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Abstract
Large organizations are increasingly targeted in long-running
attack campaigns lasting months or years. When a break-in is
eventually discovered, forensic analysis begins. System audit
logs provide crucial information that underpins such analysis.
Unfortunately, audit data collected over months or years can
grow to enormous sizes. Large data size is not only a storage
concern: forensic analysis tasks can become very slow when
they must sift through billions of records. In this paper, we
first present two powerful event reduction techniques that
reduce the number of records by a factor of 4.6 to 19 in our
experiments. An important benefit of our techniques is that
they provably preserve the accuracy of forensic analysis tasks
such as backtracking and impact analysis. While providing
this guarantee, our techniques reduce on-disk file sizes by
an average of 35× across our data sets. On average, our
in-memory dependence graph uses just 5 bytes per event in
the original data. Our system is able to consume and analyze
nearly a million events per second.

1 Introduction
Many large organizations are targets of stealthy, long-term,
multi-step cyber-attacks called Advanced Persistent Threats
(APTs). The perpetrators of these attacks remain below the
radar for long periods, while exploring the organization’s IT
infrastructure and exfiltrating or compromising sensitive data.
When the attack is ultimately discovered, a forensic analysis
is initiated to identify the entry points of the attack and its
system-wide impact. The spate of APTs in recent years has
fueled research on efficient collection and forensic analysis
of system logs [13, 14, 15, 9, 16, 17, 18, 22, 42, 30, 10].

Accurate forensic analysis requires logging of system
activity across the enterprise. Logs should be detailed enough
to track dependencies between events occurring on different
hosts and at different times, and hence needs to capture all
information-flow causing operations such as network/file
accesses and program executions. There are three main
options for collecting such logs: (1) instrumenting individual
applications, (2) instrumenting the operating system (OS),
or (3) using network capture techniques. The rapid increase
in encrypted traffic has greatly reduced the effectiveness
of network-capture based forensic analysis. In contrast,
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OS-layer logging is unaffected by encryption. Moreover,
OS-layer logging can track the activities of all processes on
a host, including any malware that may be installed by the
attackers. In contrast, application-layer logs are limited to
a handful of benign applications (e.g., network servers) that
contain the instrumentation for detailed logging. For these
reasons, we rely on OS-based logging, e.g., the Linux audit
and Windows ETW (Event Tracing for Windows) systems.

1.1 Log Reduction

APT campaigns can last for many months. With existing
systems, such as Linux auditing and Windows ETW, our
experience as well as that of previous researchers [42] is that
the volume of audit data is in the range of gigabytes per host
per day. Across an enterprise with thousands of hosts, total
storage requirements can easily go up to the petabyte range
in a year. This has motivated a number of research efforts
on reducing log size.

Since the vast majority of I/O operations are reads,
ProTracer’s [22] reduction strategy is to log only the writes.
In-memory tracking is used to capture the effect of read
operations. Specifically, when a process performs a read,
it acquires a taint identifier that captures the file, network
or IPC object read. If the process reads n files, then its
taint set can be of size O(n). Write operations are logged,
together with the taint set of the process at that point. This
means that write records can, in general, be of size O(n),
and hence a process performing m writes can produce a log
of size O(mn). This contrasts with the O(m+n) log size
that would result with traditional OS-level logging of both
reads and writes. Thus, for ProTracer’s strategy to reduce
log size, it is necessary to narrow the size of taint sets of
write operations to be close to 1. They achieve this using
a fine-grained taint-tracking technique called unit-based
execution partitioning [17], where a unit corresponds to a
loop iteration. MPI [21] proposes a new form of execution
partitioning, based on annotated data structures instead of
loops. However, fine-grained taint-tracking via execution par-
titioning would be difficult to deploy on the scale of a large
enterprise running hundreds of applications or more. Without
fine-grained taint-tracking, the analysis above, as well as our
experiments, indicate that this strategy of “alternating tainting
with logging” leads to substantial increases in log size.

LogGC [18] develops a “garbage collection” strategy,
which identifies and removes operations that have no persis-
tent effect. For instance, applications often create temporary
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Fig. 1: An example (time-stamped) dependence graph.

files that they subsequently delete. Unless these files are
accessed by other processes, they don’t introduce any new
dependencies and hence aren’t useful for forensic analysis.
However, some temporary files do introduce dependencies,
e.g., malware code that is downloaded, executed and subse-
quently removed by another attack script. Operations on such
files need to be logged, so LogGC introduces a notion of ex-
clusive ownership of files by processes, and omits only the op-
erations on exclusively owned files. Although they report ma-
jor reductions in log size using this technique, this reduction is
realized only in the presence of the unit instrumentation [17]
described above. If only OS-layer logging is available, which
is the common case, LogGC does not produce significant
reductions. (See the “Basic GC” column in Table 5 of [18].)

While LogGC removes all events on a limited class of
objects, Xu et al [42] explore a complementary strategy
that can remove some (repeated) events on any object.
To this end, they developed the concept of trackability
equivalence of events in the audit log, and proved that,
among a set of equivalent events, all but one can be
removed without affecting forensic analysis results. Across a
collection of several tens of Linux and Windows hosts, their
technique achieved about a 2× reduction in log size. This
is impressive, considering that it was achieved without any
application-specific optimizations.

While trackability equivalence [42] provides a sufficient
basis for eliminating events, we show that it is far too strict,
limiting reductions in many common scenarios, e.g., com-
munication via pipes. The central reason is that trackability
is based entirely on a local examination of edges incident on
a single node in the dependence graph, without taking into
account any global graph properties. In contrast, we develop
a more general formulation of dependence preservation that
can leverage global graph properties. It achieves 3 to 5 times
as much reduction as Xu et al.’s technique.

• In Section 3, we formulate dependence-preserving log
reduction in terms of reachability preservation in the
dependence graph. As in previous works (e.g., [13, 42]),
nodes in our dependence graph represent objects (files,
sockets and IPCs) and subjects (processes), while edges
represent operations (also called events) such as read,
write, load, and execute. Edges are timestamped and are
oriented in the direction of information flow. We say that a
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Fig. 2: Dependence graph resulting after our FD log reduction. SD reduc-
tion will additionally remove the edge from Q to L. In this reduced graph,
dependence can be determined using standard graph reachability. Edge
timestamps are dropped, but nodes may be annotated with a timestamp.

node v depends on node u if there is a (directed) path from
u to v with non-decreasing edge timestamps. In Fig. 1, P
denotes a process that connects to a.com, and downloads
and saves a file C. It also connects to b.com, and writes to
a log file L and a pipe E. Process Q reads from the pipe
and also writes to the same log file. Based on timestamps,
we can say that C depends on a.com but not b.com.

• Based on this formulation, we present two novel
dependency preserving reductions, called full dependence
preservation (FD) and source dependence preservation
(SD). We prove that FD preserves the results of backward
as well as forward forensic analysis. We also prove
that SD preserves the results of the most commonly
used forensic analysis, which consists of running first a
backward analysis to find the attacker’s entry points, and
then a forward analysis from these entry points to identify
the full impact of the attack.

• Our experimental evaluation used multiple data sets,
including logs collected from (a) our laboratory servers,
and (b) a red team evaluation carried out in DARPA’s
Transparent Computing program. On this data, FD
achieved an average of 7× reduction in the number
of events, while SD achieved a 9.2× reduction. In
comparison, Xu et al.’s algorithm [42], which we
reimplemented, achieved only a 1.8× reduction. For
the example in Fig. 1, our technique combines all edges
between the same pair of nodes, leading to the graph
shown in Fig. 2, while Xu et al’s technique is able to
combine only the two edges with timestamps 1 and 2.

1.2 Efficient Computation of Reductions
Our log reductions (FD and SD) rely on global properties
of graphs such as reachability. Such global properties are
expensive to compute, taking time that is linear in the size
of the (very large) dependence graph. Moreover, due to the
use of timestamped edges, reachability changes over time,
and hence the results cannot be computed once and cached
for subsequent use.

To overcome these computational challenges posed by
timestamped graphs, we show in Section 4 how to transform
them into standard graphs. Fig. 2 illustrates the result of
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this conversion followed by our FD reduction. Note how
the edge timestamps have been eliminated. Moreover, P
has been split into two versions connected by a dashed edge,
with each version superscripted with its timestamp. Note the
absence of a path from a.com to C, correctly capturing the
reachability information in the timestamped graph in Fig. 1.

Versioning has been previously studied in file system
and provenance research [31, 26, 25]. In these contexts,
versioning systems typically intervene to create file versions
that provide increased recoverability or reproducibility.
Provenance capture systems may additionally intervene to
break cyclic dependencies [24, 25], since cyclic provenance
is generally considered meaningless.

In our forensic setting, we cannot intervene, but can only
observe events. Given a timestamped event log, we need to
make sound inferences about dependencies of subjects as
well as objects. We then encode these dependencies into a
standard graph in order to speed up our reduction algorithms.
The key challenge in this context is to minimize the size of
the standard graph without dropping any existing dependency,
or introducing a spurious one. Specifically, the research
described in Section 4 makes the following contributions:
• Efficient reduction algorithms. By working with standard

graphs, we achieve algorithms that typically take constant
time per event. In our experiments, we were able to
process close to a million events per second on a single-
core on a typical laptop computer.

• Minimizing the number of versions. We present several op-
timization techniques in Section 4.2 to reduce the number
of versions. Whereas naive version generation leads to
an explosion in the number of versions, our optimizations
are very effective, bringing down the average number of
versions per object and subject to about 1.3. Fig. 2 illus-
trates a few common cases where we achieve substantial
reductions by combining many similar operations:

– multiple reads from the same network connection
(a.com, b.com) interleaved with multiple writes to
files (C and L),

– series of writes to and reads from pipes (E), and
– series of writes to log files by multiple processes (L).

• Avoiding spurious dependencies. While it is important
to reduce the space overhead of versions, this should
not come at the cost of inaccurate forensic analysis. We
therefore establish formally that results of forensic analysis
(specifically, forward and backward analyses) are fully
preserved by our reduction.

• Optimality. We show that edges and versions retained
by our reduction algorithm cannot be removed without
introducing spurious dependencies.

An interesting aspect of our work is that we use versioning
to reduce storage and runtime, whereas versioning is
normally viewed as a performance cost to be paid for better
recoverability or reproducibility.

1.3 Compact Graph and Log Representations

A commonly suggested approach for forensic analysis is
to store the dependence graph in a graph database. The
database’s query capabilities can then be used to perform
backward or forward searches, or any other custom forensic
analysis. Graph databases such as OrientDB, Neo4j and
Titan are designed to provide efficient support for graph
queries, but experience suggests that their performance de-
grades dramatically on graphs that are large relative to main
memory. For instance, a performance evaluation study on
graph databases [23] found that they are unable to complete
simple tasks, such as finding shortest paths on graphs with
128M edges, even when running on a computer with 256GB
main memory and sufficient disk storage. Log reduction tech-
niques can help, but may not be sufficient on their own: our
largest dataset, representing just one week of data, already
contains over 70M edges. Over the span of an APT (many
months or a year), graph sizes can approach a billion edges
even after log reduction. We therefore develop a compact in-
memory representation for our versioned dependence graphs.

• Section 5.2 describes our approach for realizing a compact
dependence graph representation. By combining our log
reduction techniques with compact representations, our
system achieves very high density: it uses about 2 bytes
of main memory per event on our largest data set. This
dataset, with 72M edges, is comparable in size to the
128M edges used in the graph database evaluation [23]
mentioned above. Yet, our memory utilization was just
111MB, in comparison with the 256GB available in that
study.

• We also describe the generation of compact event logs
based on our event reduction techniques (Section 5.1).
We began with a space-efficient log format that was about
8× smaller than a Linux audit log containing roughly the
same information. With FD reduction, it became 35.3×
smaller, while SD increased the reduction factor to about
41.4×. These numbers are before the application of any
data compression techniques such as gzip, which can
provide further reductions.

1.4 Paper Organization

We begin with some background on forensic analysis in
Section 2. The formulation of dependence-preserving
reductions, together with our FD and SD techniques, are
presented in Section 3. Efficient algorithms for achieving FD
and SD are described in Section 4, together with a treatment
of correctness and optimality. Section 5 summarizes a
compact main-memory dependence graph and offline event
log formats based on our event reductions. Implementation
and experimental evaluation are described in Section 6,
followed by related work discussion in Section 7 and
concluding remarks in Section 8.
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2 Background
Dependence graphs. System logs refer to two kinds of
entities: subjects and objects. Subjects are processes, while
objects correspond to passive entities such as files, network
connections and so on. Entries in the log correspond to
events, which represent actions (typically, system calls)
performed by subjects, e.g., read, write, and execute.

In most work on forensic analysis [13, 15, 42], the log
contents are interpreted as a dependence graph: nodes in
the graph correspond to entities, while edges correspond to
events. Edges are oriented in the direction of information
flow and have timestamps. When multiple instances of an
event are aggregated into a single instance, its timestamp be-
comes the interval between the first and last instances. Fig. 1
shows a sample dependence graph, with circles denoting sub-
jects, and the other shapes denoting objects. Among objects,
network connections are indicated by a diamond, files by
ovals, and pipes by rectangles. Edges are timestamped, but
their names omitted. Implicitly, in-edges of subjects denote
reads, and out-edges of subjects denote writes.

Backward and Forward Analysis. Forensic analysis is
concerned with the questions of what, when and how. The
what question concerns the origin of a suspected attack, and
the entities that have been impacted during an attack. The ori-
gin can be identified using backward analysis, starting from
an entity flagged as suspicious, and tracing backward in the
graph. This analysis, first proposed in BackTracker [13], uses
event timestamps to focus on paths in dependence graphs that
represent causal chains of events. A backward analysis from
file C at time 5 will identify P and a.com. Of these, a.com is
a source node, i.e., an object with no parent nodes, and hence
identified as the likely entry point of any attack on C.

Although b.com is backward reachable from C in the
standard graph-theoretic sense, it is excluded because the
path from b.com to C does not always go forward in time.

The set of entities impacted by the attack can be found
using forward analysis [43, 1, 15] (a.k.a. impact analysis),
typically starting from an entry point identified by backward
analysis. In the sample dependence graph, forward analysis
from network connection a.com will reach all nodes in the
graph, while a forward analysis from b.com will leave out C.

The when question asks when each step in the attack
occurred. Its answer is based on the timestamps of edges in
the subgraph computed by forward and backward analyses.
The how question is concerned with understanding the steps
in an attack in sufficient detail. To enable this, audit logs
need to capture all key operations (e.g., important system
calls), together with key arguments such as file names, IP
addresses and ports, command-line options to processes, etc.

3 Dependence Preserving Reductions
We define a reduction of a time-stamped dependence graph
G to be another graph G′ that contains the same nodes

but a subset of the events. Such a reduction may remove
“redundant” events, and/or combine similar events. As a
result, some events in G may be dropped in G′, while others
may be aggregated into a single event. When events are
combined, their timestamps are coalesced into a range that
(minimally) covers all of them.
A log reduction needs to satisfy the following conditions:
• it won’t change forensic analysis results, and

• it won’t affect our understanding of the results.
To satisfy the second requirement, we apply reductions only
to read, write1, and load events. All other events, e.g., fork,
execve, remove, rename and chmod, are preserved. Despite
being limited to reads, writes and loads, our reduction
techniques are very effective in practice, as these events
typically constitute over 95% of total events.

For the first requirement, our aim is to preserve the results
of forward and backward forensic analysis. We ensure this
by preserving forward and backward reachability across the
original graph G and the reduced graph G′. We begin by
formally defining reachability in these graphs.

3.1 Reachability in time-stamped dependence graphs
Dependence graph G is a pair (V,E) where V denotes the
nodes in the graph and E denotes a set of directed edges.
Each edge e is associated with a start time start(e) and an end
time end(e). Reachability in this graph is defined as follows:

Definition 1 (Causal Path and Reachability) A node v
is reachable from another node u if and only if there is
(directed) path e1,e2, . . . ,en from u to v such that:

∀1≤ i < n start(ei)≤ end(ei+1) (1)

We refer to a path satisfying this condition as a causal path.
It captures the intuition that information arriving at a node
through event ei can possibly flow out through the event
ei+1, i.e., successive events on this path e1,e2, . . . ,en can be
causally related. In Fig. 1, the path consisting of edges with
timestamps 1,6,8 and 11 is causal, so L is reachable from
a.com. In contrast, the path corresponding to the timestamp
sequence 4,3 is not causal because the first edge occurs later
than the second. Hence C is unreachable from b.com.

In forensics, we are interested in reachability of a node at
a given time, so we extend the above definition as follows:

Definition 2 (Forward/Backward Reachability at t)
• A node v is forward reachable from a node u at time t,

denoted u@t −→ v, iff there is a causal path e1,e2, . . . ,en
from u to v such that t ≤ end(ei) for all i.

• A node u is said to be backward reachable from v at time t,
denoted u−→ v@t, iff there is a causal path e1,e2, . . . ,en
from u to v such that t ≥ start(ei) for all i.
1There can be many types of read or write events, some used on files,

others used on network sockets, and so on. For example, Linux audit system
can log over a dozen distinct system calls used for input or output of data.
For the purposes of this description, we map them all into reads and writes.
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Intuitively, u@t −→ v means u’s state at time t can
impact v. Similarly, u−→ v@t means v’s state at t can be
caused/explained by u. In Fig. 1, P@6−→Q, but P@11 6−→
Q. Similarly, a.com−→C@3 but b.com 6−→C@3.

Based on reachability, we present three dependency-
preserving reductions: CD, which is close to Xu et al’s
full trackability, and FD and SD, two new reductions we
introduce in this paper.

3.2 Continuous dependence (CD) preservation
This reduction aims to preserve forward and backward
reachability at every instant of time.

Definition 3 (Continuous Dependence Preservation) Let
G be a dependence graph and G′ be a reduction of G. G′

is said to preserve continuous dependence iff forward and
backward reachability is identical in both graphs for every
pair of nodes at all times.

In Fig. 3, S reads from a file F at t =2 and t =4, and writes to
another file F ′ at t = 3 and t = 6. Based on the above defini-
tion, continuous dependence is preserved when the reads by S
are combined, as are the writes, as shown in the lower graph.

F S F ′
2

4

3

6

F S F ′[2,4] [3,6]

Fig. 3: Reduction that preserves continuous dependence.

Fig. 4 shows a reduction that does not preserve continuous
dependence. In the original graph, F@3 6−→H: the earliest
time F@3 can affect S is at t = 4, and this effect can
propagate to F ′@6, but by this time, the event from F ′ to
H has already terminated. In contrast, in the reduced graph,
F@3 affects H@5.

F S F ′ H
2

4

3

6

5

F S F ′ H[2,4] [3,6] 5

Fig. 4: Reduction that violates continuous dependence.

Our definition of continuous dependence preservation is
similar to Xu et al.’s definition of full trackability equivalence
[42]. However, their definition is a bit stricter, and does not
allow the reductions shown in Fig. 3. They would permit
those reductions only if node S had (a) no incoming edges
between its outgoing edges and (b) no outgoing edges
between its incoming edges2.

2In particular, as per Algorithm 2 in [42], the period of the incoming

Their stricter definition was likely motivated by efficiency
considerations. Specifically, their definition ensures that
reduction decisions can be made locally, e.g., by examining
the edges incident on S. Thus, their criteria does not permit
the combination of reads in either Fig. 3 or Fig. 4, since they
share the same local structure at node S. In contrast, our con-
tinuous dependence definition is based on the more powerful
global reachability properties, and hence can discriminate
between the two examples to safely permit the aggregation in
Fig. 3 but not Fig. 4. The downside of this power is efficiency,
as continuous dependence may need to examine every path
in the graph before deciding which edges can be removed.

Although the checking of global properties can be more
time-consuming, the resulting reductions can be more
powerful (i.e., achieve greater reduction). This is why we
devote Section 4 to development of efficient algorithms to
check the more powerful global properties used in the two
new reductions presented below.

Because of the similarity of Xu et al’s full trackability
and our continuous dependence, we will henceforth refer
to their approach as local continuous dependence (LCD)
preservation. We end this discussion with examples of
common scenarios where LCD reduction is permitted:
• Sequence of reads without intervening writes: When an

application reads a file, its read operation results in multi-
ple read system calls, each of which is typically logged
as a separate event in the audit log. As long as there are
no write operations performed by the application at the
same time, LCD will permit the reads to be combined.

• Sequence of writes without intervening reads: The expla-
nation in this case mirrors the previous case.

However, if reads and writes are interleaved, then LCD does
not permit the reads (or writes) to be combined. In contrast,
the FD notion presented below can support reductions in
cases where an application is reading from one or more files
while writing to one or more files.

3.3 Full Dependence (FD) Preservation
CD does not permit the reduction in Fig. 4, because it
changes whether the state of F at t = 3 propagates to H. But
does this difference really matter in the context of forensic
analysis? To answer this question, note that there is no way
for F to become compromised at t = 3 if it was not already
compromised before. Indeed, there is no basis for the state
of F to change between t = 0 and t = 6 because nothing
happens to F during this period.

More generally, subjects and objects don’t spontaneously
become compromised. Instead, compromises happen due
to input consumption from a compromised entity, such as
a network connection, compromised file, or user3. This

edge in Fig. 3 should not overlap the period between the end times of the
two edges out of S; per their Algorithm 3, the period of the S to F ′ edge must
not overlap the period between the start times of the two edges out of F.

3We aren’t suggesting that a compromised process must immediately
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observation implies that keeping track of dependencies
between entities at times strictly in between events is
unnecessary, because nothing relevant changes at those times.
Therefore, we focus on preserving dependencies at times
when a node could become compromised, namely, when
it acquires a new dependency.

Formally, let Anc(v,t) denote the set of ancestor nodes of
v at time t, i.e., they are backward reachable from v at t.

Anc(v,t) = {u | u−→ v@t}.

Let NewAnc(v) be the set of times when this set changes, i.e.:

NewAnc(v) = {t | ∀t′ < t, Anc(v,t)⊃ Anc(v,t′)}.

We define NewAnc(v) to always include t = 0.

Definition 4 (Full Dependence (FD) Preservation) A
reduction G′ of G is said to preserve full dependence iff for
every pair of nodes u and v:
• forward reachability from u@t to v is preserved for all

t ∈NewAnc(u), and

• backward reachability of u from v@t is preserved at all t.

In other words, when FD-preserving reductions are applied:
• the result of backward forensic analysis from any node v

will identify the exact same set of nodes before and after
the reduction.

• the result of forward analysis carried out from any node
u will yield the exact same set of nodes, as long as the
analysis is carried out at any of the times when there is
a basis for u to get compromised.

To illustrate the definition, observe that FD preservation
allows the reduction in Fig. 4, since (a) backward reachability
is unchanged for every node, and (b) NewAnc(F) = {0},
and F@0 flows into S, F ′ and H in the original as well as
the reduced graphs.

3.4 Source Dependence (SD) Preservation
We consider further relaxation of dependence preservation
criteria in order to support more aggressive reduction, based
on the following observation about the typical way forensic
analysis is applied. An analyst typically flags an entity as
being suspicious, then performs a backward analysis to
identify likely root causes. Root causes are source nodes in
the graph, i.e., nodes without incoming edges. Source nodes
represent network connections, preexisting files, processes
started before the audit subsystem, pluggable media devices,
and user (e.g., terminal) input. Then, the analyst performs an

exhibit suspicious behavior. However, in order to fully investigate the
extent of an attack, forensic analysis needs to focus on the earliest time a
node could have been compromised, rather than the time when suspicious
behavior is spotted. Otherwise, the analysis may miss effects that may have
gone unnoticed between the time of compromise and the time suspicious
behavior was observed.

impact (i.e., forward) analysis from these source nodes. To
carry out this task accurately, we need to preserve only infor-
mation flows from source nodes; preserving dependencies
between all pairs of internal nodes is unnecessary.

Definition 5 (Source Dependence (SD) Preservation) A
reduction G′ of G is said to preserve source dependence iff
for every node v and a source node u:
• forward reachability from u@0 to v is preserved, and

• backward reachability of u from v@t is preserved at all t.

Note that SD coincides with FD applied to source nodes.
The second conditions are, in fact, identical. The first
conditions coincide as well, when we take into account that
NewAnc(u) = {0} for any source node u. (A source node
does not have any ancestors, but since we have defined
NewAnc to always include zero, NewAnc of source nodes
is always {0}.)

Fig. 5 shows a reduction that preserves SD but not FD. In
the figure, F and F ′ are two distinct files, while S,S′ and S′′

denote three distinct processes. Note that FD isn’t preserved
because a new flow arrives at S′ at t = 2, and this flow can
reach F ′ in the original graph but not in the reduced graph.
However, SD is preserved because the reachability of S, S′,
S′′ and F ′ from the source node F is unchanged.

F

S S′ S′′

F ′

F

S S′ S′′

F ′

1 2 3

4 5 6

1 2 3

4

Fig. 5: Source dependence preserving reduction.

Note that the first condition in Defn. 5 is redundant, as it
is implied by the second: If u is backward reachable from a
node v at t, then, by definition of backward reachability, there
exists a causal path from e1,e2, . . . ,en from u to v. Since 0
is the smallest possible timestamp, 0≤ end(ei) for all i, and
hence, using the causal path e1,e2, . . . ,en and the first part
of Defn. 2, we conclude u@0−→ v, thus satisfying the first
condition. We also point out that the first condition does not
imply the second. To see this, note that if we only need to
preserve forward reachability from F@0 in Fig. 5, then we
can drop any two of the three edges coming into F ′. However,
the backward reachability condition limits us to dropping
the edges from S′ and S′′, as we would otherwise change
backward reachability of the source node F from F ′@4.

Despite being unnecessary, we kept the first condition
in Defn. 5 because its presence makes the forensic analysis
preservation properties of SD more explicit. (Unlike Defn. 5,
there is no redundancy in Defn. 4.)
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4 Efficient Computation of Reductions
Full dependence and source dependence reductions rely
on global properties of graph reachability. Such global
properties are expensive to compute, taking time that can
be linear in the size of the (very large) dependence graph.
Moreover, due to the use of timestamped edges, reachability
changes over time and hence must be computed many times.
This mutability also means that results cannot be computed
once and cached for subsequent use, unlike standard graphs,
where we can determine once that v is a descendant of u and
reuse this result in the future.

To overcome these computational challenges posed by
timestamped graph, we show how to transform them into
standard graphs. The basic idea is to construct a graph in
which objects as well as subjects are versioned. Versioning
is widely used in many domains, including software
configuration management, concurrency control, file systems
[31, 26] and provenance [25, 24, 4, 29]. In these domains,
versioning systems typically intervene to create file versions,
with the goal of increased recoverability or reproducibility. In
contrast, we operate in a forensic setting, where we can only
observe the order in which objects (as well as subjects) were
accessed. Our goal is to (a) make sound inferences about
dependencies through these observations, and (b) encode
these dependencies in a standard (rather than time-stamped)
graph. This encoding serves as the basis for developing
efficient algorithms for log reduction. Specifically, this
section addresses the following key problems.
• Formally establishing that versioned graphs produce the

same forensic analysis results as timestamped graphs.

• Developing a suite of optimizations that reduce the
number of versions while preserving dependencies.

• Showing that our algorithms generate the optimal number
of versions while preserving FD or SD.

Using versioning, we realize algorithms that are both faster
and use less storage than their unversioned counterparts.
Specifically, we realize substantial reduction in the size of
the dependence graph by relying on versioning. Runtime
is also reduced because the reduction operations typically
take constant time per edge (See Section 6.6.1). In contrast,
a direct application of Defn. 4 on timestamped graphs would
be unacceptably slow4.

4.1 Naive Versioned Dependence Graphs
The simplest approach for versioning is to create a new
version of a node whenever it gets a new incoming edge,
similar to creating a new file version each time the file is
written. Fig. 6 shows an example of an unversioned graph
and its corresponding naive versioned graph. Versions of
a node are stacked vertically in the example so as to make

4In order to determine if an edge e is redundant, we would potentially
have to consider every path in the graph containing e; the number of such
paths can be exponential in the size of the graph.

it easier to see the correspondence between nodes in the
timestamped and versioned graphs.

Note that timestamps in versioned graphs are associated
with nodes (versions), not with edges. A version’s start time
is the start time of the event that caused its creation. We
show this time using a superscript on the node label.
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Fig. 6: A timestamped graph and equivalent naive versioned graph.

4.1.1 Algorithm for naive versioned graph construction
We treat the contents of the audit log as a timestamped graph
G = (V,ET ). The subscript T on E is a reminder that the
edges are timestamped. The corresponding (naive) versioned
graph G = (V,E) is constructed using the algorithm shown
below. Without loss of generality, we assume that every edge
in the audit log has a unique timestamp and/or sequence
number. We denote a directed edge from u to v with
timestamp t as a triple (u,v,t). Let u<t denote the latest
version of u in the versioned graph before t.

1.BuildVer(V,ET )
2. V = {v0|v∈V}; E = {};
3. for each (u,v,t)∈ ET
4. add vt to V
5. add (u<t, vt) to E
6. add (v<t, vt) to E
7. return (V,E)

We intend BuildVer and its optimized versions to be online
algorithms, i.e., they need to examine edges one-at-a-time,
and decide immediately whether to create a new version, or
to add a new edge. These constraints are motivated by our
application in real-time attack detection and forensic analysis.

For each entity v, an initial version v0 is added to the
graph at line 2.5 The for-loop processes log entries (edges)
in the order of increasing timestamps. For an edge (u,v)
with timestamp t, a new version vt of the target node v is
added to the graph at line 4. Then an edge is created from the
latest version of u to this new node (line 5), and another edge
created to link the last version of v to this new version (line 6).

5This is a logical simplification — in reality, initial version of v will
be added to the graph at the first occurrence of v in the audit stream.
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4.1.2 Forensic analysis on versioned graphs
In a naive versioned graph, each object and subject gets split
into many versions, with each version corresponding to the
time period between two consecutive incoming edges to
that entity in the unversioned graph. To flag an entity v as
suspicious at time t, the analyst marks the latest version v≤t

of v at or before t as suspicious. Then the analyst can use
standard graph reachability in the versioned graph to perform
backward and forward analysis. For the theorem and proof,
we use the notation v<∞ to refer to the latest version of v
so far. In addition, we make the following observation that
readily follows from the description of BuildVer.

Observation 6 For any two node versions ut and us, there
is a path from ut to us if and only if s≥ t.

Theorem 7 Let G = (V,E) be the versioned graph
constructed from G = (V,ET ). For all nodes u,v and times t:
• v is forward reachable from u@t iff there is a simple path

in G from u≤t to v<∞; and

• u is backward reachable from v@t iff there is a path in
G from u0 to v≤t .

Proof: For uniformity of notation in the proof, let
t = t0,u = w0 and v = wn. The definition of reachability in
timestamped graphs (specifically, Definitions 1 and 2), when
limited to instantaneous events, states that w0@t −→ wn
holds in G if and only if there is a path

(w0,w1,t1),(w1,w2,t2), . . . ,(wn−1,wn,tn)

in G such that ti−1 ≤ ti for 1 ≤ i ≤ n. For each times-
tamped edge (wi−1,wi,ti), BuildVer adds a (standard) edge
(w<ti

i−1,w
ti
i ) to G. In addition, by Observation 6, there is

a path from wti
i to w<ti+1

i . Putting these edges and paths
together, we can construct a path in G from w<t0

0 to wtn
n .

Also, by Observation 6, there is a path from wtn
n to w<∞

n .
Putting all these pieces together, we have a path from
w<t0

0 = u<t0 to w<∞
n = v<∞. A path from u<t0 to v<∞ clearly

implies a path from u≤t0 to v<∞, thus satisfying the “only
if” part of the forward reachability condition.

Note that the “only if” proof constructed a one-to-one
correspondence between the paths in G and G. This
correspondence can be used to establish the “if” part of the
forward reachability condition as well.

The proof of the backward reachability condition follows
the same steps as the proof of forward reachability, so we
omit the details.

4.2 Optimized Versioning and FD Preservation
Naive versioning is simple but offers no benefits in terms of
data reduction. In fact, it increases storage requirements. In
this section, we introduce several optimizations that reduce
the number of versions and edges. These optimizations
cause node timestamps to expand to an interval. A node v
with timestamp interval [t,s] will be denoted vt,s.
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G5

T0

T4
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S0F0

S2

G0
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T0
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F0 S0,2 G0,3 T0,4

Fig. 7: The naive versioned graph from Fig. 6 (top), and the result of
applying redundant edge optimization (REO) (middle) and then redundant
node optimization (RNO) (bottom) to it. When adding the edge (S,G,5), we
find that there is already an edge from the latest version S2 of S to G, so we
skip this edge. For the same reason, the edge (G,T,6) can be skipped, and
this results in the graph shown in the middle. For the bottom graph, note that
when adding the edge (F,S,2), S has no descendants, so we simply update
S0 by S0,2, and avoid the generation of a new version. For the same reason,
we can update G0 and T0 as well, resulting in the graph at the bottom.

4.2.1 Redundant edge optimization (REO)
Before adding a new edge between u and v, we check if
there is already an edge from the latest version of u to some
version of v. In this case, the new edge is redundant: in
particular, reachability is unaffected by the addition of the
edge, so we discard the edge. This also means that no new
version of v is generated. Specifically, consider the addition
of an event (u,v,t) to the graph. Let ur,s be the latest version
of u. We check if there is already an edge from ur,s to an
existing version of v. If so, we simply discard this event.
We leave the node timestamp unchanged. Thus, for a node
ur,s ∈G, r represents the timestamp of the first edge coming
into this node, while s represents the timestamp of the last.
Alternatively, r denotes the start time of this version, while
s denotes the last time it acquired a new incoming edge (i.e.,
an edge that wasn’t eliminated by a reduction operation).
Fig. 7 illustrates redundant edge (REO) optimization.

4.2.2 Global Redundant Edge Optimization (REO*)
With REO, we check whether there is already a direct edge
from u to v before deciding to add a new edge. With global
redundant edge, we generalize to check whether u is an
ancestor of v. Specifically, before adding an event (u,v,t) to
the graph, we check whether the latest version of u is already
an ancestor of the latest version of v. If so, we simply discard
the event.

The condition in REO* optimization is more expensive to
check: it may take time linear in the size of the graph. Also,
it did not lead to any significant improvement over REO in
our experiments, so we did not evaluate it in detail. However,
it is of conceptual significance because the resulting graph is
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optimal with respect to FD, i.e., any further reduction would
violate FD-preservation.

4.2.3 Redundant node optimization (RNO)
The goal of this optimization is to avoid generating additional
versions if they aren’t necessary for preserving dependence.
We create a new version vs of a vertex because, in general,
the descendants of vs could be different from those of vl,
the latest version of v so far. If we overzealously combine
vl and vs, then a false dependency will be introduced, e.g.,
a descendant of vl may backtrack to a node that is an
ancestor of vs but not vl. This possibility exists as long as
(a) the ancestors of vl and vs aren’t identical, and (b) vl has
non-zero number of descendants. We already considered
(a) in designing REO optimizations described above, so we
consider (b) here. Note that RNO needs to be checked only
on edges that aren’t eliminated by REO (or REO*).

Specifically, let vr,s be the latest version of v so far. Before
creating a new version of v due to an event at time t, we check
whether vr,s has any outgoing edge (i.e., any descendants). If
not, we replace vr,s with vr,t , instead of creating a new version
of v. Fig. 7 illustrates the result of applying this optimization.

RNO preserves dependence for descendants of v, but it
can change backward reachability of the node v itself. For in-
stance, consider the addition of an edge at time t from up,q to
vr,s. This edge is being added because it is not redundant, i.e.,
a backward search from v@s does not reach up,q. However,
when we add the new edge and update the timestamp to vr,t ,
there is now a backward path from v@s to up,q. The simplest
solution is to retain the edge timestamp on edges added with
RNO, and use them to prune out false dependencies.6

4.2.4 Cycle-Collapsing Optimization (CCO)
Occasionally, cyclic dependencies are observed, e.g., a
process that writes to and reads from the same file, or two
processes that have bidirectional communication. As ob-
served by previous researchers [25, 24], such dependencies
can lead to an explosion in the number of versions. The typ-
ical approach is to detect cycles, and treat the nodes involved
as an equivalence class. A simple way to implement this
approach is as follows. Before adding an edge from a version
ur to vs, we check if there is a cycle involving u and v. If so,
we simply discard the edge. Our experimental results show
that cycle detection has a dramatic effect on some data sets.

Cycle detection can take time linear in the size of the
graph. Since the dependence graph is very large, it is
expensive to run full cycle detection before the addition
of each edge. Instead, our implementation only checks for
cycles involving two entities. We found that this was enough
to address most sources of version explosion. An alternative

6Note that these timestamps need to be used only when an edge added
with RNO is the first hop in a backward traversal. If a node v subject
to RNO gets a child x, this child would have been added after the end
timestamp of v. So, when we do a backward traversal from x, all parents
of v should in fact be backward reachable.

would be to search for larger cycles when a spurt in version
creation is observed.

4.2.5 Effectiveness of FD-optimizations
REO and RNO optimizations avoid new versions in most
common scenarios that lead to an explosion of versions with
naive versioning:
• Output files: Typically, these files are written by a single

subject, and not read until the writes are completed. Since
all the write operations are performed by one subject, REO
avoids creating multiple versions. In addition, all the write
operations are combined.

• Log files: Typically, log files are written by multiple sub-
jects, but are rarely read, and hence by RNO, no new
versions need to be created.

• Pipes: Pipes are typically written by one subject and read
by another. Since the set of writers does not change, a sin-
gle version is sufficient, as a result of REO. Moreover, all
the writes on the pipe can be combined into one operation,
and so can all the reads.

We found that most savings were obtained by REO, RNO,
and CCO. As mentioned above, REO* is more significantly
more expensive than REO and provided little additional
benefit. Another undesirable aspect of REO* (as well as the
SD optimization) is that it may change the paths generated
during a backward or forward analysis. Such changes have
the potential to make attack interpretation more difficult. In
contrast, REO, RNO and CCO preserve all cycle-free paths.

4.2.6 Correctness and Optimality
Theorem 8 BuildVer, together with RNO and REO*
optimizations, preserves full dependence (FD).

Proof: We already showed that BuildVer preserves forward
and backward reachability between the timestamped graph G
and the naive versioned graph G. Hence it suffices to show
that the edges and nodes eliminated by REO* and RNO don’t
change forward and backward reachability in G. Now, REO*
optimization drops an edge (u,v,t) only if there is already an
edge from the latest version of u to the latest or a previous
version of v in G. In other words, no new ancestors will result
from adding this edge. Since no new ancestors are added, by
definition of FD, any additional paths created in the original
graph due to the addition of this edge do not have to be pre-
served. Thus REO* optimization satisfies the forward reach-
ability condition of FD. Moreover, since this edge does not
add new ancestors to v, it won’t change backward reachabil-
ity of any node from v or its descendants. Thus, the backward
reachability preservation condition of FD is also satisfied.

Regarding RNO optimization, note that it is applied
only when a node v has no descendants. In such a case,
preservation of backward and forward reachability from v’s
descendants holds vacuously.
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Optimality with respect to FD. We now show that the
combination of REO* and RNO optimizations results in
reductions that are optimal with respect to FD preservation.
This means that any algorithm that drops versions or
edges retained by this combination does not preserve full
dependence. In contrast, this combination preserves FD.

The main reasoning behind optimality is that REO*
creates a new version of an entity v whenever it acquires a
new dependency from another entity u. In particular, REO*
adds an edge from (the latest version of) u to (the latest
version of) v only when there is no existing path between
them. In other words, this edge corresponds to a time
instance when v acquires a new ancestor u. For this reason,
reachability from u to v needs to be captured at this time
instance for FD preservation. Thus, an algorithm that omits
this edge would not preserve FD. On the other hand, if we
create an edge but not a new version of v, then there will be a
single instance of v in the versioned graph that represents two
distinct dependencies. In particular, there will be a path from
ut to vs, the version of v that existed before the time t of the
current event. As a result, ut would incorrectly be included
in a backward analysis result starting at the descendants of vs.
The only way to avoid this error is if vs had no descendants,
the condition specified in RNO. Thus, if either REO* or
RNO optimizations were violated, then, forensic analysis
of the versioned graph will yield incorrect results.

4.3 Source Dependence Preservation
In this section, we show how to realize source-dependence
preserving reduction. Recall that a source is an entity
that has no incoming edges. With this definition, sources
consist primarily of pre-existing files and network endpoints;
subjects (processes) are created by parents and hence are not
sources, except for the very first subject. While this is the
default definition, broader definitions of source can easily
be used, if an analyst considers other nodes to be possible
sources of compromise.

We use a direct approach to construct a versioned graph
that preserves SD. Specifically, for each node v, we maintain
a set Src(v) of source entities that v depends on. This set is
initialized to {v} for source nodes. Before adding an event
(u,v,t) to the graph, we check whether Src(u) ⊆ Src(v).
If so, all sources that can reach u are already backward
reachable sources of v, so the event can simply be discarded.
Otherwise, we add the edge, and update Src(v) to include
all elements of Src(u).

Although the sets Src(v) can get large, note that they need
to be maintained only for active subjects and objects. For
example, the source set for a process is discarded when it
exits. Similarly, the source set for a network connection can
be discarded when it is closed.

To save space, we can limit the size of Src. When the
size limit is exceeded for a node v, we treat v as having an
unknown set of additional ancestors beyond Src(v). This en-

sures soundness, i.e., that our reduction never drops an edge
that can add a new source dependence. However, size limits
can cause some optimizations to be missed. In order to min-
imize the impact of such misses, we first apply REO, RNO
and CCO optimizations, and skip the edges and/or versions
skipped by these optimizations. Only when they determine
an edge to be new, we apply the SD check based on Src sets.

Theorem 9 BuildVer, together with redundant edge and
redundant node optimizations and the source dependence
optimization, preserves source dependence.

Proof: Since full dependence preservation implies source
dependence preservation, it is clear that redundant edge and
redundant node optimizations preserve source dependence,
so we only need to consider the effects of source dependence
optimization. The proof is by induction on the number of
iterations of the loop that processes events. The induction hy-
pothesis is that, after k iterations, (a) Src(v) contains exactly
the source nodes that are ancestors of v, and (b) that SD has
been preserved so far. Now, in the induction step, note that
the algorithm will either add an edge (u,v) and update Src(v)
to include all of Src(u), or, discard the event because Src(v)
already contains all elements of Src(u). In either case, we
can show from induction hypothesis that Src(v) correctly cap-
tures all source nodes backward reachable from v. It is also
clear that that when the edge is discarded by the SD algorithm,
it is because the edge does not change the sources that are
backward reachable, and hence it is safe to drop the edge.

Optimality of SD algorithm. Note that when SD adds an
edge (u,v), that is because Src(u) includes at least one source
that is not in Src(v). Clearly, if we fail to add this edge, then
source dependence of v is no longer preserved. This implies
that the above algorithm for SD preservation is optimal.

5 Compact Representations
In this section, we describe how to use the techniques de-
scribed so far, together with others, to achieve highly compact
log file and main-memory dependence graph representations.

5.1 Compact Representation of Reduced Logs
After reduction, logs can be stored in their original format,
e.g., Linux audit records. However, these formats aren’t
space-efficient, so we developed a simple yet compact
format called CSR. CSR stands for Common Semantic
Representation, signifying that a unified format is used
for representing audit data from multiple OSes, such as
Linux and Windows. Translators can easily be developed
to translate CSR to standard log formats, so that standard
log analyzers, or simple tools such as grep, can be used.

In CSR, all subjects and objects are referenced using a
numeric index. Complex data values that get used repeatedly,
such as file names, are also turned into indices. A CSR file
begins with a table that maps strings to indices. Following

10



this table is a sequence of operations, each of which
correspond to the definition of an object (e.g., a file, network
connection, etc.) or a forensic-relevant operation such as
open, read, write, chmod, fork, execve, etc. Operations
deemed redundant by REO, REO* and CCO can be omitted.

Each operation record consist of abbreviated operation
name, arguments (mostly numeric indices or integers), and
a timestamp. All this data is represented in ASCII format
for simplicity. Standard file compression can be applied on
top of this format to obtain further significant size reduction,
but this is orthogonal to our work.

5.2 Compact Main Memory Representation
Forensic analysis requires queries over the dependence
graph, e.g., finding shortest path(s) to the entry node of an
attack, or a depth-first search to identify impacted nodes.
The graph contains roughly the same information that might
be found in Linux audit logs. In particular, the graph captures
information pertaining to most significant system calls. Key
argument values are stored (e.g., command lines for execve,
file names, and permissions), while the rest are ignored (e.g.,
the contents of buffers in read and write operations).

Nodes in the dependence graph correspond to subjects
and objects. Nodes are connected by bidirectional edges
corresponding to events (typically, system calls). To
obtain a compact representation, subjects, objects, and
most importantly edges must be compactly encoded.
Edges typically outnumber nodes by one to two orders of
magnitude, so compactness of edges is paramount.

The starting point for our compact memory representation
is the SLEUTH [10] system for forensic analysis and
attack visualization. The graph structure used in this paper
builds on some of the ideas from SLEUTH, such as the
use of compact identifiers for referencing nodes and node
attributes. However, we did away with many other aspects
of that implementation, such as the (over-)reliance on
compact, variable length encoding for events, based on
techniques drawn from data compression and encoding.
These techniques increased complexity and reduced runtime
performance. Instead, we rely primarily on versioned graphs
and the optimizations in Section 4 to achieve compactness.
This approach also helped improve performance, as we can
achieve graph construction rates about three times faster than
SLEUTH’s. Specifically, the main techniques we rely on to
reduce memory use in this paper are:
• Edge reductions: The biggest source of compaction is the

redundant edge optimization. Savings are also achieved
because we don’t need timestamps on most edges. In-
stead, timestamps are moved to nodes (subject or object
versions). This enables most stored edges to use just 6
bytes in our implementation, encoding an event name and
about a 40-bit subject or object identifier.

• Node reductions: The second biggest source of com-
paction is node reduction, achieved using RNO and CCO

optimizations. In addition, our design divides nodes into
two types: base versions and subsequent versions. Base
versions include attributes such as name, owner, command
line, etc. New base versions are created only when these
attributes change. Attribute values such as names and
command lines tend to be reused across many nodes, so
we encode them using compact ids. This enables a base
version to be stored in 32 bytes or less.

• Compact representation for versions: Subsequent versions
derived from base versions don’t store node attributes, but
just the starting and ending timestamps. By using relative
timestamps and sticking to a 10ms timestamp granularity7,
we are able to represent a timestamp using 16-bits in most
cases. This enables a version to fit within the same size
as an edge, and hence it can be stored within the edge
list of a base version. In particular, let S be the set of
edges occurring between a version v and the next version
appearing in the edge list. Then S is the set of edges
incident on version v in the graph.

Edge lists are maintained as vectors that can grow dynam-
ically for active nodes (i.e., running processes and open files)
but are frozen at their current size for inactive nodes. This
technique, together with the technique of storing versions
within the edge list, reduces fragmentation significantly. As
a result, we achieve a very compact representation that often
takes just a few bytes per edge in the original data.

6 Experimental Evaluation
We begin this section by summarizing our implementation in
Section 6.1. The data sets used in our evaluation are described
in Section 6.2. In Section 6.3, we evaluate the effectiveness
of FD and SD in reducing the number of events, and compare
it with Xu et al.’s technique (LCD). We then evaluate the
effect of these reductions on the CSR log size and the in-
memory dependence graph in Sections 6.4 and 6.5. Runtimes
for dependence graph construction and forensic analysis are
discussed in Section 6.6. The impact of our optimizations on
forensic analysis accuracy is evaluated in Section 6.7.

6.1 Implementation
Our implementation consists of three front-ends and a back-
end written in C++. The front-ends together contain about
6KLoC; the back-end, about 7KLoC. The front-ends process
data from audit sources. One front-end parses Linux audit
logs, while the other two parse Linux and Windows data from
the red team engagement. The back-end uses our BuildVer
algorithm, together with (a) the REO, RNO, and CCO op-
timizations (Section 4.2) to realize FD preservation, and (b)
the source dependence preservation technique described in
Section 4.3. It uses the compact main-memory representation
presented in Section 5.2. Our implementation can also gen-
erate event logs in our CSR format, described in Section 5.1.

7This is the granularity typically available on most of our data sets.
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The back-end can also read data directly from CSR logs.
We used this capability to carry out many of our experiments,
because data in CSR format can be consumed much faster
than data in Linux audit log format or the OS-neutral format
in which red team engagement data was provided. A few
key points about our implementation are:
• Network connections: We treat each distinct combination

of (remote IP, port, time window) as a distinct source node.
Currently, time windows are set to about 10 minutes. This
means that when we read from any IP/port combination,
all reads performed within a 10-minute period are treated
as coming from a single source. Thus, FD and SD can
aggregate them. After 10 minutes, it is considered a new
source, thus allowing us to reason about remote sites
whose behavior may change over time (e.g., the site may
get compromised). A similar approach is applicable for
physical devices.

• Handling execve: Execve causes the entire memory image
of a process to be overwritten. This suggests that depen-
dences acquired before the execve will be less of a factor
in the behavior of the process, compared to dependences
acquired after. We achieve this effect by limiting REO
from traversing past execve edges.8

• REO* optimization: Almost all edges in our graph are
between subjects and objects. Consider a case when a
subject s reads an object o. The only case where o could
be an ancestor but not a parent is if o was read by another
subject s′ that then wrote to an object o′ that is being read
by s. Since this relationship looks distant, we did not
consider that REO* would be very useful in practice.9

6.2 Data Sets
Our evaluation uses data from live servers in a small
laboratory, and from a red team evaluation led by a
government agency. We describe these data sets below.

6.2.1 Data from Red Team Engagement
This data was collected as part of the 2nd adversarial en-
gagement organized in the DARPA Transparent Computing
program. Several teams were responsible for instrumenting
OSes and collecting data, while our team (and others)
performed attack detection and forensic analysis using
this data. The red team carried out attack campaigns that
extended over a period of about a week. The red team also
generated benign background activity, such as web browsing,
emailing, and editing files.

Linux Engagement Data (Linux Desktop). Linux data
(Linux Desktop) captures activity on an Ubuntu desktop
machine over two weeks. The principal data source was

8REO, and especially REO*, can be much more effective without this
restriction, but such an approach also increases the risk of eliminating
significant events from the graph.

9Moreover, because the in- and out-degrees of subjects are typically very
large, a 3-hop search may end up examining a very large number of edges.

Dataset
Total

Events Read Write Clone/
Exec Other

Linux Desktop 72.6M 72.4% 26.2% 0.5% 0.9%
Windows Desktop 14.6M 77.1% 14.5% 1.2% 7.2%
SSH/File Server 14.4M 38.2% 58.3% 1.2% 2.3%

Web Server 2.8M 64.3% 30.3% 1.5% 3.9%
Mail Server 3M 70% 23.6% 1.7% 4.7%

Table 8: Data sets used in evaluation.

the built-in Linux auditing framework. The audit data was
transformed into a OS-neutral format by another team and
then given to us for analysis. The data includes all system
calls considered important for forensic analysis, including
open, close, clone, execve, read, write, chmod, rm, rename,
and so on. Table 8 shows the total number of events in
the data, along with a breakdown of important event types.
Since reads and writes provide finer granularity information
about dependencies than open/close, we omitted open/close
from our analysis and do not include them in our figures.

Windows Engagement Data (Windows Desktop). Win-
dows data covers a period of about 8 days. The primary
source of this data is Event Tracing for Windows (ETW).
Events captured in this data set are similar to those
captured on Linux. The data was provided to us in the
same OS-neutral format as the Linux data. Nevertheless,
some differences remained. For examples, network reads
and network writes were omitted (but network connects
and accepts were reported). Also reported were a few
Windows-specific events, such as CreateRemoteThread.
Registry events were mapped into file operations. From
Table 8, it can be seen that the system call distribution is
similar as for Linux, except for a much higher volume of
“other” calls, due to higher numbers of renames and removes.

6.2.2 Data From Laboratory Servers
An important benefit of the red team data is that it was
collected by teams with expertise in instrumenting and
collecting data for forensic analysis. A downside is that some
details of their audit system configurations are unknown to us.
To compensate for this, we supplemented the engagement
data sets with audit logs collected in our research lab. Audit
data was collected on a production web server, mail server,
and general purpose file and remote access server (SSH/File
Server) used by a dozen users in a small academic research
laboratory. All of these systems were running Ubuntu Linux.
Audit data was collected over a period of one week using the
Linux audit system, configured to record open, close, read,
write, rename, link, unlink, chmod, etc.

6.3 Event Reduction: Comparison of LCD, FD and SD
Fig. 9 shows the event reduction factor (i.e., ratio of
number of events before and after the reduction) achieved
by our two techniques, FD and SD. For comparison, we
reimplemented Xu et al.’s full-trackability reduction as
described by Algorithms 1, 2 and 3 in [42]. As discussed
before, full-trackability equivalence is like a localized version
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Fig. 9: Event reduction factors achieved by LCD, FD, and SD.

of our continuous dependence preservation criteria, and
hence we refer to it as LCD for consistency of terminology.
LCD, FD and SD achieve an average reduction factor of 1.8,
7 and 9.2 respectively. Across the data sets, LCD achieves
reduction factors between 1.6 and 2.7, FD ranges from 4.6
to 15.4, and SD from 5.4 to 19.1.

As illustrated by these results, FD provides much more
reduction than LCD. To understand the reason, consider
a simple example of a process P that repeatedly reads file
A and then writes file B. The sequence of P’s operations
may look like read(A); write(B); read(A); write(B); · · ·.
Note that there is an outgoing (i.e., write) edge between
every pair of incoming (i.e., read) edges into P. This violates
Xu et al.’s condition for merging edges, and hence none of
these edges can be merged. Our FD criteria, on the other
hand, can utilize non-local information that shows that A
has not changed during this time period, and hence can
aggregate all of the reads as well as the writes.

We further analyzed the data to better understand the high
reduction factors achieved by FD and SD. We found that
on Linux, many applications open the same object multiple
times. On average, a process opened the same object
approximately two times on the laboratory servers. Since the
objects typically did not change during the period, FD was
typically able to combine the reads following distinct opens,
thus explaining a factor of about 2. Next, we observed
that on average, each open was accompanied by 3 to 5
reads/writes. Again, FD was able to aggregate most of them,
thus explaining a further factor of 2 to 4. We see that the
actual reduction achieved by FD is within this explainable
range for the laboratory servers. For Windows desktop, the
reduction factor was less, mainly because the Windows data
does not include reads or writes on network data. For Linux
desktop data set, FD reduction factor is significantly higher.
This is partly because long-running processes (e.g., browsers)
dominate in this data. Such processes typically acquire a
new dependency when they make a new network connection,
but subsequent operations don’t add new dependencies, and
hence most of them can be reduced.

Our implementation of SD is on top of FD: if an edge
cannot be removed by FD, then the SD criterion is tried.
This is why SD always has higher reduction factor than FD.
SD provides noticeable additional benefits over FD.

Dataset Size on CSR Reduction factor
Disk FD SD

Linux Desktop 12.9GB 5.6× 66.1× 76.8×
Windows Desktop 2.1GB 2.4× 4.46× 4.54×

SSH/File server 6.7GB 15.1× 91.5× 122.5×
Web server 1.3GB 13.3× 49.3× 57.9×
Mail server 1.2GB 11.9× 41× 49.2×

Average (Geometric mean) 8× 35.3× 41.4×

Table 10: Log size on disk. The second column reports the log size of origi-
nal audit data. Each remaining column reports the factor of decrease in CSR
log size achieved by the indicated optimization, relative to the size on disk.

6.4 Log Size Reduction
Table 10 shows the effectiveness of our techniques in reduc-
ing the on-disk size of log data. The second column shows
the size of the original data, i.e., Linux audit data for labora-
tory servers, and OS-neutral intermediate format for red team
engagement data. The third column shows the reduction in
size achieved by our CSR representation10, before any reduc-
tions are applied. The next two columns show the size reduc-
tions achieved by CSR together with FD and SD respectively.

From the table, it can be seen that the reduction factors
from FD and CD are somewhat less than that shown in Fig. 9.
This is expected, because they compress only events, not
nodes. Nevertheless, we see that the factors are fairly close,
especially on the larger data sets. For instance, on the Linux
desktop data, where FD produces about 15× reduction, the
CSR log size shrinks by about 12× over base CSR size.
Similarly, on SSH/File server, FD event reduction factor is
8×, and the CSR size reduction is about 6×. In addition, the
log sizes are 35.3× to 41.4× smaller than the input audit logs.

6.5 Dependence Graph Size
Table 11 illustrates the effect of different optimizations on
memory use. On the largest dataset (Linux desktop), our
memory use with FD is remarkably low: less than two bytes
per event in the original data. On the other two larger data sets
(Windows desktop and SSH/file server), it increases to 3.3
to 6.8 bytes per event. The arithmetic and geometric means
(across all the data sets) are both less than 5 bytes/event.

Examining the Linux desktop and Windows desktop
numbers closely, we find that the memory use is closely
correlated with the reduction factors in Fig. 9. In particular,
for the Linux desktop, there are about 4.7M events left after
FD reduction. Each event results in a forward and backward
edge, each taking 6 bytes in our implementation (cf. Section
5). Subtracting this 4.7M*12B = 56.4MB from the 111MB,
we see that the 1.1M nodes occupy about 55MB, or about 50
bytes per node. Recall that each node takes 32 bytes in our
implementation, plus some additional space for storing file
names, command lines, etc. A similar analysis of Windows

10Recall that CSR is uncompressed, so there is room for significant
additional reduction in size, if the purpose is archival storage.
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Dataset
Total No.
of Nodes

Total
Events

FD
(MB)

SD
(MB)

Linux Desktop 1.1M 72.6M 111 107
Windows Desktop 781K 10.3M 67 67
SSH/File Server 430K 14.4M 45 39

Web Server 141K 2.8M 16 15
Mail Server 189K 3M 21 20

Total 2.64M 103.1M 260 248
Table 11: Memory usage. The second column gives the total number of
nodes in the dependence graph before any versioning. The third column
gives the total number of events. The fourth and fifth columns give the total
memory usages for FD and SD. Average memory use across these data
sets is less than 5 bytes/event.

data shows that about 2M events are stored occupying about
24MB, and that the 781K nodes take up about 53B/node.

6.5.1 Effectiveness of Version Reduction Optimizations
Table 12 shows the number of node versions created with
the naive versioning algorithm and our optimized algorithms.
The second column shows that naive versioning leads to a
version explosion, with about 26 versions per node. However,
FD and SD drastically reduce the number versions: with FD,
we create just about 1.3 versions per node, on average.

Table 13 breaks out the effects of optimizations individ-
ually. Since some optimizations require other optimizations,
we show the four most meaningful combinations: (a) no
optimizations, (b) all optimizations except redundant node
(RNO), (c) all optimizations except cycle-collapsing (CCO),
and (d) all optimizations. These figures were computed in the
context of FD. When all optimizations other than RNO are en-
abled, the number of versions falls to about 3.6× from 25.6×
(unoptimized). Enabling all optimizations except CCO leads
to about 3 versions on average per node. Comparing these
with the last column, we can conclude that RNO contributes
about a 3× reduction and CCO a 2.4× reduction in the
number of versions, with the remaining 2.8× coming from
REO. It should be noted that REO and CCO both remove
versions as well as edges, whereas RNO removes only nodes.

6.6 Runtime Performance
All results in our entire evaluation were obtained on a
laptop with Intel Core i7 7500U running at 2.7GHz with
16GB RAM and 1TB SSD, running Ubuntu Linux. All
experiments were run on a single core.

Dataset
Versions per node

Naive FD SD
Linux Desktop 68.65 1.05 1.02

Windows Desktop 13.9 1.37 1.35
SSH/File Server 34.36 1.31 1.06

Web Server 20.62 1.29 1.10
Mail Server 16.20 1.32 1.22

Average 25.58 1.26 1.14

Table 12: Impact of naive and optimized versioning. Geometric means
are reported on the last row of the table.

Dataset
Versions per node

None No RNO No CCO FD
Linux Desktop 68.65 4.56 17.75 1.05

Windows Desktop 13.9 2.60 1.38 1.37
SSH/File Server 34.36 4.32 2.21 1.31

Web Server 20.62 3.46 2.15 1.29
Mail Server 16.20 3.57 2.12 1.32

Average 25.58 3.63 3.01 1.26

Table 13: Effectiveness of different versioning optimizations. Geometric
means are reported on the last row of the table.

6.6.1 Dependence Graph Construction Time with FD
With our FD-preserving optimizations, this time depends
on (a) the size of cycles considered by CCO, and (b) the
maximum number of edges examined by REO. For (a), we
have not come across cycles involving more than two nodes
that meaningfully increased the size or runtime. So, our cur-
rent implementation only considers cycles of length two. To
evaluate the effect of (b), we placed a limit k, called the FD
window size, on the number of edges examined by REO be-
fore it reports that a dependence does not exist; this is safe but
may reduce the benefit. With this limit in place, each edge is
processed in at most O(k) time, yielding a graph construction
algorithm that is linear in the size of the input audit log.

Fig. 14 shows the dependence graph construction time as
a function of FD window size. We use the notation FD = c
to represent the runtime when k is set to c. We use k = 1
as the base, and show the other runtimes relative to this base.
Note that runtime can initially dip with increasing k because
it leads to significant reductions in memory use, which
translates into less pressure on the cache, and consequently,
(slightly) improved runtime. But as k is increased beyond
100, the runtime begins to increase noticeably.

The runtime and the reduction factor both increase
with window size. Fig. 15 plots the relationship between
reduction factor and window size. In particular, FD=1 means
that REO can eliminate the edge (u,v) only if the previous
edge coming into v is also from u. The average reduction
achieved by FD in this extreme case is 1.96, about the same
as the maximum rate achieved by LCD. Another observation
is that for the laboratory servers, with FD=25, we achieve
almost the full reduction potential of FD. For the desktop
systems used in the red team engagements, full potential is
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Fig. 14: Dependence graph construction time with different FD window
sizes. Y-axis is the normalized runtime, relative to base of FD =1. These
base times are 77.54s for Linux desktop, 19.02s for Windows desktop,
11.86s for Web server, 15.11s for Mail server and 41.77s for SSH/File server.
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Fig. 15: Effect of FD window size on event reduction factor.

achieved only at FD=500. We hypothesize that this is partly
due to the nature of red team exercises, and partly due to
workload differences between desktops and servers.

Comparing the two charts, we conclude that a range of
FD=25 to FD=100 represents a good trade-off for a real-time
detection and forensic analysis system such as SLEUTH
[10], with most of the size reduction benefits realized, and
with runtime almost the same as FD=1. At FD=25, our
implementation processes the 72M records in the Linux
Desktop data set in 84 seconds, corresponding to a rate of
860K events/second. For applications where log size is the
primary concern, FD=500 would be a better choice.

6.6.2 Dependence Graph Construction Time with SD

For SD, the sizes of Src sets become the key factor influenc-
ing runtime. SD requires frequent computation of set unions,
which takes linear time in the sizes of the sets. Moreover, in-
creased memory use (due to large sets) significantly increases
the pressure on the cache, leading to further performance
degradation. We therefore studied the effect of placing limits
on the maximum size of Src sets. Overflows past this limit
are treated conservatively, as described in Section 4.3.

Figs. 16 and 17 show the effect of varying the source set
size limit on the runtime and reduction factor, respectively.
Recall that SD runs on top of FD, so the runtime of FD
matters as well. However, since SD is significantly slower
than FD, we did not limit the FD window size in these
experiments. From the chart, the peak reduction factor is
reached by SD=500 for all data sets except Linux desktop.
The Linux desktop behaves differently, and we attribute this
to the much higher level of activity on it, which means that a
single long-running process can acquire a very large number
of source dependencies. Nevertheless, the chart suggests that
SD=500 is generally a good choice, as the overall runtime
is almost unchanged from SD=50.

At SD=500, it takes 144 seconds to process 72M
records from Linux, for an event processing rate of about
500K/second. Thus, although SD is slower than FD, it is
quite fast in absolute terms, being able to process events
at least two orders of magnitude faster than the maximum
event production rate observed across all of our data sets.

0	

0.5	

1	

1.5	

2	

2.5	

SD=50	 SD=100	 SD=500	 SD=1000	SD=3000	

Linux	Desktop	

Windows	Desktop	

SSH/File	Server	

Web	Server	

Mail	Server	

Fig. 16: Dependence graph construction time with different source set size
limits. Y-axis is the runtime relative to the runtime with SD=50 (size limit
of 50), which is 143.68s for Linux desktop, 23.59s for Windows desktop,
12.86s for Web server, 15.43s for Mail server and 42.81s for SSH/File server.
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Fig. 17: Effect of source set size limit on event reduction factor.

6.6.3 Backward and Forward Forensic Analysis
Once the dependence graph is constructed, forensic analysis
is very fast, because the whole graph currently resides in
memory. To evaluate the performance, we randomly tagged
100K nodes in the dependence graph for the Linux desktop
system. From each of these nodes, we performed

• a backward analysis to identify the source node closest
to the tagged node. This search used a shortest path
algorithm.

• a forward analysis to identify the nodes reachable from
the tagged node. In case of searches that could return
very large graphs, we terminated the search after finding
10K nodes (in most cases, the search terminated without
hitting this limit).

This entire test suite took 112 seconds to run. In other words,
each forward plus backward analysis on a dependence graph
corresponding to 72M events took just 1.12 milliseconds on
average.

6.7 Preserving Forensic Analysis Results
6.7.1 Reproducing Analysis Results from SLEUTH [10]
In our previous work [10], we performed real-time attack
detection and forensic analysis of multi-step APT-style attack
campaigns carried out in the 1st adversarial engagement in the
DARPA Transparent Computing program. As described in
Table 6 in [10], there were 8 distinct attack campaigns, each
of which involved most of the seven stages in APT life cycle,
including drop & load, intelligence gathering, backdoor
insertion, privilege escalation, data exfiltration, and cleanup.
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Dataset
Attack

Scenario
Analysis

Type
Number of Entities
Naive FD SD

Linux
Desktop

A
Backward 7 7 7
Forward 15 15 15

B
Backward 3 3 3
Forward 10 10 10

Windows
Desktop

A
Backward 4 4 4
Forward 17 17 17

B
Backward 2 2 2
Forward 9 9 9

C
Backward 4 4 4
Forward 7 7 7

Table 18: Results of forward and backward analyses carried out from the en-
try and exit points of attacks used in the red team attacks. The exact same set
of entities were identified with and without the FD and SD event reductions.

SLEUTH assigns integrity and confidentiality tags to ob-
jects. These tags propagate as a result of read, write and
execute operations. It detects attacks using tag-based poli-
cies that were developed in the context of our earlier work
on whole-system integrity protection [19, 34, 35, 36] and
policy-based defenses [39, 32]. It then uses a backward anal-
ysis to identify the entry point, and then a forward analysis
to determine attack impact, and then a set of simplification
passes to generate a graph depicting the attack, and to list
the entities involved. Across these 8 attacks, a total of 176
entities were identified as relevant by the red team, and our
original analysis in [10] identified 174 of them.

We carried out the investigation again, with FD and SD
reductions in place. We were able to obtain the same results
as in [10], showing that FD and SD reductions do not affect
forensics results. This should come as no surprise, given that
we proved that they both preserve the results of backward
analysis followed by forward analysis. Nevertheless, the
experimental results are reassuring.

6.7.2 Forensic Analysis Results on Table 8 Data Set
We then turned our attention to the Engagement 2 data
set. (We did not use Engagement 1 data set in our
reduction experiments because it was far smaller in size
than Engagement 2.) There were 2 attacks within the Linux
dataset and 3 attacks within the Windows data set. For each
attack, we ran a forward analysis from the attack entry point,
and then a backward analysis from attack exfiltration point
(which is one of the last steps in these attacks). As shown
Table 18, these analyses identified the exact same set of
entities, regardless of whether any data reduction was used.

7 Related Work
Information-flow Tracking. Numerous systems con-
struct dependence graphs [13, 9, 15, 22] or provenance
graphs [25, 24, 8, 4, 29] that capture information flow at
the coarse granularity of system calls. In particular, if a
subject reads from a network source, then all subsequent
writes by the subject are treated as (potentially) dependent
on the network source. This leads to a dependence explosion,

especially for long-running processes, as every output
operation becomes dependent on every input operation.
Fine-grained taint tracking [28, 41, 2, 12] can address this
problem by accurately tracking the source of each output
byte to a single input operation (or a few). Unfortunately,
these techniques slow down programs by a factor of 2
to 10 or more. BEEP [17, 21] developed an alternative
fine-grained tracking approach called unit-based execution
partitioning that is much more efficient. However, as
compared to taint-tracking techniques, execution partitioning
generally requires some human assistance, and moreover,
makes optimistic assumptions about the program behavior.

The main drawback shared by all fine-grained tracking
approaches is the need for instrumenting applications. In
enterprises that run hundreds of applications from multiple
vendors, this instrumentation requirement is difficult to meet,
and hence it is much more common for enterprises to rely
on coarse-grained tracking.

Log Reduction. BackTracker [13, 14, 15] pioneered the
approach of using system logs for forensic investigation of
intrusions. Their focus was on demonstrating effectiveness
of attack investigation, so they did not pursue log reduction
beyond simple techniques such as omitting “low-control”
(less important) events, such as changing a file’s access time.

LogGC [18] proposed an interesting approach for log
reduction based on the concept of garbage collection, i.e.,
removing operations involving removed files (“garbage”).
Additional restrictions were imposed to ensure that files of in-
terest in forensic analysis, such as malware downloads, aren’t
treated as garbage. They report remarkable log reduction with
this approach, provided it is used in conjunction with their
unit instrumentation. Without such fine-grained instrumenta-
tion, the savings they obtain are modest. To further evaluate
the potential of this approach, we analyzed the data set used
in this paper (Table 8). We found that less than 3% of the oper-
ations in this data set were on files that were subsequently re-
moved. Although not all of these files satisfy their definition
of “garbage,” 3% is an upper bound on the savings achievable
using this garbage collection technique on our data.

ProTracer [22] proposed another new reduction mecha-
nism that was based on logging only the write operations.
Read operations, as well as some memory-related operations
tracked by their unit instrumentation, were not logged. In
the presence of their unit instrumentation, they once again
show a dramatic reduction in log sizes using their strategy.
However, as discussed in the introduction, this strategy
of selective logging of writes can actually increase log
sizes in the absence of unit instrumentation. Indeed, our
experiments with this strategy11 resulted in more than an
order of magnitude increase in log sizes.

11In our experiment, we implemented the method detailed in Table I of
their paper [22]. Our implementation incorporated obvious optimizations
such as avoiding the logging of multiple write records when the subject’s
taint set hasn’t changed.
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Xu et al.’s notion of full-trackability equivalence
(LCD-preservation in our terminology) [42] is similar to
our CD-preservation, as discussed in Section 3.2. We
implemented their LCD-preserving reduction algorithm and
found that our FD and SD optimizations achieve significantly
more reduction, as detailed in Section 6.3. The reasons for
this difference were also discussed in Section 6.3.

Provenance capture systems, starting from PASS [25],
incorporate simple reduction techniques such as the removal
of duplicate records. PASS also describes the problem of
cyclic dependencies and their potential to generate a very
large number of versions. They avoid cycles involving multi-
ple processes by merging the nodes for those processes. Our
cycle-collapsing optimization is based on a very similar idea.

ProvWalls [5] is targeted at systems that enforce
Mandatory Access Control (MAC) policies. It leverages
the confinement properties provided by the MAC policy
to identify the subset of provenance data that can be safely
omitted, leading to significant savings on such systems.

Winnower [38] learns compact automata-based behavioral
models for hosts running similar workloads in a cluster.
Only the subset of provenance records that deviate from
the model need to be reported to a central monitoring node,
thereby dramatically reducing the network bandwidth and
storage space needed for intrusion detection across the
cluster. These models contain sufficient detail for intrusion
detection but not forensics. Therefore, Winnower also stores
each host’s full provenance graph locally at the host. In
contrast, our system generates compact logs that preserve
all the information needed for forensics.

File Versioning. The main challenge for file versioning
systems is to control the number of versions, while the
challenge for forensic analysis is to avoid false dependencies.
Unfortunately, these goals conflict. Existing strategies that
avoid false dependencies, e.g., creating a new version of a file
on each write [33], generate too many versions. Strategies
that significantly reduce the number of versions, e.g., open-
close versioning [31],12 can introduce false dependencies.

Many provenance capture systems use versioning as
well. Like versioning file systems, they typically use either
simple versioning that creates many versions (e.g., [4, 29]) or
coarse-grained versioning that does not accurately preserve
dependencies (e.g., [25]). In contrast, we presented an
approach that provably preserves dependencies, while
generating only a small number of versions in practice.

Provenance capture systems try to avoid cycles in the
provenance graph, since cyclic provenance is meaningless.
Causality-based versioning [24] discusses two techniques
for cycle avoidance. The first of these performs global cycle
detection across all objects and subjects on a system. The
second operates with a view that is local to an object. It

12With this technique, the first open of an existing file for writing causes
a new version to be generated. While the file remains open, subsequent
opens all update the same version.

uses a technique similar to our redundant edge optimization,
but is aimed at cycle avoidance rather than dependency
preservation. They do not consider the other techniques
we discuss in this paper, such as REO*, RNO, and SD
preservation, nor do they establish optimality results.

Graph Compression and Summarization. Several
techniques have been proposed to compress data provenance
graphs by sharing identical substructures and storing only
the differences between similar substructures, e.g., [6, 40, 7].
Bao et al. [3] compress provenance trees for relational
query results by optimizing the selection of query tree nodes
where provenance information is stored. These compression
techniques, which preserve every detail of the graph, are
orthogonal to our techniques, which can drop or merge edges.

Graph summarization [27, 37] is intended mainly to
facilitate understanding of large graphs but can also be
regarded as lossy graph compression. However, these
techniques are not applicable in our context because they
do not preserve dependencies.

Attack Scenario Investigation. Several recent efforts
have been aimed at recreating the full picture of a complex,
multi-step attack campaign. HERCULE [30] uses community
discovery techniques to correlate attack steps that may
be dispersed across multiple logs. SLEUTH [10] assigns
trustworthiness and confidentiality tags to objects, and its
attack detection and reconstruction are both based on an
analysis of how these tags propagate. PrioTracker [20]
speeds up backward and forward analysis by prioritizing
exploration of paths involving rare or suspicious events.
RAIN [11] uses record-replay technology to support
on-demand fine-grained information-flow tracking, which
can assist in detailed reconstruction of low-level attack steps.

8 Conclusion
In this paper, we formalized the notion of dependency-
preserving data reductions for audit data and developed
efficient algorithms for dependency-preserving audit data
reduction. Using global context available in a versioned
graph, we are able to realize algorithms that are optimal
with respect to our notions of dependency preservation.
Our experimental results demonstrate the power and
effectiveness of our techniques. Our reductions that preserve
full dependence and source dependence reduce the number
of events by factors of 7 and 9.2, respectively, on average in
our experiments, compared to a factor 1.8 using an existing
reduction algorithm [42]. Our experiments also confirm that
our reductions preserve forensic analysis results.
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