pin
The Pin API makes it possible to observe all the architectural
state of a process, such as the contents of registers, memory, and
control flow. It uses a model similar to ATOM [30], where the user
adds procedures (as known as analysis routines in ATOM’s notion)
to the application process, and writes instrumentation routines to
determine where to place calls to analysis routines. The arguments
to analysis routines can be architectural state or constants. Pin
also provides a limited ability to alter the program behavior by
allowing an analysis routine to overwrite application registers and
application memory.

Instrumentation is performed by a just-in-time (JIT) compiler.
The input to this compiler is not bytecode, however, but a native ex-
ecutable. Pin intercepts the execution of the first instruction of the
executable and generates (“compiles”) new code for the straight-
line code sequence starting at this instruction. It then transfers con-
trol to the generated sequence. The generated code sequence is al-
most identical to the original one, but Pin ensures that it regains
control when a branch exits the sequence. After regaining control,
Pin generates more code for the branch target and continues execu-
tion. Every time the JIT fetches some code, the Pintool has the op-
portunity to instrument it before it is translated for execution. The
translated code and its instrumentation is saved in a code cache for
future execution of the same sequence of instructions to improve
performance.

In Figure 1, we list the code that a user would write to
create a Pintool that prints a trace of address and size for ev-
ery memory write in a program. The main procedure initializes
Pin, registers the procedure called Instruction, and tells Pin
to start execution of the program. The JIT calls Instruction
when inserting new instructions into the code cache, passing
it a handle to the decoded instruction. If the instruction writes
memory, the Pintool inserts a call to RecordMemWrite before
the instruction (specified by the argument IPOINT BEFORE to
INS InsertPredicatedCall), passing the instruction pointer
(specified by IARG INST PTR), effective address for the mem-
ory operation (specified by IARG MEMORYWRITE EA), and number
of bytes written (specified by IARG MEMORYWRITE SIZE). Using

1 Although EM64T is a 64-bit extension of IA32, we classify it as a separate
architecture because of its many new features such as 64-bit addressing, a
flat address space, twice the number of registers, and new software conven-
tions [15].

FILE * trace;

// Print a memory write record
VOID RecordMemWrite(VOID * ip, VOID * addr, UINT32 size) {

fprintf(trace,"%p: W %p %d\n", ip, addr, size);
}

// Called for every instruction
VOID Instruction(INS ins, VOID *v) {

// instruments writes using a predicated call,
// i.e. the call happens iff the store is
// actually executed
if (INS_IsMemoryWrite(ins))

INS_InsertPredicatedCall(
ins, IPOINT_BEFORE, AFUNPTR(RecordMemWrite),
IARG_INST_PTR, IARG_MEMORYWRITE_EA,
IARG_MEMORYWRITE_SIZE, IARG_END);

}

int main(int argc, char *argv[]) {
PIN_Init(argc, argv);
trace = fopen("atrace.out", "w");
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram(); // Never returns
return 0;

}

Figure 1. A Pintool for tracing memory writes.

INS InsertPredicatedCall ensures that RecordMemWrite is
invoked only if the memory instruction is predicated true.

Note that the same source code works on all architectures. The
user does not need to know about the bundling of instructions on
Itanium, the various addressing modes on each architecture, the
different forms of predication supported by Itanium and ARM, x86
string instructions that can write a variable-size memory area, or
x86 instructions like push that can implicitly write memory.

Pin provides a comprehensive API for inspection and instru-
mentation. In this particular example, instrumentation is done one
instruction at a time. It is also possible to inspect whole traces,
procedures, and images when doing instrumentation. The Pin user
manual [12] provides a complete description of the API.

Pin’s call-based model is simpler than other tools where the user
can insert instrumentation by adding and deleting statements in an
intermediate language. However, it is equally powerful in its ability
to observe architectural state and it frees the user from the need to
understand the idiosyncrasies of an instruction set or learn an in-
termediate language. The inserted code may overwrite scratch reg-
isters or condition codes; Pin efficiently saves and restores state
around calls so these side effects do not alter the original applica-
tion behavior. The Pin model makes it possible to write efficient
and architecture-independent instrumentation tools, regardless of
whether the instruction set is RISC, CISC, or VLIW. A combi-
nation of inlining, register re-allocation, and other optimizations
makes Pin’s procedure call-based model as efficient as lower-level
instrumentation models.

3. Design and Implementation
In this section, we begin with a system overview of Pin. We then
discuss how Pin initially gains control of the application, followed
by a detailed description of how Pin dynamically compiles the
application. Finally, we discuss the organization of Pin source code.

3.1 System Overview

Figure 2 illustrates Pin’s software architecture. At the highest level,
Pin consists of a virtual machine (VM), a code cache, and an instru-

191

Figure 3.2: Example of a Pintool. Figure referred from [14]

For indirect branches, Pin uses a prediction mechanism. It replaces the indirect branch
instruction with a "mov indirect_address, %edx" and direct jump to a predicted target. At
the target site, the %edx register is matched. If the match succeeds the execution continues
else control jumps to the next predicted target. If none of the predicted targets match, the
control finally jumps to a look-up stub that looks up the target in a hash table. If the target is
still not found, then the control falls back to the VM to create a trace. This prediction chain
is created dynamically and grows as new targets are discovered in the runtime. Example
shown in Figure 3.3

20

(a) Chaining of predicted indirect targets

jmp [%eax]

0x40000000

0x70000000

mov [%eax], %edx

jmp $0x70001000 VM

LookupHTab_1

mov %edx, %esi

and $0x3ff, %esi

cmp 0x30898200(, %esi,8), %edx

jnz $VMEntry # miss

jmp 0x30898204(, %esi,8) #hit

lea -0x40001000(%edx), %ecx

jecxz $match1

jmp $0x70002000

…

0x70001000

match1:

lea -0x40002000(%edx), %ecx

jecxz $match2

jmp $LookupHTab_1

…

0x70002000

match2:

(b) Using cloning to help predict return targets

call F()

ret

F():

call F()

pop %edx

jmp A’

F’():

lea –A(%edx), %ecx

jecxz $match1

jmp B’

…

A’:

pop %edx

jmp A’

F_A’():

pop %edx

jmp B’

F_B’():

ret translated without cloning ret translated with cloning

A: B:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_1
…

B’:

lea –A(%edx), %ecx

jecxz $match1

jmp $LookupHtab_1

…

A’:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_2

…

B’:

Figure 3. Compiling indirect jumps and returns

0x30898200 in this example). If the search succeeds, we will jump
to the translated address corresponding to the target. If the search
fails, we will transfer to the VM for indirect target resolution.

While our indirect linking mechanism is similar to the approach
taken in DynamoRIO [6], there are three important differences.
First, in DynamoRIO, the entire chain is generated at one time
and embedded at the translation of the indirect jump. Therefore
no new predicted target can be added onto the chain after it is
generated. In contrast, our approach incrementally builds the chain
while the program is running and thus we can insert newly seen
targets onto the chain in any order (e.g., Pin can put a new target
either at the front or the end of the chain). These new targets
can be found in the chain the next time that they occur, without
searching the hash table. The second difference is that DynamoRIO
uses a global hash table for all indirect jumps whereas Pin uses
a local hash table for each individual indirect jump. A study by
Kim and Smith [17] shows that the local hash table approach
typically offers higher performance. The third difference is that we
apply function cloning [10] to accelerate the most common form
of indirect control transfers: returns. If a function is called from
multiple sites, we clone multiple copies of the function, one for
each call site. Consequently, a return in each clone will have only
one predicted target on the chain in most cases, as illustrated by
the example in Figure 3(b). To implement cloning, we associate a
call stack with each trace (more precisely to the static context of

each trace, which we will discuss in Section 3.3.3). Each call stack
remembers the last four call sites and is compactly represented by
hashing the call-site addresses into a single 64-bit integer.

3.3.3 Register Re-allocation

During jitting, we frequently need extra registers. For example, the
code for resolving indirect branches in Figure 3(a) needs three free
registers. When instrumentation inserts a call into an application,
the JIT must ensure that the call does not overwrite any scratch reg-
isters that may be in use by the application. Rather than obtaining
extra registers in an ad-hoc way, Pin re-allocates registers used in
both the application and the Pintool, using linear-scan register allo-
cation [24]. Pin’s allocator is unique in that it does interprocedural
allocation, but must compile one trace at a time while incremen-
tally discovering the flow graph during execution. In contrast, static
compilers can compile one file at a time and bytecode JITs [5, 8]
can compile a whole method at one time. We describe two issues
that our trace-based register re-allocation scheme must address:
register liveness analysis and reconciliation of register bindings.

Register Liveness Analysis Precise liveness information of
registers at trace exits makes register allocation more effective since
dead registers can be reused by Pin without introducing spills.
Without a complete flow graph, we must incrementally compute
liveness. After a trace at address A is compiled, we record the
liveness at the beginning of the trace in a hash table using address
A as the key. If a trace exit has a statically-known target, we
attempt to retrieve the liveness information from the hash table so
we can compute more precise liveness for the current trace. This
simple method introduces negligible space and time overhead, yet
is effective in reducing register spills introduced by Pin’s register
allocation.

Reconciliation of Register Bindings Trace linking (see Sec-
tion 3.3.2) tries to make traces branch directly to each other. When
registers are reallocated, the JIT must ensure than the register bind-
ing at the trace exit of the source trace matches the bindings of the
entrance of the destination trace. A straightforward method is to re-
quire a standard binding of registers between traces. For example
Valgrind [22] requires that all virtual register values be flushed to
memory at the end of a basic block. This approach is simple but
inefficient. Figure 4(b) shows how Valgrind would re-allocate reg-
isters for the original code shown in Figure 4(a). Here, we assume
that virtual %ebx is bound to physical %esi in Trace 1 but to phys-
ical %edi in Trace 2. Virtual %eax and %ebx are saved at Trace
1’s exit because they have been modified in the trace, and they are
reloaded before their uses in Trace 2. EAX and EBX are the mem-
ory locations allocated by the JIT for holding the current values of
virtual %eax and %ebx, respectively.

In contrast, Pin keeps a virtual register in the same physical
register across traces whenever possible. At a trace exit e, if the
target t has not been compiled before, our JIT will compile a new
trace for t using the virtual-to-physical register binding at e, say
Be. Therefore, e can branch directly to t. Figure 4(c) shows how
Pin would re-allocate registers for the same original code, assuming
that target t has not been compiled before. Nevertheless, if target t
has been previously compiled with a register binding Bt �= Be,
then our JIT will generate compensation code [19] to reconcile the
register binding from Be to Bt instead of compiling a new trace for
Be. Figure 4(d) shows how Pin would re-allocate registers for the
same original code, this time assuming that the target t has been
previously compiled with a different binding in the virtual %ebx. In
practice, these bindings show differences in only one or two virtual
registers, and are therefore more efficient than Valgrind’s method.

A design choice we encountered was where to put the compen-
sation code. It could be placed before the branch, which is exactly
the situation shown in Figure 4(d) where the two mov instructions

193

Figure 3.3: Pin’s trace linking. Figure referred from [14]

To optimize the target match for returns, Pin uses cloning (Figure 3.4). A function can
be targeted by multiple call-sites. PIN creates a separate clone of the function for every
call-site. Hence the prediction chain for every return will essentially have just one target.

REGISTER RE-ALLOCATION: Pin’s compilation process needs few registers to be free. As it
can be seen in Figure 3.3 the trace linking process requires three free registers (edx, ecx and
esi). Also when a call is placed to the analysis code, free registers are needed to pass ar-
guments. Instead of obtaining the registers in an ad-hoc manner, Pin re-allocates registers
in both client code as well as analysis code using linear scan register allocation. Because
of just in time compilation and no prior knowledge of the program control flow, Pin has to
perform an iterative liveness analysis and register re-allocation, one trace at a time. The
liveness analysis result of each trace is stored in a hash table. If the target of a trace is stati-
cally known, then the liveness information of the target trace is obtained to compute more
precise liveness information of the current trace.

Because of trace linking, the reconciliation of register bindings of the current trace and
target trace is essential. If the target has not been compiled yet, then the target is re-
compiled using the parent trace’s register binding. If it has already been compiled and
the register bindings of the current and target trace differ, then the reconciliation code is

21

(a) Chaining of predicted indirect targets

jmp [%eax]

0x40000000

0x70000000

mov [%eax], %edx

jmp $0x70001000 VM

LookupHTab_1

mov %edx, %esi

and $0x3ff, %esi

cmp 0x30898200(, %esi,8), %edx

jnz $VMEntry # miss

jmp 0x30898204(, %esi,8) #hit

lea -0x40001000(%edx), %ecx

jecxz $match1

jmp $0x70002000

…

0x70001000

match1:

lea -0x40002000(%edx), %ecx

jecxz $match2

jmp $LookupHTab_1

…

0x70002000

match2:

(b) Using cloning to help predict return targets

call F()

ret

F():

call F()

pop %edx

jmp A’

F’():

lea –A(%edx), %ecx

jecxz $match1

jmp B’

…

A’:

pop %edx

jmp A’

F_A’():

pop %edx

jmp B’

F_B’():

ret translated without cloning ret translated with cloning

A: B:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_1
…

B’:

lea –A(%edx), %ecx

jecxz $match1

jmp $LookupHtab_1

…

A’:

lea –B(%edx), %ecx

jecxz $match2

jmp $LookupHtab_2

…

B’:

Figure 3. Compiling indirect jumps and returns

0x30898200 in this example). If the search succeeds, we will jump
to the translated address corresponding to the target. If the search
fails, we will transfer to the VM for indirect target resolution.

While our indirect linking mechanism is similar to the approach
taken in DynamoRIO [6], there are three important differences.
First, in DynamoRIO, the entire chain is generated at one time
and embedded at the translation of the indirect jump. Therefore
no new predicted target can be added onto the chain after it is
generated. In contrast, our approach incrementally builds the chain
while the program is running and thus we can insert newly seen
targets onto the chain in any order (e.g., Pin can put a new target
either at the front or the end of the chain). These new targets
can be found in the chain the next time that they occur, without
searching the hash table. The second difference is that DynamoRIO
uses a global hash table for all indirect jumps whereas Pin uses
a local hash table for each individual indirect jump. A study by
Kim and Smith [17] shows that the local hash table approach
typically offers higher performance. The third difference is that we
apply function cloning [10] to accelerate the most common form
of indirect control transfers: returns. If a function is called from
multiple sites, we clone multiple copies of the function, one for
each call site. Consequently, a return in each clone will have only
one predicted target on the chain in most cases, as illustrated by
the example in Figure 3(b). To implement cloning, we associate a
call stack with each trace (more precisely to the static context of

each trace, which we will discuss in Section 3.3.3). Each call stack
remembers the last four call sites and is compactly represented by
hashing the call-site addresses into a single 64-bit integer.

3.3.3 Register Re-allocation

During jitting, we frequently need extra registers. For example, the
code for resolving indirect branches in Figure 3(a) needs three free
registers. When instrumentation inserts a call into an application,
the JIT must ensure that the call does not overwrite any scratch reg-
isters that may be in use by the application. Rather than obtaining
extra registers in an ad-hoc way, Pin re-allocates registers used in
both the application and the Pintool, using linear-scan register allo-
cation [24]. Pin’s allocator is unique in that it does interprocedural
allocation, but must compile one trace at a time while incremen-
tally discovering the flow graph during execution. In contrast, static
compilers can compile one file at a time and bytecode JITs [5, 8]
can compile a whole method at one time. We describe two issues
that our trace-based register re-allocation scheme must address:
register liveness analysis and reconciliation of register bindings.

Register Liveness Analysis Precise liveness information of
registers at trace exits makes register allocation more effective since
dead registers can be reused by Pin without introducing spills.
Without a complete flow graph, we must incrementally compute
liveness. After a trace at address A is compiled, we record the
liveness at the beginning of the trace in a hash table using address
A as the key. If a trace exit has a statically-known target, we
attempt to retrieve the liveness information from the hash table so
we can compute more precise liveness for the current trace. This
simple method introduces negligible space and time overhead, yet
is effective in reducing register spills introduced by Pin’s register
allocation.

Reconciliation of Register Bindings Trace linking (see Sec-
tion 3.3.2) tries to make traces branch directly to each other. When
registers are reallocated, the JIT must ensure than the register bind-
ing at the trace exit of the source trace matches the bindings of the
entrance of the destination trace. A straightforward method is to re-
quire a standard binding of registers between traces. For example
Valgrind [22] requires that all virtual register values be flushed to
memory at the end of a basic block. This approach is simple but
inefficient. Figure 4(b) shows how Valgrind would re-allocate reg-
isters for the original code shown in Figure 4(a). Here, we assume
that virtual %ebx is bound to physical %esi in Trace 1 but to phys-
ical %edi in Trace 2. Virtual %eax and %ebx are saved at Trace
1’s exit because they have been modified in the trace, and they are
reloaded before their uses in Trace 2. EAX and EBX are the mem-
ory locations allocated by the JIT for holding the current values of
virtual %eax and %ebx, respectively.

In contrast, Pin keeps a virtual register in the same physical
register across traces whenever possible. At a trace exit e, if the
target t has not been compiled before, our JIT will compile a new
trace for t using the virtual-to-physical register binding at e, say
Be. Therefore, e can branch directly to t. Figure 4(c) shows how
Pin would re-allocate registers for the same original code, assuming
that target t has not been compiled before. Nevertheless, if target t
has been previously compiled with a register binding Bt �= Be,
then our JIT will generate compensation code [19] to reconcile the
register binding from Be to Bt instead of compiling a new trace for
Be. Figure 4(d) shows how Pin would re-allocate registers for the
same original code, this time assuming that the target t has been
previously compiled with a different binding in the virtual %ebx. In
practice, these bindings show differences in only one or two virtual
registers, and are therefore more efficient than Valgrind’s method.

A design choice we encountered was where to put the compen-
sation code. It could be placed before the branch, which is exactly
the situation shown in Figure 4(d) where the two mov instructions

193

Figure 3.4: Pin’s trace linking. Figure referred from [14]

added before the branch. The reconciliation code is a set of mov instructions that copy the
values from the virtual/re-allocated registers of the current trace to the virtual registers of
the target trace.

Performance evaluation shows that, with null instrumentation, Pin has a 60% overhead
for SPEC2000 integer benchmark and 5% overhead for SPEC2000 floating point benchmark.
The authors point out that high overhead for integer benchmark is due to the presence of a
larger number of indirect branches in the integer benchmark binaries. This shows that the
major reason for performance overhead is the runtime address translation.

3.2 DISASSSEMBLE AND RESYNTHESIZE - A CASE STUDY OF VALGRIND

Valgrind [15] comes under a set of tools known as the Shadow value tools and is designed
to perform heavyweight dynamic binary analysis. Shadow value tools maintain a shadow
of every register and memory location. Each shadow value records information about its
corresponding value’s history. Such shadow value tools can be used to track undefined bit
values (uninitialized or derived from undefined values), taint tracking, etc. As pointed out
by the authors of Valgrind [15], maintaining shadow values requires some standard steps

22

to be followed. Such as:

• Provide and maintain shadow registers just like the corresponding normal registers.

• Provide and maintain shadow memory for every memory location. Access must be
controlled to provide safety in multi-threading environment.

• Instrument every read/write instruction that access register or any memory location.

• Instrument system calls as almost every system call access registers, stack and mem-
ory locations.

• Intercept memory allocations done at program start-up.

• Instrument system calls that allocate and de-allocate memory (e.g. brk, mmap).

• Instrument stack allocation and de-allocation. This can be expensive as the stack
pointer is updated very frequently in a program.

• Heap allocators present in standard libraries such as Glibc, handout heap blocks from
larger chunks and maintain book-keeping information. A shadow value tool must
track the heap allocations and de-allocations done at library level and mark book-
keeping data as non-active as this book-keeping data shouldn’t be accessed by the
client program.

• Keep a side channel to output information like less used file descriptors and files, etc.

VALGRIND’S EXECUTION OVERVIEW :

• Instead of injecting itself into the client program’s address space, Valgrind launches
itself first and then loads the client program into its address space and doesn’t rely
on the system’s dynamic linker and loader. This gives Valgrind better control over the
memory layout of the client.

• Valgrind itself runs on the host/real CPU and uses the host registers. While the client
program is run on a simulated or guest CPU and it uses the guest/simulated registers.
Valgrind assigns a memory block called Threadstate to each thread of the client pro-
gram. The Threadstate is used to hold the thread’s guest and shadow register values.

• Valgrind translates code blocks on demand. A code block is a linear set of instructions
ending when (i) an instruction limit is reached or (ii) a branch to unknown target is hit
or (iii) more than 3 unconditional branches to known targets are hit. Valgrind’s code
translation process consists of 8 steps that translate machine code to IR, optimize the
IR, add instrumentation, perform register allocation and assemble back to machine
code. Valgrind’s IR is architecture neutral.

• Once translated, the translations are stored in a fixed size, linear-probe hash table.

• Once translated a translation can be executed. At the end of the execution of a trans-
lated block, all the register values have been written back to the threadstate and the
control passes to the dispatcher. The dispatcher looks for the next translation in a
small direct-mapped cache. If found, the execution continues, else the control passes
to the scheduler. The scheduler looks for the address of the next translation in the

23

hash table and adds it to the direct-mapped cache. The control passes back to the
dispatcher and this time it succeeds in finding the target translation. Valgrind doesn’t
support chaining of translated blocks like other DBI tools. This can affect the perfor-
mance because of frequent visit to the dispatcher. However, authors mention that
this hurts the performance less than expected because Valgrind’s dispatcher is fast
and Valgrind chases across many unconditional jumps during translation.

HANDLING SPECIAL CASES :

• System calls: System calls read and write from registers, stack and memory locations.
But Valgrind can not trace into the kernel. Hence, to keep track of system calls, the
control falls back to the Valgrind’s scheduler whenever a system call happens. The
scheduler copies the guest registers into host registers and makes the system call for
the client. When the system call returns, the scheduler copies the host registers back
to guest registers and passes the control to the client.

Also, the system calls involving resources such as memory, file descriptors, etc needs
to be pre-checked as the client shouldn’t access the tool’s resources. If any such case
happens, Valgrind aborts the system call without consulting the kernel.

• Threads: Threads pose a challenge as the load/store instructions no longer remain
atomic because every load/store to memory is now associated with corresponding
load/store to the shadow memory. It is difficult to make sure that the shadow loca-
tions are accessed in the same order by the threads as the original memory locations.
This is true for both the uni-processor and multi-processor systems. To deal with this
problem, Valgrind serializes the thread execution. Only one thread holding a lock
will be executed while the rest of the threads will remain in a blocked state. The ac-
tive running thread drops the thread whenever it makes a blocking system call or it
has been running for a while. In a sense, although the kernel chooses which thread
to run next, Valgrind dictates the thread switch.

• Signals: When a program sets a signal handler, it gives the kernel a callback that is
used to deliver the signal to the program. As the call to the handler is made from the
kernel, this may let the client execute natively. Worst, if the signal handler doesn’t
return and does a long jump instead. The tool would lose control completely. Hence
Valgrind intercepts all system calls that register signal handlers, keeps a note of the
address of the client’s handler and registers its own handler. When a signal arrives
the Valgrind creates the signal frame and runs the client’s handler on the simulated
CPU. If the handler is observed to return, Valgrind removes the frame from the client’s
stack and resumes the client’s execution from where it was before the signal was de-
livered. Valgrind delivers asynchronous signals in between translation block execu-
tion so that the load/store instructions remain unaffected.

REASON’S FOR OPTING IR OVER ASSEMBLY: As mentioned earlier, supporting shadow val-
ues requires heavyweight instrumentation such as instrumenting all the register accesses,
stack accesses, load/store instructions, system calls, memory allocation/deallocation, etc.

24

An IR representation makes all the side effects of instructions explicit and hence makes it
easier to accurately detect and instrument all the required instrumentation points. Whereas
it may be difficult to recognize all the side effects of an instruction from its machine code
or assembly representation.

The Valgrind’s IR representation breaks complex machine instructions that carry out
multiple operations into simpler single operation instructions. Hence it exposes all implicit
intermediate values such as memory addresses calculated by complex addressing modes.
Therefore it makes tracking and updating all the shadow values easier.

All code (instrumentation as well as client program code) are represented using the same
IR which means that client code and complex instrumentation code (required to maintain
shadow values and perform analysis) can be interleaved in an arbitrary manner and op-
timized equally well without worrying about analysis code perturbing condition codes of
client program or spilling garbage into register values of client program.

Finally, the use of temporaries in IR makes shadow value manipulations easier.

CONS OF DISASSEMBLE AND RESYNTHESIZE APPROACH: Using IR requires additional ef-
fort to ensure that the compilation phase generates good code. Whereas using Copy and
annotate approach ensures that good client code stays good with less effort.

Performing machine code->assembly->IR->assembly->machine code translation along with
other operations such as code optimization and register allocation during the runtime af-
fects the performance overhead and is not suitable for lightweight instrumentation. Eval-
uation on SPEC CPU2000 benchmarks showed that Valgrind’s null instrumentation slowed
down by a factor of 4.3x. Heavyweight instrumentation such as Memcheck slowed down by
a factor of 22.2x.

4 SECURITY POLICY ENFORCEMENT USING INSTRUMENTATION

Memory corruption vulnerabilities are the most commonly exploited software vulnerabil-
ities. These exploits initially took the form of malicious code that was injected into the
stack or the heap area, with control redirected to this code by corrupting a return address
on the stack or a function pointer. No-Execute memory protection schemes such as DEP
was employed to stop attackers from executing any injected code. This gave rise to new
exploitation techniques known as code reuse attacks. Return to libc [21] is one such at-
tack in which the attacker redirects the control flow to an existing library function such as
system("/bin/sh"). ROP [7][8] is another form of code-reuse attack in which the attacker
chains together short sequences of instructions already present in the code segment. The
dense encoding of CISC architecture makes it possible to construct turing complete gad-
gets using the instruction sequences already present in the code segment. The fixed ad-
dress of the executable segments made it easier for the attackers to guess the location of
such code gadgets. To frustrate the attackers ASLR [4] was introduced. ASLR randomizes
the location of every executable segment, thereby making it harder for the attackers to find

25

Direct control flow transfer Indirect control flow transfer
396d: call 3290 3b4c: jmp *%rax
3962: je 3972 3890: jmp *0x21c75a(%rip)
362b: jmp 3230 14788: ret

Table 4.1: Examples of control flow transfer instructions obtained from objdump output of
ls

and jump into the code of choice. However a lot of executable with fixed load addresses
are still in use in the real world. Also, attackers can by-pass ASLR by leaking pointer values
using information leakage vulnerabilities or by brute force. Defense mechanisms against
such code reuse attacks include:

• bounds checking: to restrict attackers from exploiting buffer overflow vulnerabilities.

• Stack canary and shadow stack: to prevent attackers from corrupting the return ad-
dresses stored on the stack.

• CFI: to prevent redirection of the control flow of the program.

• changing the semantics of code gadgets by employing code transformations.

• employing fine-grained code randomization to break the attacker’s assumption about
the location of code gadgets, etc.

Some of these techniques, e.g., stack canaries, have already been widely deployed. Among
the rest, CFI and code randomization are the two most amenable to binary instrumenta-
tion, so we describe them in this section

4.1 CONTROL FLOW INTEGRITY

Control flow integrity [29][28] provides a foundation for enforcing low-level security poli-
cies on binary code. It has also been used extensively to mitigate control flow hijack attacks
such as ROP and JOP. In code reuse attacks the attacker exploits memory corruption vul-
nerabilities to redirect the control flow to attacker-chosen code gadgets. Code gadgets are
a sequence of instruction bytes ending with an indirect control transfer instruction ret/jmp
*/call *. These code gadgets can be present anywhere in the code segment. With the knowl-
edge of the executable format, the attacker can statically analyze the code segment and
predetermine the sequence of bytes that he can use as gadgets. One way to prevent such
attacks would be to prevent the attacker from jumping to any arbitrary location.

control flow transfer instructions in a binary are responsible for changing the execu-
tion flow of a program either conditionally or unconditionally. These instructions can be
broadly classified into two categories. Direct control flow instructions and indirect con-
trol flow instructions (Table 4.1). Since code is non-writable in contemporary operating
systems, attackers cannot manipulate the target of direct control flow transfer instructions
and hence they must rely on indirect control flow transfer instructions.

Indirect control flow instructions can further be subdivided into two groups, forward

26

edges (jmp */call *) and backward edges (ret). C++ virtual method calls, calls using func-
tion pointers and switch case blocks are translated to use indirect calls and jumps. Targets
of these calls and jumps are computed at the runtime and are stored in some register or
memory location. Targets of return instructions are pushed on to the stack by the call in-
struction preceding the return in the control flow path. The attacker can take advantage
of any memory corruption vulnerability and modify the targets of such indirect branch in-
structions.

Implementing CFI involves statically computing the control flow graph (CFG) of a pro-
gram and adding instrumentation to perform run time validations on the computed jump
targets such that the program doesn’t violate the pre-computed CFG. Effective implemen-
tation of CFI depends on:

• Accurate code discovery: Every indirect control flow instruction needs to be discov-
ered and instrumented so that their targets can be validated at runtime. At the same
time misidentifying embedded data as code and instrumenting it can break the pro-
gram.

• Accuracy of control flow graph: Effectiveness of a CFI technique is determined by the
preciseness of the CFG which in turn depends on the indirect branch target recovery.
The granularity of a CFI depends on:

– Size of the possible target set for each indirect branch instruction (the closer it
is to actual target set, the better it is).

– Number of false positives in the target set (the lesser the better).

In short, binary based CFI implementations suffer from problems that inherently come
with static binary instrumentation. Many CFI solutions are implemented within compiler
tool chain [27] [5][25][2] and rely on semantic information that are not available in bina-
ries. The first CFI technique introduced by Abadi et. al. [1] works on binary and relies on
relocation information to recover indirect branch targets. However, it is coarse-grained as
its CFG allows every indirect branch (ret/jmp */call *) to target all address taken locations.
CCFIR [28] follows a similar approach and relies on relocation information. However, it is
more fine-grained as it generates separate target set for jmp */call * and ret instructions.
BinCFI[29] is another CFI technique that operates directly on binary and doesn’t rely on
relocation or any other supplemental information. In the following section, we will discuss
BinCFI and CCFIR.

4.1.1 RELATED WORKS ON CFI

• BinCFI[29] statically disassembles and instruments the computed jump instructions
to validate the computed targets during runtime. It deals with the two challenges
described above as follows:

– Accurate code discovery: BinCFI’s disassembly process has been discussed in
section 2. The linear disassembly followed by the error correction process makes
sure that all possible code locations are disassembled. It protects any misinter-

27

Returns,
Indirect jumps

PLT Targets,
Indirect Calls

Return Addresses Y
Exception Handling Addresses Y
Exported Symbols Y
Code Pointer constants
(stored pointers)

Y Y

Computed Code address
(Jump table targets)

Y Y

Table 4.2: BinCFI model. Figure referred from the BinCFI paper[29].

preted data by keeping the old code section unchanged.

– Accuracy of control flow graph:

* False positives in indirect branch target set: As discussed in chapter 1, BinCFI’s
indirect branch target detection process generates an over-estimation of
possible target set. So, it may have some false positives but doesn’t have
any false negatives. This is essential for preserving functionality of a pro-
gram.

* Size of indirect branch target set: In complex binaries there can be several
exceptions. For example, compiler optimization can result in a function
being reached by a jmp instead of a call instruction, returns being used as
jumps (signal handling, thread switch, etc), jumps being performed on re-
turn addresses (longjmp), etc. Such cases prohibits any general assumption
regarding the target set of an indirect branch instruction. Hence, BinCFI’s
CFG generates a coarse-grained target set (Table 4.2).

BinCFI’s runtime address translation technique helps in enforcing the policies men-
tioned in table 4.2. BinCFI is an effective CFI solution for stripped COTS binaries
without any symbolic, debugging or relocation information. It certainly raises the
bar for attackers, but the conservative approach leads to a relaxed CFG that leaves
some space for the attackers to exploit.

• CCFIR [28] on the other hand depends on relocation information present in Windows
DLLs to discover the targets of computed jump instructions.

– Code discovery: CCFIR supplements its recursive disassembly with the code
pointers recovered from the relocation table. Hence, it can achieve complete
disassembly for Windows DLLs. It makes a few assumptions regarding the bi-
nary:

* No instruction pointer relative pointer computation.

* Jump tables are an array of absolute addresses and can be accessed via re-
location.

* Only data present in the code section are jump tables. Hence, using the

28

Indirect Calls/
Jumps

Returns
Returns
to sensitive
functions

Exported
Functions

Y

Relocated
code pointers

Y

Return
Addresses

Y

Return
Addresses in
Sensitive
Functions

Y

Table 4.3: CCFIR model

relocation table can help in locating all data within code.

Such assumptions are not applicable everywhere. For example, x86-64 bit bi-
naries often use instruction pointer relative code pointer computation which
cannot be resolved simply by exploiting relocation information. Also, the jump
table computation in Linux ELF binaries is based on relative offsets from a base
address and does not require relocation.

– Accuracy of control flow graph:

* False positives in indirect branch target set: Relying on relocation informa-
tion helps CCFIR achieve zero false positives for Windows DLLs.

* Size of indirect branch target set: CCFIR segregates the indirect branch tar-
gets into finer subsets for each type of indirect branch instruction (jmp
*/call * and ret). Indirect calls and jumps are allowed to target exported
functions and relocated code pointers. Whereas returns are allowed to tar-
get only valid return addresses 4.3. CCFIR’s strict policies don’t leave any
room for exceptional cases such as returns being used as jumps and jumps
targeting return addresses.

To protect return addresses, CCFIR relocates the call instructions. Doing so affects
the transparency of the instrumented program which can break functionalities such
as exception handling that depend on code uniformity.

The inability to decode the computed jumps forces the CFI techniques to be conser-
vative to preserve the program behavior. This affects the strictness of CFI leaving some
space for the attacker to launch an attack. Typearmor [23] implementation tries to make
the computed CFG stricter by further comparing the call-site signature with a callee pro-
totype. However, getting the argument count of the callee and the caller from a binary is
difficult. Typearmor uses a conservative static analysis to determine an over-estimation of
argument count at the call site and an under-estimation of argument count at callee. It

29

allows call-sites to target the callees with argument count less than or equal to that of the
call-site. Additionally, it scrambles the unused registers at call sites to prevent data flow be-
tween code gadgets. The prototype matching along with scrambling the unused registers
at call sites certainly raises the bar and can prevent COOP [18] and other known forms of
code reuse attacks. But the less than/equal to comparison can reduce the target set roughly
by 50% only and hence, leaves some space for the attacker to launch an attack.

4.2 CODE RANDOMIZATION

Code gadgets are a short sequence of instructions that perform a specific operation such as
load value to a register or pop a value from a register, followed by an indirect jump instruc-
tion or a return. Code gadgets can be classified into two categories, (i) Intended gadgets
and (ii) Unintended gadgets (Figure 4.1). An intended gadget is a part of the execution flow
of the program. Whereas the unintended gadgets start at a misaligned address which is not
reachable by the normal execution flow of the program. Possible solutions to prevent the
attacker from using a gadget can be:

• Changing gadget semantics: Changing the semantics of intended gadgets without af-
fecting the behavior of the program is not possible. However, it is possible to break
the unintended gadgets by replacing the instructions of which they are a part of,
with semantically equivalent instructions. Compiler extensions such as g-free [16]
achieves this via a series of instruction transformation such as register reallocation,
instruction transformation, and jump offset adjustment. Achieving the same in bina-
ries can difficult because of the content classification problem (code vs data). In the
subsequent section we will discuss IPR [17] that performs similar transformations on
binary.

• randomizing code location: Randomizing individual units of a program such as ba-
sic blocks or functions will make it harder for the attacker to guess the location of
preferred gadgets or to change the semantics of the gadget. Performing fine-grained
randomization on binary comes with the inherent challenges of binary instrumen-
tation. In the subsequent section we will be discussing binary stirring [26] and ILR
[11] that perform fine-grained randomization using static and dynamic binary in-
strumentation respectively.

4.2.1 RELATED WORKS ON CODE RANDOMIZATION

Binary based randomization techniques must take care of the following points:

• Accurate disassembly: Any data misidentified as code and modified by the random-
ization process can result in malfunction.

• Indirect branch target translation: Code randomization can result in relocation of
code. Hence, indirect branch targets need to be identified and updated to preserve
the program functionality.

30

Figure 1: Examples of different gadgets that can be extracted from a real byte sequence

quence: pop %ebx; call *%ebx.

2.2 Gadget Construction
In the x86 architecture, gadgets are not limited to sequences of

existing instructions. In fact, since the IA-32 instruction set does
not have fixed length instructions, the opcode that will be executed
depends on the starting point of the execution in memory. There-
fore, the attacker can build different gadgets by jumping inside ex-
isting instructions.

Figure 1 shows how, depending on the alignment of the first and
last instruction, it is possible to construct three different kinds of
gadgets. Gadget1 is an aligned gadget that only uses “intended”
instructions already present in the function code. Gadget2 is a
gadget that contains only “unaligned” instructions ending with the
unintended call *%eax. Finally, Gadget3 starts by using an
unintended add instruction, then re-synchronizes with the normal
execution flow, and ends by reaching the function return. This ex-
ample demonstrates how a short sequence of 14 bytes can be used
for constructing many possible gadgets. Considering that a com-
mon library such as libc contains almost 18K free branch in-
structions and that each of them can be used to construct multiple
gadgets, it is not difficult for an attacker to find the functionality he
needs to execute arbitrary code.

If we can prevent the attacker from finding useful instruction
sequences that terminate with a free branch, we can prevent any
return-oriented programming technique. We present our approach
to reach this goal in Section 4.

3. RELATED WORK
Several defense mechanisms attempt to detect memory exploits

which represent a fundamental basic block for mounting return-to-
lib(c) attacks. StackGuard [11] and ProPolice [18] are compile-
time solutions that aim at detecting stack overflows. PointGuard
encrypts pointers stored in memory to prevent them from being cor-
rupted [10]. StackShield [35] and StackGhost [17] use a shadow re-
turn address stack to save the return addresses and to check whether
they have been tampered with at function exits. A complete survey
of traditional mitigation techniques together with their drawbacks
is presented in [12]. Our solution, in order to avert ROP attacks,
prevents tampering with the return address as well; but it does not
target other memory corruption attacks.

One of the most effective techniques that hamper return-to-lib(c)
attacks is Address Space Layout Randomization (ASLR) [32]. In
its general form, this technique randomizes positions of stack, heap,
and code segments together with the base addresses of dynamic li-
braries inside the address space of a process. Consequently, an
attacker is forced to correctly guess the positions where these data
structures are located to be able to mount a successful attack. De-
spite the better protection offered by this mechanism, researchers
showed that the limited entropy provided by known ASLR imple-
mentations can be evaded either by performing a brute-force attack
on 32-bit architectures [30] or by exploiting Global Address Table

and de-randomizing the addresses of target functions [25].
Various approaches proposed by the research community aim

at impeding ROP attacks by ensuring the integrity of saved return
addresses. Frantsen et al. [17] presented a shadow return address
stack implemented in hardware for the Atmel AVR microcontroller,
which can only be manipulated by ret and call instructions.
ROPdefender [22] uses runtime binary instrumentation to imple-
ment a shadow return address stack where saved return addresses
are duplicated and later compared with the value in the original
stack at function exits. Even though ROPdefender is suitable for
impeding basic ROP attacks, it suffers from performance issues
due to the fact that the system checks every machine instruction
executed by a process.

Another method, called program shepherding [20], can prevent
basic forms of ROP as well as code injection by monitoring control
flow transfers and ensuring library code is entered from exported
interfaces.

Other approaches [9, 13] aim to detect ROP-based attacks rely-
ing on the observation that running gadgets results in execution of
short instruction sequences that end with frequent ret instructions.
They proposed to use dynamic binary instrumentation to count the
number of instructions executed between two ret opcodes. An
alert is raised if there are at least three consecutive sequences of
five or fewer instructions ending with a ret.

The most similar approach to ours is a compiler-based solution
developed in parallel to our work by Li et al. [21]. This system
eliminates unintended ret instructions through code transforma-
tions, and instruments all call and ret instructions to imple-
ment return address indirection. Specifically, each call instruction
is modified to push onto the stack an index value that points to a re-
turn address table entry, instead of the return address itself. Then,
when a ret instruction is executed, the saved index is used for
looking up the return address from the table. Although this system
is more efficient compared to the previous defenses, it is presented
as a solution specifically tailored for gadgetless kernel compilation,
and it exploits characteristics of kernel code for gadget elimination
and increased performance. Moreover, the implementation requires
manual modifications to all the assembly routines.

It is important to note that none of the defenses proposed so far
can address more advanced ROP attacks that utilize free-branch
instructions different from ret. The solution we present in this
paper is the first to address all free-branch instructions, and the first
that can be applied at compile-time to protect any program from
ROP attacks.

4. CODE WITHOUT GADGETS
Our goal is to provide a proactive solution to build gadget-free

executables that cannot be targeted by any possible ROP attack. In
particular, we strive to achieve a comprehensive, transparent, and
safe solution. By comprehensive, we mean that we would like our
solution to eliminate all possible gadgets by removing the linking

51

Figure 4.1: Example of gadgets. Figure referred from gfree paper [16]

• Transparency: Functionalities like exception handling depend on code uniformity
and hence, can be affected by the randomization process.

Dynamic binary instrumentation can help get around disassembly and indirect branch
target recovery problem. Instruction location randomization (ILR) [11] uses dynamic bi-
nary instrumentation to randomize the location of every instruction.

• code discovery and randomization: Even though ILR performs a static/offline disas-
sembly and randomization, the instructions are not relocated until runtime. There-
fore, any misidentified remains unharmed as it will never be reached by the control
flow of the program and hence will not be relocated. This opens a door for ILR to per-
form an exhaustive disassembly and discover every possible code. After disassembly,
ILR generates a set of rewrite rules. The rewrite rules specify the new location of ev-
ery identified instruction. A fall-through map is generated to guide the transfer of
control between instructions. A fall-through map as shown in figure 4.2 denotes the
location of the next instruction.

• Indirect branch target translation: To support indirect branches the ILR scans the
binary to locate all possible indirect branch targets and creates a fall-through map
for each of them. This means that, if the attacker can leak the unrandomized indirect
branch targets then he will be able to successfully divert the control flow to these
locations.

By randomizing the location of call instructions, ILR randomizes the return addresses
too. However, all return addresses can not be randomized. In PIC code, a return ad-
dress may be used to access a relative memory location. Also, return addresses are
used by exception handling functionality. ILR deals with PIC code that uses return
addresses by statically analyzing call sites and checking for any such access. If any
such case is found, then that return address is left unrandomized. However, excep-
tion handling still remains vulnerable.

ILR uses process level virtual machine (PVM) to fetch instructions as per the rewrite rules,
translate and execute in proper order. The rewrite rules scatter the instructions over the
address space of 32 bits. However, monitoring and translating every instruction during the
runtime adds to the performance overhead.

31

�������	
����

������������

	��

����������������

���������
��������

����������������

	��

������������

����� !"

����������#$

����%	�&'%�(��)�
* "�+,�#��
�#�-+,�"#�
�"#�+,!�-*
!�-$+,##$�
##$"+,� !"

����

����

���$

���*

���#

##$�

�#��

� !"

!�-*

* "�

.	������/���0	�'	����	�����/ 123+�	��������0	�'	��

����������#$
����2�

�����-��
����������������
�����������

	��

����������#$����

������-*#�"#�

Figure 1. Traditional program creation versus an ILR-protected program.
In a traditional program, instructions are arranged sequentially and pre-
dictably, allowing an attack. With an ILR-protected program, instructions
are distributed across memory randomly, preventing attack.

ROP gadgets and how they are combined to form an attack,
please see Shacham’s prior work [2].

ILR adopts an execution model where each instruction
has an explicitly specified successor. Thus, each instruc-
tion’s successor is independent of its location. This model
of execution allows instructions to be randomly scattered
throughout the memory space. Hiding the explicit successor
information prevents an attacker from predicting the location
of an instruction based on the location of another instruction.

ILR’s “non-sequential” execution model is provided
through the use of a process-level virtual machine (PVM)
based on highly efficient software dynamic translation tech-
nology [11–13]. The PVM handles executing the non-
sequential, randomized code on the host machine.

We have implemented a prototype ILR implementation
for Linux on the x86 and Section III provides complete
implementation details. In short, ILR operates on arbitrary
executables, requires no compiler support, and no user
interaction. Using a set of vulnerable programs (including a
binary distributed by Adobe to read PDF files) and ASLR-
and W⊕X-defeating exploits, we demonstrate that ILR de-
tects and thwarts these attacks. An important consideration
of any mitigation technique is the run-time overhead. Many
proposed mitigation techniques incur high overheads—as
much as 90% to 2000% [14, 15]. Using a large industry-
standard CPU performance benchmark suite [16], we com-
pared the run time of ILR-protected executables to that of
native executables. The average run-time overhead of ILR
was 13% with over half of all programs having effectively
no overhead (less than 3%) indicating that ILR is a realistic
and cost-effective mitigation technique.

This paper makes several contributions. It:
• presents Instruction Location Randomization (ILR), a

technique that provides high-entropy diversity for relo-
cating instructions with low run-time overhead,

• demonstrates that ILR defeats arc-injection and ROP
attacks on arbitrary binaries without need for compiler,

linker, operating system or hypervisor support,
• provides a complete description of how ILR can achieve

its goals despite inherent uncertainty about a program’s
structure, such as where code and data reside, and

• thoroughly analyzes the security, effectiveness, and
performance of ILR in a prototype system on large,
real-world benchmarks.

The remainder of the paper is organized as follows:
Section II first discusses the threat model within which ILR
operates. Section III describes the details of ILR. Sections IV
and V provide an evaluation and security discussion of
the proposed techniques. Section VI compares our work to
related work in the field. Finally, Section VII summarizes
our findings.

II. THREAT MODEL

We assume that the unprotected program is created and
distributed to an end user (and possibly the attacker) in
binary form. The program has been tested, but not guaran-
teed to be free from programmatic errors that might allow
malicious exploit, such as memory errors. The program is
assumed to be free from intentionally planted back doors,
trojans, etc. Furthermore, the program is to be protected
and deployed in a setting where the other software on the
system is believed to be operating correctly, and the system
administrator is trusted. An attacker does not have direct
access to the system or the protected program. However,
the attacker understands the protection methodology and
may have access to tools for applying ILR protections. The
attacker also has access to the unprotected version of the
program, and can specify malicious input to the protected
program.

In particular, ILR focuses on preventing attacks which
rely on code being located predictably. This threat model
includes a large range of possible attacks against a program.
For example, many attacks against client and server soft-
ware fit this model. Document viewers/editors (Adobe PDF
viewer, Microsoft Word), e-mail clients (Microsoft Outlook,
Mozilla Thunderbird), and web browsers (Mozilla Firefox,
Microsoft Internet Explorer, Google Chrome) need to be
protected from these types of threats anytime a user requests
the program to examine data from an untrusted source.

III. INSTRUCTION LOCATION RANDOMIZATION

ILR’s goals are to achieve high randomization and low
run-time overhead. Figure 1 conceptually illustrates the
effect of ILR and how it mitigates malicious attacks. The top
left of the figure shows the control-flow graph of a particular
program segment. The compiler and the linker collaborate
to produce an executable file where instructions are laid out
so they can be loaded into memory when the program is
executed. A typical layout of code is shown at the bottom
left of the figure.

572

Figure 4.2: Example of ILR rewrite rules. Figure referred from [11]

To avoid runtime overhead, static binary instrumentation is the best approach. Binary-
stirring (Wartell, Mohan, Hamlen & Lin,2012) [26] statically transforms the binary into a
randomizable interpretation, which is used by a load-time re-assembler to reorder the code
at the basic block level.

• Code discovery and randomization: Binary-stirring uses a recursive disassembly (IDA
pro) to discover all possible code locations. Any misinterpreted data is protected
keeping the old code section unchanged. After disassembly, the code is broken into
basic blocks that are randomized during the load time. Randomization is done by
Binary-stirring’s initialization code that runs before the application is started.

• Indirect branch target recovery and translation: Every location in the code section that
matches with prologues for known calling conventions signature is treated as a valid
branch target. A runtime address lookup is then used to translate these targets during
the runtime.

Such assumptions that involve prologue matching are inefficient and error-prone.
For example, complex binaries that have complex switch-case blocks that are usually
translated into jump tables. The targets encoded in these jump tables do not nec-
essarily point to a function beginning and hence may not constitute a function pro-
logue. Also, any embedded data can get matched with function prologue and thereby
can get overwritten.

32

Binary-stirring was tested on SPEC CPU2000 benchmark for both Windows and Linux plat-
form. The average performance overhead was noticed to be 6.6%. The randomization
approach of Binary-stirring doesn’t preserve transparency. Change in code locations and
return addresses on the stack can lead to failure of functionalities like exception handling.
The binary-stirring approach doesn’t take care of such special cases.

Unlike Binary-stirring, In place code randomization (IPR) [17] follows a much more con-
servative approach to deal with impreciseness of static disassembly and to preserve trans-
parency. IPR proposes a series of in-place code transformation techniques, that change the
semantics of unintended code gadgets without affecting the original code location, seman-
tics and size.

• Code discovery and transformation: Uses IDA pro to recursively disassembly to achieve
high code coverage while avoiding the use of heuristics such as function prologue
matching to prevent any misidentification of data as code. In-place transformations
are applied only on the parts that can be confidently identified as code. The transfor-
mations are as follows:

– Atomic instruction substitution: Instructions are replaced with semantically
equivalent instructions having the same length. Many arithmetic or logical in-
structions in x86 architecture have such dual equivalent forms. For example,
add r/m32,r32 and add r32,r/m32, test r/m8,r8 and test r8,r/m8, etc. Changing the
instructions will modify certain bytes in the code image and hence, can break
the attacker’s assumption regarding the semantics of unintended gadgets

– Instruction reordering: Instructions such as registration preservation code at
the entry of a function are independent and can be reordered arbitrarily. IPR
derives the dependence graph per basic block using simple use-def analysis and
reorders the independent instructions within a basic block. Similar to atomic
instruction substitution, this transformation can impact the structure of non-
intended gadgets.

– Register Reassignment: Changing the register operands of instructions can change
the byte sequence of unintended gadgets as well as break the attacker’s assump-
tion regarding the registers used in statically identified intended ROP gadgets.
The IPR model achieves this by conducting a liveness analysis for every register
within correctly identified function bodies.

• Indirect branch target recovery and translation: The in-place transformations do not
change the code location and size and thereby eliminate the need for indirect branch
target translation.

The conservative disassembly and in-place transformation help in avoiding errors caused
by impreciseness of static disassembly but leaves some code untransformed and thereby
unprotected from code reuse attacks. A gadget may remain intact either because it is not
disassembled or it was not affected by the in-place transformations.

Static binary instrumentation based code randomization without any symbolic or de-
bugging information comes with a bargain. The finer is the granularity of the binary ran-

33

domization approach, the more is the chance of inaccuracy, in terms of misidentifying data
as code, misidentifying code pointers, or breaking special functionalities like the exception
handling/debugging mechanism, etc. And, the more we try to preserve the functionality
and transparency in the behavior of the program, the lesser will be the granularity of ran-
domization achieved.

5 STATIC CODE RANDOMIZATION TECHNIQUE FOR X86-64
POSITION INDEPENDENT EXECUTABLES

In code reuse attacks, the adversary tries to divert the control flow to code gadgets. Code
gadgets are legitimate code already present in the executable segment of a program. In
conventional ROP attacks, the adversary has to identify the code gadgets statically. In such
a case, simple Randomization at the granularity of functions will be able to break the ad-
versary’s assumptions regarding the location of code gadgets. However, new forms of ROP
attacks known as JIT-ROP and indirect disclosure based JIT-ROP have surfaced. In JIT-ROP
attacks, the adversary is able to read and disassemble the code pages at the runtime to find
code gadgets. Such form of ROP attacks can be thwarted by marking code pages as execute-
only along with using some form of coarse-grained randomization, such as function per-
mutation. In indirect disclosure based JIT-ROP attacks, the adversary is able to leak stored
code pointers from memory or stack (Return address). The adversary can then easily guess
the location of code gadgets present around the leaked pointers. Along with execute-only
code pages, the code needs to be randomized at much finer granularity to prevent such
types of attacks.

Compiler based defense techniques like Readactor [9] try to prevent the disclosure of all
stored code pointers by replacing them with trampoline addresses. However, practical ap-
plication of such compiler based approaches is affected by the availability of source code.
Binary based gadget elimination techniques such as IPR [17] apply in-place transforma-
tions to the instructions in order to render the gadgets unusable. Such gadget elimination
techniques can be helpful against all forms of ROP discussed in the above paragraph. How-
ever, such techniques have to deal with the content classification problem (accurate clas-
sification of code and data) and therefore follow a conservative approach in which some
codes remain untransformed. Binary stirring [26] performs randomization at the granu-
larity of basic blocks. However, use of heuristics such as function prologue matching to
detect code locations and indirect branch targets can result in impreciseness. Dynamic bi-
nary instrumentation based randomization approaches like ILR [11] effectively randomize
every instruction, but incur significant runtime overhead. In this section we present our
approach of applying randomization at basic block granularity for x86-64 position inde-
pendent executables (PIE).

To support ASLR, most of the commonly used x86-64 bit binaries are position indepen-
dent executables (PIE). Which means that the address of code and data is not absolute and
is determined during the load time. One important property of the PIE binaries is the re-

34

Assembly Code Relocation info

10: mov 0xf(%rip),%rax
17: jmpq *(%rax)

19: mov 0x2(%rip),%rbx
20: jmpq *(%rbx)

22: 0x500
26: 0x100

Relocation slot | Relocation entry | Relocation type
————————————————————————-

0x26 0x100 R_X86_64_RELATIVE
0x22 0x500 R_X86_64_RELATIVE

Table 5.1: Relocation information format for x86-64 ELF binaries

location information. As the code and data address is determined during the runtime, any
pointer stored in memory has to be relocated to the new address during the load time. The
relocation table (Table 5.1) has a record for all such pointers. Each record in the relocation
table has a relocation slot that holds the location of a pointer, a relocation entry that holds
the pointer value and a relocation type which indicates how a pointer is going to be updated
during the load-time. In this example (Table 5.1), relocation type R_X86_64_RELATIVE
means the pointer value will be added to the code section base to generate the final value.

We have exploited this property of PIE binaries to develop a robust static binary instru-
mentation approach. Exploiting relocation information helps us in retrieving all the stored
code pointers. This helps us in achieving complete and correct disassembly as well as pre-
serving the code and data references in the instrumented binary.

5.1 DISASSEMBLY APPROACH

The major challenge in the static disassembly process is the content classification prob-
lem, i.e. distinguishing code and data. To support DEP, modern compilers tend to create
a separate section for code and data. In x86-64 bit ELF binaries compiled by gcc, code,
read-only data, and writable data are present in three different sections and no embedded
data is found within the code section. This fact is supported by the research conducted
by Andriesse et al. (2016) [3] where linear disassembly approach is shown to achieve 100%
correct and complete code discovery for x86 ELF binaries. However, there is a chance that
in large binaries such as "glibc" alignment bytes may be present between the functions.
Misinterpreting alignment bytes will not create any problem. However, because of the
variable-length instruction set architecture of x86, the misinterpretation may trickle down
to subsequent valid instructions. To avoid this problem, we start disassembling code from
valid code locations. Valid code locations are the program entry point, stored code pointers
obtained from the relocation table and the function entry points obtained from the export
table. The disassembly approach can be summarized as below:

• Identifying code pointer constants: The ELF binary is parsed to obtain the location

35

of code and data sections, the relocated code pointers and the export table entries.
A relocation entry may point to a data pointer rather than a code pointer. Similary,
export table may contain entries for exported global variables. Therefore we only
consider those entries that fall within the code section range.

• The code section is divided into code blocks according to the code pointers obtained
in step 1.

• Each block is then linearly disassembled using objdump. The linear disassembly
helps us to discover the code locations that are only reachable via jump tables.

After the disassembly is complete, control flow graph (CFG) is generated and jump table
targets are recovered. The control flow graph generation process is able to identify all basic
blocks correctly. The subsequent sections describes the CFG generation process and the
jump table recovery process.

5.1.1 CONTROL FLOW GRAPH

BASIC BLOCK IDENTIFICATION: A basic block is defined as a linear block of code that has
only one entry point and only one exit point. Neither code pointers nor direct control in-
structions can target any location that doesn’t mark the beginning of a basic block.

Our basic block detection mechanism is a simple depth first search along the control flow
graph. We start scanning instructions from the beginning of each code block. We stop when
we encounter a branch instruction. The branch is marked as the end of the basic block and
the instruction scan continues from the branch target. In case, the branch is conditional,
the scanning is done at the fall-through address too. In case, a branch happens to target
the middle of a pre-identified basic block, then the basic block is broken into two. There
is a chance that we may encounter a call or jump instruction targeting a location outside
the range of the current code block. Such cases are noted as inter code block targets and
processed in the second phase. By following the control flow we may miss the basic blocks
that are reached via jump tables as the jump table targets have not been computed yet. So,
we treat any code location immediately following an unconditional jump (call/jmp/ret) as
a valid basic block entry point and examine them.

After all the code blocks have been divided into basic blocks, all the noted cases of inter
code block targets are processed. For each such target, we find the pre-identified basic block
to which the target belongs. If the target is in the middle of the basic block, then we break
the basic block into two.

For each correctly identified basic block, we maintain two forward edges. One pointing
to the branch target and one pointing to the fall-through block.

FUNCTION IDENTIFICATION: Every call instruction target is marked as a valid function en-
try point. A function body is defined as a set of basic blocks that lay between two function
entry points. This approach will cover all the basic blocks including the ones that are only
reached via a jump table. This approach will treat a multi-entry function as separate func-

36

tions. Hence we merge two consecutive function bodies if there exists a branch between the
two function bodies. The merging process is done recursively until no merge is possible.

A function may only be reachable via a tail call where a jump instruction is used rather
than a call. At this point, we are not handling such tail calls as it is not trivial for the code
randomization process. If a function is reachable only via tail call, then it will not be iden-
tified as a separate function. Rather the tail called function will be treated as a part of the
function body immediately preceding itself.

JUMP TABLE DECODING: The jump tables entries are offsets from a base to the actual tar-
get. The base may be the base of the jump table or some address within the code section.
At the runtime, the base is loaded to a register and a jump table entry is added to the base
to compute the actual target. The computation is typically of the form *(C1 + ind) + C2.
Where C1 and C2 are constants and ind is the index of the jump table. Table 2.2 shows an
example of ICF target computation using a jump table. IN x86-64 bit PIE binaries, the base
is usually loaded using "lea" instructions as shown in table 2.2.

To detect jump tables we first locate all the indirect jump instructions within a function,
that use a register as an operand. For each of the located indirect branches, we try to find
a single path from every "lea" instruction present in the function to the indirect branch in-
struction. We perform a static analysis on each of these paths. The static analysis checks
for the calculation pattern of the form *(C1 + ind) + C2 and outputs the two constants C1
and C2. C1 is inferred as the location of the jump table and C2 is inferred as the base used
to compute the target of the jump table. The underlying assumption is that if a load (lea)
instruction and an indirect branch instruction pair is a part of a jump table computation,
then all the paths from the load instruction to the indirect branch must follow the jump ta-
ble computation pattern. So, performing static analysis on any one of the paths is sufficient
to determine the jump table location. The range of the jump table is hard to determine as
the index (ind) computation may cross the function boundary. Therefore we conservatively
consider the location of the next jump table as the end of the current jump table. Finally,
we iterate over each of the jump tables to determine the actual targets using the calculation
of the form *(C1 + ind) + C2.

We found one special case in SPEC CPU2017 gcc benchmark where the basic block that
loads the jump table base makes an indirect jump to the basic block that performs the final
computation and determines the target. The indirect jump made by the first basic block
is part of another jump table computation. To overcome such scenarios, we recursively
decode the jump tables and keep adding edges to our control flow graph until no more
jump table is detected.

5.2 CODE RANDOMIZATION

Our disassembly and control flow graph generation process makes sure that all the basic
blocks have been accurately identified. This gives us the ability to perform fine-grained
randomization at the basic block level and scatter the basic blocks throughout the code

37

section. However, there are two main challenges that we may face:

• Preserving functionality: Functionalities like exception handling and crash reporting,
which depend on code uniformity can be affected by the randomization process.

• Performance : Randomization can affect the performance in the following ways:

– Scattering the basic blocks can cause disruption of cache locality.

– For every fall-through block one extra jump will be executed.

– Conversion of short jumps into 5-byte long jumps

PRESERVING FUNCTIONALITY: Functionalities like exception handling are sensitive to the
code location. Before discussing about how we preserve exception handling, lets discuss
how it works. The compiler encodes the exception handling information in the eh_frame,
eh_frame_hdr and gcc_except_table of an ELF binary. Any application that has excep-
tion handling must have these three sections. The gcc_except_table holds the location of
try/catch blocks. The eh_frame section:

• holds the address range of every function.

• if the function has any try/catch block, then it holds a pointer to a record in gcc_except_table.

• holds the encoded rules that need to be followed while unwinding the stack from the
current function frame.

The eh_frame_hdr section is a binary search table that stores a pointer to the eh_frame
record for every function. The binary search table is arranged according to the function
start address. The exception handling process can be subdivided into two steps.

• eh record retrieval: An exception throw is usually compiled to a standard library func-
tion call. The standard library function retrieves the eh_frame record of the current
function by comparing the return address on the stack with the function boundaries
encoded in the eh_frame section.

• stack unwinding: If the current function doesn’t have any try/catch block stack un-
winding is done to retrieve the previous caller. This unwinding is done according to
the rules encoded in the eh_frame record.

Any randomization process that relocates a call site beyond the function boundary will
result in the failure of eh_frame record retrieval. Therefore, our randomization process
limits the basic block scattering to the function boundaries. Post randomization and binary
re-generation, we re-encode all the exception handling related sections.

The stack unwinding rules defined in the eh_frame specify the stack increment between
a range of instructions. If we scatter the basic blocks arbitrarily within a function, these
rules will no longer apply and hence, we need to re-encode these rules. We performed our
experiments by choosing not to implement the rule encoding at this point. It can be done
with some extra engineering effort. By not doing so, the exception handling will still work
for the cases where the catch block is present in the same function as the throw statement
and no stack unwinding needs to be done. Note that at this point, we do not support crash
reporting. Its a part of our future work. Our randomization approach was applied on glibc,

38

libreoffice, gedit, coreutils and SPEC CPU2017 Integer benchmark binaries and we were
able to successfully regenerate functional binaries.

PERFORMANCE TRADE-OFF: Code randomization can add to the performance overhead
by disturbing the cache locality, adding extra jump instructions and converting short jumps
into 5-byte long jumps. To negotiate with performance our approach supports randomiza-
tion at three different levels of granularity.

• Function permutation: To reduce the performance overhead many randomization
techniques randomize code at function granularity [12][9]. Applying function per-
mutation only can provide high enough entropy and help to prevent static ROP by
breaking the statically inferred knowledge about the location of code gadgets. We
randomized the functions by permuting the function bodies retrieved from the eh_frame
section and then re-encoding the eh_frame and eh_frame_hdr sections. The result-
ing performance overhead was 0.06%.

• Indirect branch target hiding: Function permutation implemented with execute-only
code pages, can prevent JIT-ROP attacks where the attacker reads code pages in the
runtime to find gadgets. However, it is prone to indirect disclosure based JIT-ROP
attacks where the adversary can leak code pointers (stored in memory and stack) and
guess the location of gadgets present around the code pointer. Our second approach
randomizes all locations that can be leaked by the adversary. Such code locations
include return addresses and code pointers stored in memory. The randomization
steps are as follows:

– A function is broken into blocks as shown in figure 5.1. A linear block of code
can only terminate at call instructions. Other than this, any basic block that is a
target of an indirect branch (jump tables or stored code pointers) is treated as a
separate block to randomize the stored code pointers.

– The blocks are then shuffled within the function. Additionally, a direct jump
instruction targeting the indirectly accessed blocks (e.g., code block 2 and code
block 4 in figure 5.1) is added and the pointers to these blocks are replaced with
pointers to the respective jump instructions. The addition of extra jump helps
in hiding the code pointers.

– In the final step, the functions are permuted.

This approach tries to thwart all possible ROP attacks while minimizing the perfor-
mance overhead. Static ROP attacks in which the attacker statically infers the loca-
tion of code gadgets will be broken by function permutation only. Randomization
of return addresses and stored code pointers can prevent indirect disclosure based
JIT-ROP. And implementing execute-only code page along with this transformation
will prevent conventional JIT-ROP where the adversary tries to read the code pages to
locate gadgets.

• Basic block randomization: To prevent all types of ROP attacks (static ROP, JIT-ROP,
indirect disclosure based JIT-ROP), there is no need to go beyond the second ap-

39

Function entry

1

2

3 jmp *rax

4

5

6 je 13

7

8 Address taken

9

10 je 6

11

12

13 call func_foo

14

15 ret

code block 1

code block 2

code block 3

code block 4

Figure 5.1: Indirect branch target hiding

proach. However, randomization at the granularity of basic block can provide very
high entropy. We performed randomization at the basic block granularity by arbitrar-
ily scattering the basic blocks within the function ranges obtained from the eh_frame
section and then randomizing the functions. This will result in addition of an extra
jump for every fall-through block and at the same time can affect the cache locality.

5.3 EXPERIMENTAL EVALUATION

To get an idea about the overhead caused by our instrumentation process alone, we re-
generated the SPEC CPU2017 integer benchmark binaries with null instrumentation (i.e.
no randomization) and measured the performance. The results show that no performance
overhead (-0.89%) was caused by the instrumentation process (Figure 5.2).

We then performed three different experiments on SPEC CPU2017 integer benchmark
binaries to measure the performance overhead of the three randomization approaches dis-
cussed above:

• Experiment 1 (Function permutation): Experiment-1 evaluates the performance of
our function permutation approach. Function permutation causes minimal perfor-
mance overhead of 0.06% (Figure 5.2). Permuting the functions can affect the cache
locality, but the effect should be minimal. This is evident from the results (0.06% over-
head). Preventing addition of any extra jump instruction by leaving the basic block

40

Suite Null inst(sec) Average Overhead(%)Expt -1(sec) Average Overhead(%) Expt -2(sec) Average Overhead(%)Expt - 3(sec) Average Overhead(%)
600.perlbench_s 365.51 372.27 405.19 525.95
600.perlbench_s 364.72 370.72 -0.81 372.18 372.24 -0.40 406.08 405.10 8.39 556.48 545.85 46.04
600.perlbench_s 381.92 372.29 404.01 555.11
602.gcc_s 575.19 587.18 578.49 756.91
602.gcc_s 578.19 575.81 -2.07 600.83 596.60 1.46 627.73 613.54 4.34 724.39 743.63 26.47
602.gcc_s 574.06 601.78 634.40 749.61
605.mcf_s 860.43 873.12 884.08 979.74
605.mcf_s 867.12 865.20 -1.74 858.58 862.96 -1.99 886.52 880.30 -0.02 954.43 962.73 9.34
605.mcf_s 868.05 857.19 870.31 954.01
620.omnetpp_s 531.62 533.49 524.48 581.83
620.omnetpp_s 535.47 532.38 -2.21 533.45 532.59 -2.17 539.37 537.23 -1.31 584.38 579.80 6.50
620.omnetpp_s 530.04 530.82 547.85 573.18
625.x264_s 494.90 500.78 504.06 545.17
625.x264_s 495.04 494.96 -0.69 500.99 500.82 0.48 503.17 503.61 1.04 544.97 544.93 9.33
625.x264_s 494.93 500.68 503.59 544.65
631.deepsjeng_s 468.46 473.39 488.85 586.78
631.deepsjeng_s 469.05 472.27 0.39 477.55 478.06 1.62 492.92 491.50 4.48 591.16 582.58 23.84
631.deepsjeng_s 479.29 483.24 492.72 569.79
641.leela_s 643.27 649.06 688.83 774.38
641.leela_s 645.56 643.72 0.11 649.47 650.45 1.16 686.78 687.91 6.99 775.07 774.64 20.47
641.leela_s 642.32 652.81 688.13 774.47
657.xz_s 457.73 455.19 449.29 480.58
657.xz_s 451.58 455.85 -0.07 458.52 458.04 0.41 463.59 456.16 0.00 473.41 477.19 4.61
657.xz_s 458.25 460.40 455.62 477.57
Geometric mean -0.89 0.06 2.93 17.65

Figure 5.2: Spec CPU2017 integer benchmark results

unrandomized also results in low performance overhead.

• Experiment 2 (indirect branch target hiding): Experiment-2 evaluates the performance
of indirect branch target hiding approach. This approach involves execution of one
extra jump for every indirect branch instruction. Also, this approach can affect the
cache locality to some extent as it involves some degree of code re-ordering within
the function boundary. The performance overhead of this approach is found to be
2.93% (Figure 5.2).

• Experiment 3 (Basic block randomization):: This is the most fine-grained randomiza-
tion our approach can perform while preserving the exception handling functional-
ity. The performance overhead caused is 17.65% (Figure 5.2). The possible reasons for
the high overhead can be (i) Extra jump instruction executed for every relocated fall-
through block, (ii) disruption of cache locality and (iii) conversion of short jumps into
5-byte long jumps. To determine the actual reason behind performance overhead, we
performed an experiment in which the basic blocks are left unrandomized but an ad-
ditional jump instruction was added for every fall-through block. We observed that
the overhead was close (17-18%) to the basic block randomization. Hence, it can be
concluded that the extra jumps are the main reason of high performance overhead.

41

6 CONCLUSION

The process of binary instrumentation has always been a bargain between performance
and accuracy. Despite having a high performance overhead, the dynamic binary instru-
mentation have always been the preferred option because of its ease of use, ability to in-
strument all code, ability to handle large and complex binaries. Static binary instrumen-
tation on the other hand offers a more efficient option, but the challenges with SBI still
remain unsolved. To deal with the challenges, the SBI tools try to be conservative and lose
some accuracy in the process. Scalability has also been an issue with SBI. However, with
the evolution of compilers, executables are becoming more and more SBI friendly. For ex-
ample, to enforce DEP gcc no longer keeps code and data in the same section. This solves
the content classification problem. And to enforce ASLR, binaries are being compiled as
position independent executable. This means that the binaries will have relocation infor-
mation as an inherent property of position independent executable. These properties of
modern binaries can be exploited to enhance the accuracy and scalability of SBI tools. This
has been proved by our static code randomization approach. We are able to apply fine-
grained randomization at basic block level by leveraging on the relocation information of
PIE executables. These properties of modern x86 PIE binaries have opened a door for the
development of accurate and robust SBI tools.

REFERENCES

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity principles,
implementations, and applications. ACM Transactions on Information and System Se-
curity (TISSEC), 13(1):4, 2009.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing memory error
exploits with wit. In 2008 IEEE Symposium on Security and Privacy (sp 2008), pages
263–277. IEEE, 2008.

[3] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos. An in-depth analysis
of disassembly on full-scale x86/x64 binaries. In 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[4] S. Bhatkar, D. C. DuVarney, and R. Sekar. Efficient techniques for comprehensive pro-
tection from memory error exploits. In USENIX Security Symposium, 2005.

[5] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with control-flow lock-
ing. In Proceedings of the 27th Annual Computer Security Applications Conference,
pages 353–362. ACM, 2011.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In International Symposium on Code Generation and Optimization,
2003. CGO 2003. IEEE, 2003.

[7] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go bad:

42

Generalizing return-oriented programming to risc. In Proceedings of the 15th ACM
conference on Computer and communications security. ACM, 2008.

[8] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In Proceedings of the 17th ACM con-
ference on Computer and communications security. ACM, 2010.

[9] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and
M. Franz. Readactor: Practical code randomization resilient to memory disclosure. In
2015 IEEE Symposium on Security and Privacy, pages 763–780. IEEE, 2015.

[10] GNU Texinfo 6.5. GNU Utility Objdump. https://sourceware.org/binutils/
docs/binutils/objdump.html.

[11] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d my gadgets
go? In 2012 IEEE Symposium on Security and Privacy. IEEE, 2012.

[12] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address space layout permutation (aslp):
Towards fine-grained randomization of commodity software. In 2006 22nd Annual
Computer Security Applications Conference (ACSAC’06), pages 339–348. IEEE, 2006.

[13] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient static
binary instrumentation for linux. In 2010 IEEE International Symposium on Perfor-
mance Analysis of Systems & Software (ISPASS), pages 175–183. IEEE, 2010.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: building customized program analysis tools with dynamic
instrumentation. In Acm sigplan notices, volume 40. ACM, 2005.

[15] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In ACM Sigplan notices, volume 42. ACM, 2007.

[16] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-free: defeating return-
oriented programming through gadget-less binaries. In Proceedings of the 26th Annual
Computer Security Applications Conference. ACM, 2010.

[17] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In 2012 IEEE Sym-
posium on Security and Privacy. IEEE, 2012.

[18] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counterfeit
object-oriented programming: On the difficulty of preventing code reuse attacks in
c++ applications. In 2015 IEEE Symposium on Security and Privacy. IEEE, 2015.

[19] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, et al. Sok:(state of) the art of war: Offensive techniques
in binary analysis. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016.

[20] M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and R. Barua. Static binary rewriting
without supplemental information: Overcoming the tradeoff between coverage and
correctness. In 2013 20th Working Conference on Reverse Engineering (WCRE), pages
52–61. IEEE, 2013.

[21] Solar Designer. "return-to-libc" attack. Bugtraq, Aug, 1997.

43

https://sourceware.org/binutils/docs/binutils/objdump.html
https://sourceware.org/binutils/docs/binutils/objdump.html

[22] W.-K. Sze and R. Sekar. A portable user-level approach for system-wide integrity pro-
tection. In Proceedings of the 29th Annual Computer Security Applications Conference.
ACM, 2013.

[23] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos, T. Holz,
E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced code-reuse
attacks at the binary level. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
2016.

[24] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen, C. Kruegel, and
G. Vigna. Ramblr: Making reassembly great again. In NDSS, 2017.

[25] Z. Wang and X. Jiang. Hypersafe: A lightweight approach to provide lifetime hypervisor
control-flow integrity. In 2010 IEEE Symposium on Security and Privacy, pages 380–
395. IEEE, 2010.

[26] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the 2012 ACM con-
ference on Computer and communications security. ACM, 2012.

[27] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and
N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In 2009
30th IEEE Symposium on Security and Privacy, pages 79–93. IEEE, 2009.

[28] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical control flow integrity and randomization for binary executables. In IEEE Se-
curity and Privacy, 2013.

[29] M. Zhang and R. Sekar. Control flow integrity for cots binaries. In USENIX Security,
2013.

44

	Introduction
	Static Binary Instrumentation
	Accurate disassembly
	Linear disassembly
	Recursive disassembly
	PEBIL's disassembly
	Angr's disassembly
	BinCFI disassembly approach
	SecondWrite disassembly approach

	Preserving control flow branches
	Fixing direct control flow branches
	Fixing indirect control flow branches
	Callbacks

	Dynamic Binary Instrumentation
	Assembly to assembly transformation - a case study of PIN
	Disasssemble and resynthesize - a case study of Valgrind

	Security policy enforcement using instrumentation
	Control Flow Integrity
	Related works on CFI

	Code Randomization
	Related works on code randomization

	Static Code randomization technique for x86-64 position independent executables
	Disassembly approach
	Control flow graph

	Code Randomization
	Experimental evaluation

	Conclusion

