
On Preventing Intrusions by Process Behavior Monitoring1

R. Sekar

Department of Computer Science
Iowa State University, Ames, IA

sekar@seclab.cs.iastate.edu

T. Bowen M. Segal

Bellcore
Morristown, NJ

{bowen,ms} @bellcore.com

1 This project is supported by Defense Advanced Research Agency's Information Technology Off ice (DARPA-ITO) under the
Information System Survivabilit y Program, under contract number F30602-97-C-0244. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the off icial policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency or the U. S. Government.

Abstract

Society's increasing reliance on networked information
systems to support critical infrastructures has prompted
interest in making the information systems survivable,
so that they continue to perform critical functions even
in the presence of vulnerabiliti es susceptible to mali-
cious attacks. To enable vulnerable systems to survive
attacks, it is necessary to detect attacks and isolate fail-
ures resulting from attacks before they damage the
system by impacting functionality, performance or se-
curity. The key research problems in this context in-
clude:

• detecting in-progress attacks before they cause
damage, as opposed to detecting attacks after
they have succeeded,

• localizing and/or minimizing damage by isolating
attacked components in real-time, and

• tracing the origin of attacks.

We address the detection problem by real-time event
monitoring and comparison against events known to be
unacceptable. Real-time detection differentiates our
approach from previous works that focus on intrusion
detection by post-attack evidence analysis. We address
the isolation and tracing problems by supporting auto-
matic initiation of reactions. Reactions are programs
that we develop to respond to attacks. A reaction's pri-
mary goal is to isolate compromised components and
prevent them from damaging other components. A re-
action's secondary goal is to aid in tracing the origin of
attack, e.g., by providing an ill usion of success to the
attackers (enticing them to continue the attack) while
ensuring that the attack causes no damage.

Our approach to detecting attacks is based on specify-
ing permissible process behaviors as logical assertions

on sequences of system calls and conditions on the val-
ues of system call arguments. We compile the specifi-
cations into finite state automata for eff icient runtime
detection of deviations from the specified (and hence
permissible) behavior. We seamlessly integrate detec-
tion and reaction by designing our specification lan-
guage to also allow specification of reactions.

1. Introduction

Approaches to intrusion detection can be broadly di-
vided into anomaly detection and misuse detection.
Anomaly detection based approaches first create a pro-
file that describes normal behaviors and then detect
deviations from this profile [Fox90, Lunt88, Lunt92,
Anderson95]. In contrast, misuse detection based ap-
proaches [Porras92, Ilgun93, Kumar94] define and look
for precise sequences of events that damage the system.
Anomaly detection approaches possess the advantage
that learning to identify normal behavior can be auto-
mated, but they are prone to false positives, especially
when permissible but previously unlearned behavior
occurs. Misuse detection approaches are more precise
and less prone to false positives. However, since misuse
detection approaches require specification of damaging
events, which is usually manual and based on previ-
ously known attacks, they are less effective against
newly discovered vulnerabiliti es and attacks.

A specification-based approach, first proposed by Ko
et al. [Ko94, Ko96], aims at overcoming the above
drawback of misuse detection. Instead of describing
the events occurring in known attacks, which may or
may not occur in future attacks, a specification-based
approach describes a program's intended behavior. De-
viations from intended behavior can be flagged as in-
trusions, thus enabling detection of previously un-

known attacks. Our approach uses manual production
of specifications, which while having the drawback of
requiring a human expert, has the advantage of mini-
mizing false positives, especially those that arise when
intended but infrequently exhibited behavior is ob-
served. Thus, we can continue to retain the precision of
misuse detection and can therefore initiate defensive
actions as soon as any violations are detected.

An overview of our specification-based approach for
improving survivabilit y was presented in [Sekar98].
Our approach comprises a specification language, a
compiler for the specification language, and a runtime
execution environment. This paper provides a more in-
depth treatment of our specification language, and out-
lines an approach for compili ng the specifications into
executable modules for eff icient monitoring of program
behaviors at runtime. While our approach applies in
principle to any modern operating system, our imple-
mentation is specific to Linux.

The rest of this paper is organized as follows. In Sec-
tion 2 we give a brief overview of our approach, in
Section 3 discuss related work as it applies to our speci-
fication language, in Section 4 we present our language
and practical examples of its use, and in Section 5 we
describe language compilation.

2. Overview of Approach

We model the survivable system as a distributed system
consisting of hosts interconnected by a network. The
network and the hosts are assumed to be physically
secure, but the network is interconnected to the public
Internet. Since attackers do not have physical access to
the hosts that they are attacking, all attacks must be
launched remotely from the public network. Regard-
less of how the attack is delivered, any damage to a
target host is effected via the system calls made by a
process running on the target host.2 Thus, it is possible
in theory to detect all attacks by observing only the
system calls made by processes executing on the hosts
comprising the system, and to prevent damage by fil-
tering out damage-causing system calls before they are
executed. Basing our techniques on system call obser-
vation has an important advantage in its abilit y to de-
fend existing software applications without modifying

2 This observation does not hold for some denial-of-service
attacks such as ping-of-death that exploit errors in operating
system kernel implementations. We monitor network packets
to deal with this class of attacks, but this approach is not dis-
cussed further in this paper.

their source code. We therefore develop a high-level
specification language called Auditing Specification
Language (ASL) for specifying normal and abnormal
behaviors of processes as logical assertions on the se-
quences of system calls and system call argument val-
ues invoked by the process. ASL specifications are
compiled into optimized programs for eff icient detec-
tion of deviations from the specified behavior. When
discrepancies are detected at runtime, automatic defen-
sive actions, also described in ASL, to contain or isolate
the damage are initiated. A simple defense is to termi-
nate processes that deviate from specified behavior, but
this approach may not be desirable since it may alert
attackers that the attack has been detected. Instead, we
may want to entrap attackers into continuing their ac-
tivities so that we can observe and document their ac-
tions. This can be accomplished using isolation tech-
niques that enable the compromised process to continue
to run, while ensuring that the process cannot damage
the rest of the system. As a result, the attackers may
believe that they are succeeding, while in reality, they
are simply wasting their time and resources. Our defen-
sive reactions are also written in ASL, which enables a
close yet flexible coupling between detection and reac-
tion capabilities.

Our behavioral assertions are divided into two catego-
ries; similar to correctness properties of distributed
systems:

• local correctness assertions involving the actions
of a single process in isolation, and

• non-interference assertions that ensure that the
concurrent actions of multiple processes do not
interfere with one another

To ill ustrate the concept of local correctness, consider a
privileged program with a buffer overflow vulnerabilit y
(such as the fingerd program exploited by the Inter-
net worm) that allows an attacker to execute the data
input to the program. Since the input data can be con-
structed to be a machine language program, the vulner-
abilit y allows execution of arbitrary programs with the
authority of the attacked program, which in the case of
fingerd is root. A popular attack to cause execution of
a program using execve() to execute "/usr/bin," thus
providing an interactive shell with root privilege, al-
though other options are possible. The popular attack
can be prevented by the specification shown below,
which prevents the program from execve’ ing arbi-
trary programs, while still permitting it to execute the
program(s) that it may need to execute in order to pro-
vide its normal function

 execve(f) | f != “/usr/ucb/finger”

 -> exit(-1)

As explained in Section 4, the example reads as fol-
lows. Whenever fingerd attempts an execve()
system call , if the name of the file passed as the first
argument to execve() is not /usr/ucb/finger
then an exit(-1) is performed before the
execve() .

To ill ustrate the concept of non-interference, consider
an attack that exploits a race condition in a privileged
program. The typical race condition exists because in
an attempt to correctly manage file permissions in pro-
grams whose effective user and real user are different
(for example setuid to root programs), programmers
use two system calls, access() and open() when
opening files. Both access() and open() check
file permissions, but access() performs the check
with respect to real user, while open() checks with
respect to effective user. Therefore, to ensure that the
privileged program does not open a file for which the
real user does not have permission, the access(),
open() pair is locally suff icient. However, the se-
quence is insuff icient when interference is possible.
Another process can change the underlying file in be-
tween access() and open() , so that the real user
has permissions for the file checked by access() ,
but not for the file checked by open() . While this
appears complicated, from a practical point of view the
second process merely needs to execute two UNIX

commands, rm and link, to accomplish it. For
correct permission checking, we need to ensure that
access() and open() are executed without inter-
ference by other processes. This requires that the data
read by access () is not modified by another process
before the completion of the open() . We capture
the non-interference requirement using the notion of an
atomic sequence, which has the semantics that if any
other process issues system calls that modify the data in
the atomic sequence, we detect the modification as
violation of the specification. In the example shown
below, the notation “a..b ” stands for the occurrence
of an event a followed by event b.

 nonatomic (f) in

 (access(f,mode) .. open(f)) -> exit(-1)

2.1. System Overview

UNIX is a registered trademark licensed exclusively
through X/Open Company Ltd.

Our intrusion detection/prevention system consists of
an off line and a runtime component as depicted in Fig-
ures 1 and 2.

The off line system generates detection engines based

on the ASL behavioral specifications, and the runtime
system executes the generated engines. For each pro-
gram P to be defended, a specification M is developed
by a system security administrator who is famili ar with
intended behavior of the P (as can be determined from
its manual pages or other documentation) as well as
specific known vulnerabiliti es obtainable from sources
such as attack advisories. The ASL compiler translates
M into a C++ class definition, called C. C is then com-
piled by the C++ compiler and linked with a runtime
infrastructure to produce a detection engine. The run-
time infrastructure provides the mechanism for inter-
cepting system calls; delivering them to the detection
engine and providing functions the detection engine
uses to take responsive actions.

Figure 2 shows how the detection engines generated by
the off line component are used at runtime. When pro-
gram P executes as process Vj , it is monitored using
object Oj , which is an instantiation of C. For simplicity,
we assume j is the process ID. System calls made by
Vj are intercepted by the system call i nterceptor just
before, and just after the system call 's kernel level
functionality is executed. At each interception, the sys-
tem call i nformation is passed to Oj through method
invocation. The interception enables the system call
detection engine's infrastructure and Oj to detect se-

Figure 1 - Offline system for production of
detection engines

P
 Program with

possible vulner-
abil ities

Intended be-
havior of P

(manuals/other
documentation)

Attack adviso-
ries, maili ng

lists, hacker web
sites

M

(ASL specifica-
tion for moni-

toring P)

ASL Compiler

C
(C++ Class

definition of M)

C++ Compiler

System Call
Detection En-

gine

System Call De-
tection Engine
Infrastructure

quences of system calls requested by Vj which deviate
from expectation, and to modify system call execution
to prevent detected deviations from causing damage.

We implement the system call i nterceptor within the
operating system kernel. Other alternatives include in-
terception of system calls as they pass through the sys-
tem call li brary, libc, or using the system call trac-
ing and process control faciliti es of many UNIX vari-
ants. However, these approaches do not offer the same
level of security as our kernel-based approach, since

they can be easily bypassed. It is also doubtful that
either approach can be made as eff icient as the kernel
approach since the kernel approach alone allows inter-
ception and modification without process context
switching.

2.2. Salient Features of Our Approach
• Prevention. The preventive abilit y makes it fea-

sible to continue to allow the execution of pro-
grams that are known to contain exploitable vul-
nerabiliti es. Without preventive abiliti es, the
potential of damage is so great that use of vulner-
able programs must be prohibited until the pro-
gram is repaired. The same reasoning even ap-
plies to programs from untrusted sources. With-
out assurance of damage prevention, the danger
of damage from untrusted programs precludes
their execution, but with damage prevention,
even untrusted programs can be executed.

• Programmability enables a system administrator
to respond quickly to a newly discovered vulner-
abilit y, without having to wait for a vendor-
supplied patch.

• Automated response. Unlike previous approaches
that focussed mainly on intrusion detection, our
approach integrates detection and reaction within
a uniform framework, since both are contained in
the same specification. Automation reduces the

need for constant involvement of teams of human
experts, thus providing a more cost-effective so-
lution.

• Deception. Our approach allows the development
of reactions that both isolate the attacked process
to prevent damage, and deceive the attacker into
believing that the attack is successful. Deception
enables us to observe and document attacker be-
havior, either for apprehending attackers or to
gain a better understanding of the system vulner-
abiliti es.

• Dynamically tunable monitoring. Our technique
allows the granularity of monitoring to be
changed on the fly at runtime. We can use a low-
level of monitoring under normal conditions, but
can quickly increase the level of monitoring
when errors or suspicious activities are detected.

3. Related Work
Use of a specification-based approach for intrusion
detection was first proposed by Ko et al. [Ko94, Ko96].
Similar to their approach, we model the behavior of a
process in terms of the system calls and their argu-
ments. However, their approach analyzes logs of sys-
tem calls to detect deviations from specification, and so
are limited to post-attack detection. Our system inter-
cepts system calls as they execute, so in addition to
detecting deviations, we can enforce the specified be-
haviors at runtime to prevent damage. Runtime detec-
tion demands eff icient execution of specifications, so
our specification language design emphasizes eff i-
ciency. [Ko96] uses a specification language based on
context-free grammars augmented with state variables,
while our specification language is closer to regular
languages augmented with state variables. Use of
regular languages allows the compilation of specifica-
tions into an extended finite-state automaton (EFSA),
which is a finite-state machine that is augmented with
state variables. Such an EFSA permits eff icient runtime
checking, while using bounded resources (CPU or
memory) that can be determined a priori. In addition,
we believe that regular languages makes our specifica-
tions easier to understand and more concise. Although
regular grammars are less expressive than context-free
grammars, the difference is much less pronounced
when these grammars are augmented with state vari-
ables.

Forrest et al. [Forrest97, Kosoresow97] developed in-
trusion detection techniques inspired by immune sys-
tems in animals. They characterize “self” for a UNIX
process in terms of sequences of system calls that are
made by the process under normal conditions. Intrusion
is detected by monitoring for “ foreign” system call se-

System Call Detection
Engine

Vj
(Process running

program P)

System Call Interceptor

Oj

Figure 2 - Runtime system for execution of
detection engines

Operating System Kernel

quences. Their research results are largely comple-
mentary to ours, in that their main focus is on learning
normal behaviors of processes, whereas our focus is on
specifying and enforcing these behaviors eff iciently.

Goldberg et al. [Goldberg96] developed the Janus envi-
ronment for confining helper applications (such as
those launched by web-browsers) so that they are re-
stricted in their use of system calls. Like our tech-
niques, their techniques prevent unauthorized opera-
tions, such as attempts to modify a user’s .login file.
But their approach is more of a finer-grained access-
control mechanism rather than an intrusion detection or
prevention mechanism. The key distinction between the
two mechanisms is as follows. Access control mecha-
nisms restrict access rights for each process to the
minimum rights required for the process' s functionality,
while intrusion detection verify that a process uses its
access rights in the intended fashion. For instance, at-
tacks based on race conditions and unexpected interac-
tions among multiple processes manifest themselves as
unintended use of access rights. Consequently, our
specification language must be able to express se-
quencing relationships among multiple system calls
made by one or more processes, whereas Janus only
permits restriction of access to individual system calls
made by a single process.

Our approach to isolation has some similarities with the
approach used in the Deception Toolkit (DTK)
[Cohen98]. In particular, when an intrusion is detected,
our approach enables defenses that deceive the attacker
with the ill usion of success. The DTK employs a simi-
lar strategy. However, with DTK, deception depends
upon enticing the attacker to use phony versions of the
attacked service. The real service is no longer available
at the DTK server, which contrasts with our approach,
where standard server functionality is still present for
legitimate uses.

As compared to our earlier work in [Sekar98], this pa-
per presents a significantly improved version of ASL. It
also outlines an approach for compili ng the high-level
specifications into finite-state automata that perform
eff icient runtime monitoring of process behavior. Im-
provements to ASL described in this paper are as fol-
lows. We have developed a more elegant approach for
dealing with race conditions and other similar errors
that result due to interference in data access by multiple
processes. The pattern language for behavioral specifi-
cation has also been improved by separating different
classes of patterns. To further improve conciseness of
specifications, the notion of event abstractions has been
introduced. Another important improvement is the

introduction of an interface definition component to
ASL so as to decouple the ASL compiler from the spe-
cifics of the events monitored by the detection engine.
As a result, we can now write ASL specifications that
model system behaviors in terms of any observable
events, as opposed to being limited to observation of
system calls. Moreover, the ASL compiler need not be
changed to deal with these new event types — we sim-
ply need to link the code produced by the ASL com-
piler with appropriate runtime infrastructure that can
deliver these new events to the detection engine.

4. Auditing Specification Language (ASL)
We model the behavior of a process in terms of the
system calls the process makes. We treat these system
calls as events, which have the general form

),,(1 naae � , with e denoting the event name and

naa ,,1 � denoting the event arguments. Two events
are associated with each system call, namely the entry
to the system call and exit from the system call. We
distinguish system call entry events from system call
exit events by prefixing the $-symbol to exit events.

4.1. Interface Declarations
The interface between the detection engine and the
monitored processes supports the conveyance of events
from the process to the detection engine, and the con-
veyance of response functions from the detection en-
gine to the monitored process. The functionality of the
interfaces is realized via a set of interface functions that
deliver events to the detection engine and provide
mechanisms for invoking response actions. For gener-
ality, the functionality provided by the interface is
specified in ASL via interface declarations. These
declarations specify

• datatypes that can be exchanged over the inter-
face

• events delivered over the interface in terms of
their names, arguments and types

• external functions3 provided by the interface that
can be invoked by the detection code

We describe each of these components below.

4.1.1 ASL Data Types
Built-in types in ASL include bit, byte, short,
int, long, double, and string. All of the inte-
gral types excluding bit and byte are either signed
or unsigned. Their sizes coincide with the norm for the
specific host for which the ASL specification is being

3 We call the response function external functions to differen-
tiate them from internal functions that are built into ASL.

applied. The string type is a variable length byte array
prefixed with a 2-byte length field. ASL supports
multi-dimensional arrays of built-in types.

Foreign types, correspond to data that can be ex-
changed on one or more of the interfaces, but whose
representation is opaque to ASL. Foreign types are de-
signed with the intent of modeling data within the vir-
tual memory space of a monitored process. Depending
on the particular implementation approach used in the
detection engine, it may or may not be easy (or even
possible) to access such data directly. To address this
problem, we have developed class types that cannot be
directly accessed in ASL, but can only be accessed us-
ing member functions defined on the type. Class types
correspond to abstract data types. A sample class defi-
nition corresponding to a C-style string is:

class CString {
 string getVal() const;
 void setVal(string s);
}

A more complex definition suitable for manipulating
data associated the stat system call is given below.

class StatBuf {
 int getDev()const;
 int getIno()const;
 int getMode()const;

 �
 int getAtime()const;
 int getMtime()const;
 int getCtime()const;
}

Note that the return type of a member function could
itself be a foreign type. Whether a member function
changes the value of the object or not is given by the
presence or absence of the const keyword in the dec-
laration of the function. This fact is used by the ASL
typechecker to ensure that expressions in ASL do not
cause unexpected errors when evaluated at runtime.

Since ASL specifications may be compiled into detec-
tion engines that run within an operating system kernel,
safety and reliabilit y are especially important. Two
important language mechanisms in ASL that promote
safety and reliabilit y are strong typing and the absence
of pointer types.

4.1.2. External Functions
External functions are functions that are defined outside
of the detection engines, but can be accessed from the
detection engines. Semantically, they are no different
from member functions associated with foreign types.
In other words, member functions are simply external
functions that use a different syntax.

The primary purpose of external functions is to invoke
support functions needed by the detection engine or
reaction operations provided by the system call i nter-
ceptors. For instance, when an event for opening a file
is received by a detection engine, the detection engine
may need to resolve the symbolic links and references
to “ .” and “ ..” in the file name to obtain a canonical
name for file. The detection engine may use a support
function declared as follows to find the canonical file
name:

string realpath(CString s);

The detection engine may also need to check the file's
access permissions, which may be done using a sup-
port function declared as follows:

StatBuf stat(const Cstring s);

In ASL system call names either represent an event
(i.e., invocation of a system call by a monitored proc-
ess) or are a component of a reaction taken by the de-
tection engine (i.e., a statement in the a reaction pro-
gram). We use the same syntax for system calls in both
cases, since the context resolves any ambiguity.

4.2. Modules
The ASL specifications are structured as a collection of
parameterized modules, each of which consists of a
collection of state variables and rules. State informa-
tion can be retained across multiple rules within a mod-
ule via the state variables.

As an aid to programmabilit y, modules may be param-
eterized. Parameterization enables specification of ab-
stract behaviors that can be customized by providing
values for these parameters. A typical use of param-
eterization is to allow a general-purpose module to be
used in nearly identical situations that differ only in a
few minor details. The process of generating a com-
pilable module from a parameterized module is known
as module instantiation.

Another important role of modules is that they provide
a mechanism for dynamically altering the degree of
monitoring, possibly in response to suspicious events.
In particular, the action switch ModuleName can
be used to start monitoring with respect to a module
named ModuleName. It is also useful when a process
uses the execve() system call to overlay itself with a
new program. The switch action can then be used to
perform monitoring that is appropriate for the new pro-
gram. Finally, if a process is discovered to be compro-
mised, we can alter the behavior of future system calls
made by the process in such a fashion as to isolate the

process from the system. This may also be accom-
plished by switching to a new specification.

4.3. Event Patterns
ASL general event patterns are used to specify valid or
invalid behaviors. An atomic pattern is of the form

Caae n |),,(1
� , where e denotes an event and C is a

boolean-valued expression on naa ,,1
� . C may contain

standard arithmetic, comparison and logical operations.
C may also contain comparisons of the form x = expr
where x is new variable, with the semantics being that
of binding the value of expr to x. A primitive pattern is
obtained by combining atomic patterns with the dis-
junction operator ||, and possibly preceding the entire
expression with the complement operator ‘!’ . As an
example of a primitive pattern, consider:

!((open(f)|realpath(f)=/home/*/.plan)

 || (close(f))||(exit(f))

In this pattern, a shorthand notation /home/*/ is used
to refer to any directory that is immediately contained
within /home. The above primitive event pattern cap-
tures all system calls other than those for opening
“ .plan” files, closing files or terminating processes.
(For ill ustrative purposes this example is simpli fied, it
does not, for example, permit the opening of some nec-
essary files, such as dynamically loaded libraries.)

General event patterns are obtained by combining
primitive patterns using temporal operators. Such op-
erators enable us to capture sequencing or timing rela-
tionships among system calls:

• Sequential composition: 21; pp denotes the event

pattern 1p immediately followed by pattern 2p .

• Alternation: 21 || pp denotes the occurrence of

either 1p or 2p .

• Repetition: },{ 21 nnp denotes at least 1n repeti-

tions and at most 2n repetitions of p. }{ 1np and
}{, 2np are shorthand for },{ 1 ∞np and },0{ 2np

respectively. The notation ∗p is shorthand for

},0{ ∞p .

• Real-time constraints: p within],[21 tt denotes

the occurrence of events corresponding to pattern
p occurring over a time interval. The shorthand
for [0,t] is [t], whereas the shorthand for [t,∞] is
[t,].

• Atomicity: nonatomic d in p corresponds to an
occurrence of pattern p within which the data
item d is not accessed atomically.

For convenience, we define the operator “ ..” that can be
applied only to primitive patterns. 1p .. 2p is equivalent
to 2211);)||((!; pppp ∗ , i.e., 1p followed by 2p with
possibly other events occurring in between. The re-
striction that “ ..” be applied only to primitive patterns
is imposed since the operator has unintuitive semantics
on general event patterns.

We ill ustrate the use of temporal operators using sev-
eral simple examples below. Note that in general, we
wish to take reactive action when the behavior of a
monitored process fails to satisfy certain properties.
Hence, we typically develop patterns that are the nega-
tion of assertions describing normal behaviors.

• e1;!e2*;e1 asserts that e1 must occur twice
with no intervening e2. This corresponds to the
negation of the property that e1 must always be
followed by e2 before a second occurrence of
e1.

• (e1;!e2*) within [t,] captures viola-
tion of property that e1 is followed by e2
within time t

• e1;!e2*;e3 captures violation of property
where e2 must always occur between e1 and e3

• e{k} within [t] captures violation of
property that e occurs less than k times within
time t

4.4. Event Abstractions
An event abstraction is a convenience mechanism al-
lowing programmer definition of abstract events com-
prising arbitrary event patterns. Event abstractions
allow the programmer to name and treat complex event
patterns as if they were primitive events. To ill ustrate
the use of event abstractions, note that many UNIX
system calls have overlapping functionality. When we
write behavioral specifications, it is cumbersome to
write several variants of the specification based on the
exact system calls used by a particular program. For
convenience, we group similar system calls so that all
of the calls in one group can be viewed as implementa-
tions of a higher level abstract system call . For instance,
the creat() and open() system calls can both be
used to open new files, so we define the abstract event
writeOpen which captures this commonality. Then,
a single behavioral specification using writeOpen
can be used to monitor processes that open new files
using either creat() or open().

event writeOpen(path) =
 open(path, flags) |
 flags&(O_WRONLY|O_APPEND|O_TRUNC)||
 open(path, flags, mode) |
 flags&(O_WRONLY|O_APPEND|O_TRUNC)||
 creat(path, mode);

Code Example 1 - Definition of writeOpen()
Abstract Class

Different levels of abstraction may be desired in differ-
ent contexts, and hence there may be overlaps among
different user-defined abstract events. For instance, we
may have an abstract event that corresponds to
readOpen, and another that corresponds to any open,
regardless of whether it is for reading or writing. For
simplicity, we restrict the definition of abstract events
to be primitive event patterns.

4.5. Rules
A rule is of the form pat

�
 action, where pat is a pat-

tern of the form described above, and action is a se-
quence of responsive steps to be initiated when an
event matching the pattern occurs. Actions may be
empty, variable assignment, function invocation, or
switch. Function invocation causes the specified func-
tion to be executed by the runtime infrastructure, and
thus may be used by the detection engine for purposes
such as reading or writing data in the monitored proc-
ess, or executing arbitrary system calls in the monitored
process. The switch SpecName action enables
switching to the behavioral specification named Spec-
Name for monitoring.

5. Example Behavior Specifications
In this section we illustrate ASL using several example
specifications.

5.1. Finger Daemon
The following specification restricts the finger dae-
mon4 so that it can open only specific files for reading,
cannot open any file for writing, cannot execute any
file, and cannot initiate a connection to any host. If any
specified behavior is attempted, the system call associ-
ated with the attempt does not execute. Instead, an error
code is returned or the process terminated. For events
whose arguments are not of interest, it is not necessary
to specify the arguments. We make use of a support
function, inTree, which determines whether a file
resides within a directory or its descendents. The ex-

4 The specification pertains to the GNU finger program, and
in particular, the finger daemon running as the master server.
Note that GNU finger is implemented differently from the
BSD finger daemon, and does not need to execve the finger
program.

ample shows only a subset of those system calls that
must be disallowed for an adequate defense.

open(file, mode)|
 ((f = realpath(file)) &&
 ((f != “/etc/utmp”) &&
 (f != “/etc/passwd”) &&
 !inTree(f,“/usr/spool/finger”)) ||
 (mode != O_RDONLY))
-> fail(-1,EACCESS)
execve || connect || chmod || chown
 || chgrp || create || truncate
 || sendto || mkdir
-> exit(-1);

Code Example 2 - ASL Specification
for Monitoring fingerd

5.2. Race Conditions
We illustrate two approaches to protect against race
condition attacks. Our first approach monitors for an
access() followed by an open() and ensures that
both use identical conditions for checking permission.
Identical in this case means that the effective user at the
time of open() is the same as the real user at the time
of access().

Rprog1 defines two state variables and an event ab-
straction for use in the rules defined subsequently. The
event abstraction simplifies the structure of the rules. In
the first rule, the comparisons in acc1 event definition
bind the temporary variable ruid . Whenever the
monitored process performs an open() following an
access() on the same file, we temporarily set the
effective user ID of the monitored process to the value
of the real user ID before the open() executes. Be-
fore doing this, we save the current value of the effec-
tive user ID in the state variable savedEuid , and set a
flag changedEuid to record that we have temporar-
ily changed the effective user ID. When open() com-
pletes, we use the values stored in the state variables to
restore the original effective user ID.

int savedEuid;
bit changedEuid;

event acc1(name, ruid) =
 access(name, mode)|(ruid = getuid());

acc1(name, ruid)..open(name1, flags)|
 (name = name1)
-> changedEuid = 1;
 savedEuid = geteuid();
 setreuid(-1,ruid);

$open(f, fl)|(changedEuid = 1)
-> changedEuid = 0;
 setreuid(-1,changedEuid);

Code Example 3 - ASL Specification rProg1
for a Race Condition Vulnerability

The second defense against the race vulnerabilit y uses
the concept of atomic sequences. The race vulnerabil-
ity exists because two system calls access() and
open() must be used to accomplish what is essentially
a single function, that is, opening a file with respect to
real user’s permissions. We can execute a sequence of
system calls as if they were all a single system call by
placing them in an atomic sequence as follows:

nonatomic (f) in
 (access(f,md) .. writeOpen(f))
 -> fail(-1,EACCESS)

An atomic sequence is a sequence of system calls exe-
cuted by process P whose execution appears not to be
interleaved with the system calls of any other concur-
rently executing process. Atomic sequences are similar
to transactions in databases. Atomic sequences depend
on the definition of read and write sets for all system
calls. We also note that runtime checking of atomicity
requires coordination among the monitors for different
processes, since it depends not only on the system calls
performed by a process being monitored, but also the
calls made by other process.

5.3. Program from Untrusted Source
To ensure that a program from an untrusted source does
not damage the host executing it, we want to ensure
that the program can read only world readable files, can
write only within the /tmp directory, cannot execute
any programs, and cannot perform network operations.

open(file, mode) |
 [(!inTree(realpath(file), “/tmp”) &&
 (mode & (O_WRONLY|O_APPEND|
 O_CREAT | O_TRUNC)))||
 !accessible(realpath(file), mode,
 “nobody”))
-> fail(-1,EACCESS);

exec || connect || bind || chmod ||
 chown || chgrp || create ||
 truncate || sendto || mkdir
-> exit(-1);

Code Example 4 - ASL Specification sandbox
for Untrusted Programs

5.4. Using Specification for Isolation
When we detect an attack on process Vj , we can use the
switch action to switch to a specification that con-
tains ASL rules to isolate Vj . The isolation specifica-
tion contains rules that modify the behavior of system
calls made by Vj in such a way that Vj is prevented
from executing operations that can damage the surviv-
able system. For example, the isolation specification
can perform one or more of the following:

• return faked return value. When a system call
that can potentially damage the system is invoked
by the isolated process, we can prevent the sys-
tem call from being completed, and instead re-
turn a faked (but legitimate) return value.

• log the activity for later analysis.

• reduce limits on resources that the isolated proc-
ess can consume.

• restrict access to files. We can use the
setuid() system call to change the effective
user ID of the process to that of a user with very
few access rights and we can use the chroot()
system call to change the root directory of the
compromised process.

To ill ustrate this idea, consider the modification to the
previous specification for the finger daemon which
implements isolation. In particular, we introduce the
rule:

execve ->

 chroot(“/altroot”); setuid(-1);

 nice(100); switch ge nericIsolate;

This rule changes the root of the monitored process to a
decoy file system (called altroot), changes the user ID
to nobody, reduces the priority of the process, and fi-
nally switches to a new monitoring specification called

genericIsolate .

module genericIsolate
 connect
 -> sleep(60); fail(-1,ETIMEDOUT);
 bind
 -> sleep(5); fail(-1,EADDRINUSE);
 recv
 -> sleep(1);
 open
 -> sleep(1);
end

Code Example 5 – ASL Specification
for Damage Prevention

As shown, genericIsolate gives only a few of the
rules that would be needed for isolation. Since the iso-
lated process is operating in a decoy file system, file
system operations are allowed. However, network op-
erations are restricted. Most operations are slowed
down using sleep() , so that the CPU and resource
usage of the attacked host are reduced, but the attacker
will probably attribute the delay to normal host or net-
work congestion.

6. Compilation of ASL
The main task in translating an ASL specification into a
C++ class definition is to translate the patterns into an
extended finite-state automaton (EFSA). An EFSA is

similar to a finite-state automaton, with the following
differences:

• In addition to the control state of an FSA, an
EFSA can make use of a fixed set of state vari-
ables.

• The EFSA makes transitions based on events,
event arguments and conditions on event argu-
ments and state variables. The transitions may as-
sign new values to state variables.

An EFSA may be deterministic (DEFSA) or nondeter-
ministic (NEFSA). For the sake of eff iciency, we al-
ways prefer to generate a DEFSA rather than a NEFSA.
However, this is not always possible as conversion of
NEFSA into a DEFSA can cause unacceptable explo-
sion in space requirements. For traditional FSA, every
nondeterministic automaton can be converted into an
equivalent deterministic automaton with at most an
exponential increase in the number of (control) states.
For performance critical applications (e.g., lexical
analysis phase of a compiler), this increase in state
space is quite acceptable, especially because the worst
case behavior is unusual. For EFSA, the explosion in
size is exponential in the product of the number of
control states and the range of values that can be as-
sumed by each of the auxili ary state variables. For in-
stance, a deterministic EFSA that is equivalent to a
nondeterministic EFSA with one integer (32-bit) state
variable and N control states can have

322*2N states!
This problem leaves us with two choices:

• restrict the class of ASL patterns so that they can
be compiled into DEFSA, or

• do not convert an NEFSA into an EFSA, and
simulate the NEFSA at runtime.

Note that at runtime, the transitions of an EFSA are
represented in code, whereas its current state (which
includes the control state and the state variables) is
stored in a data structure. Since we plan to combine all
patterns in one ASL specification into a single EFSA,
there is only one instance of the transition relation at
runtime. To support nondeterminism, we permit multi-
ple instances of the dynamic state of the EFSA. These
multiple instances capture all of the states the NEFSA
could have reached after examining its input up to this
point.

If an EFSA needs to make a two-way nondeterministic
transition on an event e, we perform a “fork” operation
on the EFSA, i.e., replicate its current state. The replica
follows one of the non-deterministic choices, while the
parent follows the other choice. This approach can lead
to an unbounded increase in the number of instances of

EFSA, but unbounded growth should happen only
when certain unusually repetitive sequences of system
calls are observed at runtime, and hence is not a serious
issue in practice. We are currently working on tech-
niques that can avoid unbounded growth by restricting
the class of patterns permitted in ASL.

The starting points for our algorithm for generating
EFSA from ASL patterns are the seminal papers by
Brzozowski [Brzozowski64] and Berry and Sethi
[Berry86]. However, these papers address regular ex-
pressions and classical FSA, whereas we must address
conditions on event arguments and state variables that
can be complex data structures. Our earlier work on
first-order term-matching [Sekar95] provides the start-
ing point for addressing this aspect. By combining and
extending these two techniques, we developed an algo-
rithm for generating EFSA from a restricted class of
ASL specifications. A detailed description of this algo-
rithm is beyond the scope of this paper, so we only
provide a description of how we map an NEFSA into
C++ code.

At code generation time, the EFSA generated from
ASL specifications is turned into a C++ class. Specifi-
cally, one class is generated from each ASL specifica-
tion. This class has one member function for each
event, and these member functions have the same num-
ber and types of arguments as the event. When the
runtime infrastructure intercepts an event, it delivers it
to the appropriate detection engine by invoking the
corresponding member. For instance, the runtime infra-
structure invokes the open_entry method when a
monitored program enters an open system call , and the
open_exit method when the process is about to exit
this system call .

The transitions in the EFSA are translated into code as
follows. We maintain a list of active EFSA instances at
runtime. When an event is delivered, we go through
the list of EFSA instances and for each of them, make a
transition based on its current state and the newly de-
livered event. If multiple transitions exist out of the
current EFSA state for this event, then copies of the
EFSA are made (using the fork operation mentioned
earlier), so that there is one EFSA to make each of
these transitions. If there is no transition for an EFSA
instance, then it is “kill ed” and any resources used for
the instance are released.

7. Conclusions and Future Work
In this paper we presented an approach for intrusion
detection that is based on specifying the valid behaviors
of processes in terms of system call sequences together
with constraints on the argument values that the proc-

esses can make. We described our specification lan-
guage and ill ustrated it with several examples. Based
on these examples, we are optimistic that concise and
clear specifications of security-related behaviors can be
developed with relative ease in the ASL language.
These examples also indicate that the approach can
successfully prevent (or at least quickly detect) attacks.
Additional preliminary evidence in this context was
presented in [Sekar98] where we examined the attack
advisories from CERTover the past five years and
concluded that most of them can be detected by our
approach.

We are continuing to refine and experiment with our
specification language. We are also developing algo-
rithms for compili ng ASL specifications into determi-
nistic EFSA, rather than non-deterministic EFSA. In
parallel, we are also in the process of developing me-
dium to large-scale experiments designed to assess the
performance impact of our online monitoring approach.
Our preliminary indications are that indeed we can do
such monitoring using our current, kernel-level inter-
ception approach easily, especially since our EFSA
enable eff icient checking of specification assertions at
runtime.

References
[Anderson95] D. Anderson, T. Lunt, H. Javitz, A. Ta-
maru, and A. Valdes, Next-generation Intrusion De-
tection Expert System (NIDES): A Summary, SRI-CSL-
95-07, SRI International, 1995.

[Aslam96] T. Aslam, I. Krsul and E. Spafford, A Tax-
onomy of Security Faults, National Computer Security
Conference, 1996.

[Berry86] G. Berry and R. Sethi, From Regular Expres-
sions to Deterministic Automata, Theoretical Com-
puter Science 48 pp. 117-126, 1986.

[Bishop96] M. Bishop and M. Dilger , Checking for
Race Conditions in File Access. Computing Systems
9(2), pp. 131-152, 1996.

[Brzozowski64] J.A. Brzozowski, Derivatives of
Regular Expressions, Journal of ACM Vol. 11, No.4,
pp. 481-494, 1964.

[Cai98] Y. Cai. A Specification-Based Approach for
Intrusion Detection. M.S. Thesis, Department of Com-
puter Science, Iowa State University, Dec 1998.

[CERT98] CERT Coordination Center Advisories
1988--1998,
http://www.cert.org/advisories/index.html.

[Cheswick92] W.R. Cheswick, An evening with ber-
ferd, in which a cracker is lured, endured and studied,
Winter USENIX Conference, 1992.

[Cohen98] Fred Cohen and Associates, The Deception
Toolkit Home Page, http://www.all .net/dtk/dtk.html.

[Connet72] J. Connet et al., Software Defenses in Real-
Time Control Systems, IEEE Fault-Tolerant Comp.
Sys., 1972.

[Denning87] D. Denning, An Intrusion Detection
Model, IEEE Trans. on Software Engineering, Feb
1987.

[Forrest97] S. Forrest, S. Hofmeyr and A. Somayaji ,
Computer Immunology, Comm. of ACM 40(10), 1997.

[Fox90] K. Fox, R. Henning, J. Reed and R. Simonian,
A Neural Network Approach Towards Intrusion Detec-
tion, National Computer Security Conference, 1990.

[Goldberg96] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer, A Secure Environment for Untrusted Helper
Applications, USENIX Security Symposium, 1996.

[Hlady95] M. Hlady, R. Kovacevic, J. J. Li. et al., An
Approach to Automatic Detection of Software Failures,
Proc. IEEE 6th International Symposium on Software
Reliability Engineering, 1995.

 [I lgun93] K. Ilgun, A real-time intrusion detection
system for UNIX, IEEE Symp. on Security and Privacy,
1993.

[Ko94] C. Ko, G. Fink and K. Levitt, Automated de-
tection of vulnerabiliti es in privileged programs by
execution monitoring, Computer Security Application
Conference, 1994.

[Ko96] C. Ko, Execution Monitoring of Security-
Critical Programs in a Distributed System: A Specifi-
cation-Based Approach, Ph.D. Thesis, Computer Sci-
ence, University of California at Davis, 1996.

[Kosoresow97] A. Kosoresow and S. Hofmeyr, Intru-
sion detection via system call traces, IEEE Software
'97.

[Kumar94] S. Kumar and E. Spafford, A Pattern-
Matching Model for Intrusion Detection, National
Computer Security Conference, 1994.

[Landwehr94] C. Landwehr, A. Bull , J. McDermott and
W. Choi, A Taxonomy of Computer Program Security
Flaws, ACM Computing Surveys 26(3), 1994.

[Lunt92] T. Lunt et al., A Real-Time Intrusion Detec-
tion Expert System (IDES) - Final Report, SRI-CSL-92-
05, SRI International, 1992.

[Lunt93] T. Lunt, A survey of Intrusion Detection
Techniques, Computers and Security, 12(4), June 1993.

[Mukherjee94] B. Mukherjee, L. Todd Heberlein, Karl
N. Levitt. Network Intrusion Detection, IEEE Network,
pp.26-41, May/June 1994.

[Porras92] P. Porras and R. Kemmerer, Penetration
State Transition Analysis - A Rule Based Intrusion De-
tection Approach, Computer Security Applications
Conference, 1992.

[Sekar95] R. Sekar, I.V. Ramakrishnan and R. Ramesh,
Adaptive Pattern Matching, SIAM Journal of Comput-
ing, 1995.

[Sekar98] R. Sekar, Y. Cai and M. Segal, A Specifica-
tion-Based approach for Building Survivable Systems,
21st National Information Systems Security Confer-
ence.

[Spafford91] E. H. Spafford. The Internet Worm Inci-
dent, Technical Report CSD-TR-993, Purdue Univer-
sity, West Lafayette, IN, September 19, 1991.

[Vankamamidi98] R. Vankamamidi. ASL: A specifica-
tion language for intrusion detection and network
monitoring. M.S. Thesis, Department of Computer Sci-
ence, Iowa State University, Dec 1998.

[Yang98] G. Yang. A Real-time Packet Filtering Mod-
ule for Network Intrusion Detection System, M.S. The-
sis, Department of Computer Science, Iowa State Uni-
versity, Jul 1998.

