
Practical Techniques for Regeneration and Immunization of COTS Applications∗

Lixin Li Mark R. Cornwell E. Hultman James E. Just
Global InfoTek, Inc., Reston, VA, USA.

R. Sekar
Stony Brook University, NY, USA.

Abstract

In this paper, we describe RAMSES, a system for immu-
nizing COTS applications from exploitation of common se-
curity vulnerabilities. RAMSES defends applications from
many classes of attacks prevalent today. These attacks ei-
ther have no effect on a RAMSES-protected application,
or at worst, they cause an application crash. For attacks
that do cause a crash, RAMSES learns from attack in-
stances to generate improved responses that can then be de-
ployed to protect application integrity as well as availabil-
ity. Unlike many previous efforts in this area that required
heavy-weight taint analysis, RAMSES achieves these ben-
efits using light-weight techniques that typically introduce
less than 5% overhead. Our experiments demonstrate that
RAMSES is very effective for protecting a range of appli-
cations on the Microsoft Windows operating system. Thus,
our techniques provide some of the benefits typically associ-
ated with vendor patches, while mitigating their drawback
of timeliness.

1 Introduction
Experience has shown that most deployed applications con-
tain a significant number of security vulnerabilities that con-
tinue to surface over their lifetime. Zero-day attacks that ex-
ploit previously undisclosed vulnerabilities are a source of
serious concern for systems that are exposed to untrustwor-
thy data, such as server systems. Even for those vulnerabili-
ties that are first discovered by “good” folks, patch develop-
ment to correct these vulnerabilities typically takes a long
time, during which systems remain vulnerable. This win-
dow of vulnerability is further extended by the time needed
for compatibility testing of patches before deployment.

The above factors have prompted end-users and system
administrators to look for alternative defensive techniques
that do not require active vendor cooperation. Unfortu-
nately, the suite of defensive techniques available to a sys-
tem administrator is quite limited. Some of these defenses
require source-code access, which makes them largely use-
less in the context of proprietary software that dominates
the Windows market. Other techniques introduce over-
heads that are too high to be acceptable for production sys-
tems. Finally, even when low overhead techniques are avail-

∗This work was funded in part by Defense Advanced Research Project
Agency (DARPA) under contract N00178-07-C-2005. Sekar’s work was
also supported by ONR grant N000140710928 and NSF grants CNS-
0627687 and CNS-0831298. The views and conclusions contained in this
document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of DARPA, the
Naval Surface Weapons Center, ONR, NSF, or the U.S. Government.

able, they can often convert an attack on integrity into one
on availability, which is not an acceptable alternative for
mission-critical systems.

An ideal solution to this problem would be one that (a)
defends against most common types of attacks prevalent to-
day, (b) protects application integrity without compromis-
ing its availability, (c) introduces low performance over-
heads and (d) works with COTS applications that are avail-
able only in binary code form. In this paper, we summa-
rize our RAMSES (Regeneration And iMmunity SErviceS)
system that is targeted at this ideal. RAMSES is inspired
by the biological immune system in the sense that its ini-
tial responses may cause significant “collateral damage,”
analogous to the inflammatory response of the biological
immune system. However, over time, those responses that
cause too much collateral damage (e.g., application crash)
will be replaced with more targeted responses that thwart
attacks without causing significant harm to the host appli-
cation. This learning ability mimics the (biological) ac-
quired immune system, which is very effective in wiping
out a pathogen without damaging the host organism. The
key benefits of RAMSES are:
• Protection from a large fraction of the most popular at-

tacks, including buffer overflows, format-string attacks,
SQL injection, command injection, cross-site scripting,
and so on.
• Immunizing systems against zero-day attacks. By “im-

mune,” we mean that attacks impact neither the integrity
nor the availability of protected applications.
• Protection against attack variants. Our vulnerability-

based approach to signature generation and application
level filtering protect against variants of attacks.
• Protection from brute-force attacks. Some attacks may

require guessing a random value or a key (or a pass-
word), e.g., guessing attacks on address-space random-
ization, and hence may require multiple attempts. By
developing and deploying a filter, all but the first few at-
tempts are blocked, thereby providing a good degree of
protection from such attacks.

2 Related Work
The works most closely related to RAMSES are those based
on taint analysis, and works on automated generation of
(attack-blocking) signatures.

Taint-Tracking. A number of techniques have been devel-
oped that rely on fine-grained taint-tracking1 for detecting

1These techniques indicate whether for each byte of program memory
whether its content was derived from an untrusted source, i.e., it contains



memory corruption attacks [7] and script injection attacks
[9, 15].

Although taint-tracking is very effective and highly ac-
curate for detecting attacks, its use on production systems is
seriously hampered by several factors. First, taint-tracking
requires intrusive instrumentation, wherein every program
statement is transformed to introduce additional statements
that propagate taint. System administrators, concerned
about the impact of such instrumentation on the stability
and robustness of the target application, may be reluctant to
deploy them on production systems. Second, taint-tracking
techniques, especially those operating on C [15] or binary
code [10, 11], have high overheads, often slowing down
programs by a factor of two or more. Finally, taint-tracking
techniques are generally language-specific. For instance,
none of the previous techniques have been applicable to
both Java and C.

In the RAMSES project, we overcame these drawbacks
of traditional taint-tracking techniques with taint inference,
a non-intrusive approach that can be easily applied to COTS
applications without access to source-code. Our experi-
ments indicate that it introduces low overheads of under 5%.
In addition, our technique is truly language-independent,
having been applied to programs written in Java, C and PHP.

Automated Signature Generation. The last few years
have witnessed considerable interest in automated re-
sponses to attacks. The most popular approach in this con-
text has been the development of automated techniques for
filtering malicious inputs, typically called automated sig-
nature generation or filter-generation. Initially, this line
of research was targeted at network worms, and relied on
“content-based signatures,” where the signature captured
characteristics of the attack payload. The problem with
such signatures is that they can often be evaded by polymor-
phic attacks. To address this problem, several researchers
have focused on generating vulnerability-oriented signa-
tures [6, 3, 1, 4, 14]. However, practical adoption of these
techniques is hampered by one or more of the following
drawbacks:
• Reliance on heavy-weight analyses. Many of these tech-

niques rely on very heavy weight analyses, including
taint analysis [3, 1] and symbolic execution [1, 2]. Other
techniques [14, 4] rely on generating many attack vari-
ants and sending these as inputs to the protected applica-
tion.
• Requirement for accurate replay of attacks. Due to their

nature (use of heavy-weight analysis or the need for
generating attack variants), online signature generation
becomes impossible. Instead, off-line techniques are
needed, where all inputs are first stored. When an attack
is detected, recent inputs (and possibly their variants)
need to be replayed (possibly on an instrumented ver-

data that may be controlled by an attacker.

Figure 1. Protected Application.

sion of the application). Accurate replay is a challeng-
ing problem for many applications since their response
to any given input is a function of their state. To ensure
accurate replay in general, the exact state of the appli-
cation at the time of input processing needs to be repro-
duced — this in turn may require generation of check-
points of some sort, which will again increase overheads,
as it needs to be taken for each input.2

• Limitation to narrow class of attacks. Previous tech-
niques [6, 3, 1, 2, 14, 4] have been developed in the con-
text of memory corruption attacks, and do not address
other attack classes such as SQL injection.

In contrast, RAMSES project is aimed at developing fil-
ters that are applicable to a wide range of common exploits.
These filters are generated online, without any need for at-
tack replay or heavy-weight instrumentation/analysis.

3 Approach Overview
RAMSES is focused on defense against remote attacks in-
tended to gain control of a target Windows-based host. The
selection of Windows hosts forces us to address the issues
of operating effectively without access to source code of ei-
ther the OS or applications.

Figure 1 illustrates the context of RAMSES protection.
The attack target is a program that mediates access to pro-
tected services (e.g., SQL server), subsystems (command
interpreters), important resources (e.g., files or devices), as
well as internal data structures (stack, heap, etc.). We as-
sume that the goal of an attacker is to gain unintended ac-
cess to protected subsystems/resources. Since a remote at-
tacker has no direct access to protected resources, he can
gain unintended access only indirectly: by crafting a ma-
licious incoming request that subverts the vulnerable pro-
gram into performing resource operations intended by the
attacker. Thus, a successful attack relies on (a) the ability of
an attacker to exert control over a sensitive operation, and

2If working exploits were available, then replay of attacks becomes
easy. Unfortunately, in production settings, they are not available in many
cases, e.g., zero-day attacks.



(b) whether this degree of control is intended by the pro-
grammer (or the administrator) of the protected application.
Below, we provide an overview of our taint-inference tech-
nique (in Section 3.1) that addresses (a), and a policy-based
output filtering technique (in Section 3.2) that addresses (b).
In Section 3.3, we then summarize our input filtering tech-
nique, which forms the basis of immunizing applications.

3.1 Taint Inference
Taint-tracking can be used to answer question (a). It in-
volves marking untrusted inputs as “tainted,” and as the pro-
gram uses this data, copying the taint labels together with
data values. However, as mentioned earlier, taint-tracking
has several drawbacks. We have therefore developed the
technique of taint-inference which operates by observing
inputs and outputs, but without making any changes to the
protected application. These observations could be made
on the network in most cases, but our implementation relies
primarily on intercepting calls to standard libraries.

If input undergoes arbitrary transformations in the pro-
gram, then it becomes difficult to infer the relationship be-
tween inputs and outputs. However, in practice, many ap-
plications do not make arbitrary transformations, but rely
on certain standard transformations, e.g., base64 or URL
encoding, gzip compression, etc. If knowledge about these
standard transformations were incorporated into the taint
inference algorithm, then it becomes feasible to infer data
propagation by comparing inputs and outputs. In our im-
plementation, we intercept inputs after inputs are decoded,
and outputs before they are encoded, and hence avoid prob-
lems created by these standard transformations.

To understand taint inference in a bit more detail, con-
sider web applications. Incoming requests to web appli-
cations use the HTTP protocol, with standardized ways of
encoding parameter names and values. Web applications
typically retrieve these parameter values, apply simple sani-
tization or normalization operations on them, and finally use
their values within an outgoing request sent to a back-end
system. As a result, data flows can be identified by compar-
ing input parameter values against (all possible) substrings
of outgoing requests.

One of the key features of our taint inference algorithm
is that it relies on approximate (rather than exact) substring
match so as to be able to identify taint in the presence of
simple sanitization or normalization operations. Such oper-
ations are often used by web applications, e.g., addition of
quote characters, replacement of spaces with underscores,
removal of certain characters, etc.

To illustrate taint inference, consider a command
injection vulnerability in version 1.4.0 of Squirrel-
Mail (a popular web application for email access)
with GPG plug-in version 1.1. The vulnerable
URL is /squirrelmail-1.4.0/plugins/gpg/

gpg encrypt.php. In the exploit we studied, there were

about dozen parameters, all of which were parsed and
extracted. The one that is of interest is the “send to”
parameter, which had the value

alice, bob; touch /tmp/GotYou

Based on these input values, SquirrelMail generated the fol-
lowing shell-command:

echo ’· · ·’ | /usr/bin/gpg · · · -r

alice@ -r bob;touch /tmp/GotYou@ 2>&1

Some parts of the command that are irrelevant for the at-
tack have been replaced with “· · ·”. In addition, charac-
ters copied from the send to parameter have been high-
lighted in italics. Note that the input text has gone through
a few changes before use: in particular, the recipient list
has been separated into its component names, and each of
these names prefixed by a “-r” and postfixed with an “@”
symbol. As a result, an exact substring matching algorithm
will not identify that the send to parameter appears in the
shell-command, but an approximate substring matching al-
gorithm can detect this with a high degree of confidence.

The goal of this paper is to provide a high level overview
of the RAMSES system. Full details about the taint infer-
ence algorithm can be found in Reference [12], which also
provides a full discussion of attack detection on web appli-
cations.

3.2 Output Filters
Taint inference enables us to determine whether an output
is controlled by an attacker. Next, we need to determine
whether this control is intended by the programmer and/or
the administrator of the protected application. This is typ-
ically done using security policies. The technique of com-
bining taint with security policies is well-established now,
having been the subject of numerous papers [7, 9, 13, 15].

An important insight contained in many of these papers
is that string-based injection attacks, including SQL injec-
tion, command injection and format-string attacks, involve
alterations to the syntactic (or lexical) structure of output
requests (see Figure 1) that result due to tainted data. For
instance, in the SquirrelMail example described earlier, the
attack changes the structure of the shell command: by in-
troducing semicolons, additional shell commands are being
introduced into the output request. The following policy
will block this attack: tainted data must not span multiple
words in the output. The popularity of taint-based defenses
stems partly from the simplicity and generality of such poli-
cies. We have shown [12] that just 3 policies are enough to
detect shell command injection, PHP command injection,
SQL injection, and (reflected) cross-site scripting.

RAMSES output filters operate by blocking policy-
violating outputs from being sent on the output interface
shown in Figure 1. Specifically, note that output requests



are usually made by calling a function. Our filters intercept
this call, and instead of allowing the call to go through, an
error code is returned to the application. For string injec-
tion attacks, e.g., SQL injection, the application is typically
able to process the error code and recover from the error. In
those cases, output filtering provides sufficient protection.
But there can be instances where recovery fails. For in-
stance, with memory corruption attacks, process memory is
already corrupted by the time of attack detection, and hence
the best course of action is to terminate the program. Re-
covery may also fail in the case of attacks such as SQL in-
jection if the application was not written carefully, and it
ignored (some) error returns. In those cases, it is necessary
to generate input filters (see Section 3.3) rather than relying
on output filters.

In RAMSES project, we showed that taint-induced al-
teration of output structure was characteristic of not only
string-based injection attacks, but also memory corruption
attacks. In particular, when data is copied into a buffer, we
expect that the copied data will be confined to a single array
or structure, but a successful attack violates this condition.
This observation enabled us to unify the detection of mem-
ory corruption and string injection attacks, and led to the
development of a uniform technique for defending against
both. In particular, we were able to unify the development
of input filters for both types of attacks.

3.3 Input Filters
Automated signature generation techniques are aimed at de-
tecting inputs that lead to attacks. One of the main chal-
lenges in signature generation is that of keeping false pos-
itives very low: benign input should not be filtered out, or
else the signature generation system can inflict a DoS at-
tack on the protected system. Another challenge relates to
the generality of signatures. Ideally, a signature generated
on the basis of an exploit would not only stop that exploit,
but also its variants — ideally, all variants that exploit the
same underlying vulnerability should be blocked by the sig-
nature.

We have developed a novel approach for producing gen-
eralized input filters that take advantage of taint-inference
and the policies that are used to detect attacks at the out-
put3.

Specifically, we view the protected application as a func-
tion that maps input requests (and parameters) to corre-
sponding outgoing requests and their parameters. Our ap-
proach is based on “learning” this function. (This approach
works under the same assumption as taint inference: the
protected application does not make arbitrary transforma-

3For memory corruption attacks, attack detection relies on the address
space randomization (ASR): in the presence of ASR, a memory corruption
exploit would, with a high probability, cause a crash. A post-crash analysis
of process memory is used to confirm that a memory corruption was the
most likely reason for the crash.

tions on the input, but primarily relies on copying, with
small changes.) There are two steps involved in this pro-
cess.

• Given a particular outgoing request O, derive the func-
tion f : I −→ O that maps the incoming request I to the
corresponding output request O.
• Given an input I , identify the set O of output operations

that could potentially result due to this input. Since all
our security policies are based on tainted outputs, we
limit ourselves to the subset of output operations that
have some tainted parts.

Given that many of the applications of interest operate on
strings, one of the obvious choices for the first task are
finite-state string transducers (FSTs), which are similar to
finite-state machines, except that they distinguish between
input and output symbols. While FSTs are a reasonable
starting point, we found them to be quite fragile for our pur-
poses, since the languages we deal with at the input and
output points are quite complex. We observed that a more
robust learning algorithm could be developed by viewing
the transformation as operating on parse trees of outputs,
rather than a (flat) string representation. We then leveraged
the approximate string-matching algorithm to compute the
transformations that take place on input parameters before
they are used in an outgoing request. In particular, this al-
gorithm can be used to identify if a subtree of the output
is derived from a specific input parameter, and to approxi-
mate the sanitization operations that may have been applied
to this input.

In the next stage, we collect (I, O) pairs across a large
number of training runs. We then use an algorithm to corre-
late input parameter values with outputs observed in these
training runs. The purpose of this algorithm is to discover
which input parameters play a role in determining the out-
put operations invoked by the protected application. This
is basically a classification problem. In particular, we con-
struct a decision tree that has branches based on input pa-
rameter values, and each leaf identifies the set of output op-
erations that may be made by the application when an input
satisfying the conditions on the path from the root to this
leaf is received by it. Note that in order for the classifier
to converge, it will need to apply certain generalizations on
the outputs. In our implementation, we simply compute the
maximal common prefix of the set of outputs contained in
any leaf of the decision tree. This means that for a given in-
put, we may be able to predict only some parts of the output,
while the rest of the parts are unknown. Hopefully, those
parts of O that are necessary for checking output policies
would be defined.

Now, the decision tree is used as follows to construct
input filters. Given an input, the decision tree is used to
predict the output. Attack detection policies are applied on
this predicted output, and if there is a match, then the input



Application Langu- Size Environment Attacks Comments Detec- False
age (lines) tion Positives

phpBB 2.0.5 PHP/C 34K IIS, Apache SQL injection CAN-2003-0486 Yes None
SquirrelMail 1.4.0 PHP/C 42K IIS, Apache Shell command injection CAN-2003-0990 Yes None
SquirrelMail 1.2.10 PHP/C 35K IIS, Apache XSS CAN-2002-1341 Yes None
PHP/XMLRPC PHP/C 2K IIS, Apache PHP command injection CAN-2005-1921 Yes None
AMNESIA [5] Java/C 30K Apache/Tomcat SQL injection 21K attacks, 100% 0%
(5 apps) (total) 3.8K legitimate
WebGoat [8] Java Tomcat HTTP response splitting Yes None

Shell command injection Yes None

Figure 2. Applications Used in Experimental Evaluation.

can be blocked. To avoid false positives, an input filter is
deployed only if it is verified not to match a set of previously
collected benign inputs (i.e., inputs that do not lead to an
attack being detected).

4 Preliminary Results
The RAMSES system has been implemented on Windows,
and has been evaluated using a number of applications.
Some components of RAMSES (e.g., taint inference and
output filters) have been more thoroughly evaluated than
other components (e.g., input filters), and we summarize
these results here.

4.1 Taint Inference
We have shown that taint inference works very well on web
applications. For a variety of web applications written in
Java, PHP and C, we showed that taint inference is able to
infer taint propagation accurately enough to block all at-
tacks. In addition, we showed that its performance is very
good – in particular, it introduces overheads of less than 5%
across the applications we studied.

Taint inference may fail to detect dependences between
inputs and outputs for applications that perform signifi-
cant transformations on inputs. It should be noted that the
most common transformations arise due to various encod-
ings used in HTTP, but these are already handled by our ap-
proach. Other than these, the most common transformations
performed by web applications result in small changes to
the input, and are hence detected by our approximate match-
ing technique. However, if a web application makes exten-
sive use of application-specific encodings or input-to-output
transformations, taint inference may lead to significant false
negatives and is hence inappropriate for such applications.

4.2 Output Filters
Output filters were evaluated using the applications shown
in Figure 2. Of these, phpBB and SquirrelMail are very
popular PHP applications, while PHP/XMLRPC is a pop-
ular library. AMNESIA dataset consists of many medium-
sized realistic Java applications that have been used by pre-
vious works on SQL injection detection. This figure shows

that RAMSES was very effective in producing accurate fil-
ters, using just a handful of policies. Additional details
about these applications can be found in Reference [12].

In addition to the above applications, RAMSES output
filters were evaluated by an external Red Team. This Red
Team developed their own custom web application in PHP
that was seeded with vulnerabilities by them. RAMSES
was able to block all attacks on this application with the ex-
ception of one. This attack involved persistent data: i.e.,
attacker provided data was first stored into the database
and subsequently retrieved, and SQL injection attack re-
sulted when the retrieved data was used in constructing an-
other SQL query. This is a known limitation of most ex-
isting taint-based techniques, including RAMSES. (It can
be addressed by extending taint into persistent storage, i.e.,
recording the taint bits in the database along with the origi-
nal data.)

4.3 Input Filters
Input filters have been evaluated primarily in the context
of memory corruption attacks. Our evaluation considered
a synthetic application (MEVS) that contained a variety of
memory corruption vulnerabilities, as well as a few real-
world vulnerabilities. The results are summarized in Fig-
ure 3.

As is evident from the table, our technique is quite effec-
tive in generating successful signatures for memory corrup-
tion exploits. This stems partly from our use of approximate
string matching for taint inference. This enables us to deal
with one of the common problems that arise in taint-based
signature generation, namely, corruption of data that may
happen between a buffer overflow and control-flow hijack.
(Recall that we use ASR for detecting memory corruption
attacks. As a result, attacks are not detected until the time
of control-flow hijack, which typically causes a memory ac-
cess violation.) For instance, if there is a buffer overflow on
stack-allocated array, it is possible that local variables may
be stored after the end of the array. Between the array over-
flow and the time the function returns, these local variables
may be updated. As a result, originally tainted data is over-
written with untainted data, thus making it difficult to trace
the data back to an attack input. These “gaps” in tainted



Vulnerability Attack Payload Attack Buffer Signature
Type Target Type Description Identified? Generated?
Synthetic MEVS Working exploit Stack buffer overflow Yes Yes

to overwrite return address
Synthetic MEVS DoS Stack overflow Yes Yes

to overwrite return address
Synthetic MEVS Working exploit Stack overflow Yes Yes
Synthetic IIS ISAPI Working exploit Stack overflow Yes Yes

extension DLL with payload encoded to overwrite SEH
Synthetic MEVS DoS with original Stack overflow with No No

input compressed decompressed input
to overwrite return address

Synthetic MEVS Working exploit Heap Overflow Freelist[00] to Yes Yes
trigger double pointer unlink

Synthetic MEVS DoS Heap Overflow [1 - 127] to Yes Yes
trigger double pointer unlink

Synthetic MEVS Working exploit Heap Overflow Lookaside list Yes Yes
to trigger double pointer unlink

Synthetic MEVS DoS Heap Overflow triggering blocks Yes Yes
coalesce and double pointer unlink

Synthetic MEVS DoS Heap overflow with original No No
input reversed before overflow

Real world IIS5 Working exploit Overflow stack buffer in Yes Yes
(CVE-2004-1134) w3who.dll to overwrite SEH
Real world FreeFTPd 1.08 Working exploit Overflow stack, overwrite SEH Yes Yes
(OSVDB-20909)

Figure 3. Generation of Input Filters.

data are handled naturally by the use of approximate string
matching. As a result, successful signatures are generated in
spite of gaps. This contrasts with previous techniques such
as [6] that rely on exact string matching, and hence may fail
to generate signatures in the presence of such gaps.

In addition, the input filter generation algorithm was
tested on an SQL injection attack on phpBB, and it success-
fully generated an accurate signature. The implementation
of input filter generation has not been fully completed, and
hence we have not evaluated it on other attacks.

Our input filter generation techniques inherit the limita-
tions of taint inference mentioned earlier. In addition, note
that input filtering is inherently harder than output filtering:
with output filtering, we need only decide whether a partic-
ular output violates a policy; in contrast, with input filtering,
we need to predict if a certain input can lead the application
to produce an output that would violate this policy. Since
such prediction is hard, one would expect that input filters
would suffer from a higher rate of false positives and false
negatives as compared to output filters.

Input filter generation has been motivated in part by our
desire to protect an application from DoS attacks. However,
we have not systematically evaluated our technique against
DoS attacks.

References
[1] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Towards au-

tomatic generation of vulnerability-based signatures. In Proceedings
of the 2006 IEEE Symposium on Security and Privacy, pages 2–16.
IEEE Computer Society Washington, DC, USA, 2006.

[2] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. Bouncer:
Securing software by blocking bad input. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles,
pages 117–130. ACM New York, NY, USA, 2007.

[3] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang,
and P. Barham. Vigilante: End-to-end containment of internet worms.
ACM SIGOPS Operating Systems Review, 39(5):133–147, 2005.

[4] W. Cui, M. Peinado, H.J. Wang, and M.E. Locasto. Shieldgen: Au-
tomatic data patch generation for unknown vulnerabilities with in-
formed probing. In IEEE Symposium on Security and Privacy, 2007.
SP’07, pages 252–266, 2007.

[5] William Halfond. SQL injection application testbed. On the web at
http://www.cc.gatech.edu/ whalfond/testbed.html.

[6] Z. Liang and R. Sekar. Fast and automated generation of attack signa-
tures: A basis for building self-protecting servers. In Proceedings of
the 12th ACM conference on Computer and communications security,
pages 213–222. ACM New York, NY, USA, 2005.

[7] James Newsome and Dawn Song. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits on
commodity software. In Network and Distributed System Security
Symposium (NDSS), 2005.

[8] OWASP. Owasp webgoat project. On the
web at http://www.owasp.org/index.php/Category:
OWASP WebGoat Project.

[9] Tadeusa Pietraszek and Chris Vanden Berghe. Defending against in-
jection attacks through context-sensitive string evaluation. In Recent
Advances in Intrusion Detection (RAID), 2005.

[10] Feng Qin, Cheng Wang, Zhenmin Li, Ho seop Kim, Yuanyuan Zhou,
and Youfeng Wu. LIFT: A low-overhead practical information flow
tracking system for detecting general security attacks. In IEEE/ACM
International Symposium on Microarchitecture, December 2006.

[11] Prateek Saxena, R. Sekar, and Varun Puranik. Efficient fine-
grained binary instrumentation with applications to taint-tracking.
In IEEE/ACM Conference on Code Generation and Optimization
(CGO), April 2008.

[12] R. Sekar. An Efficient Black-box Technique for Defeating Web Ap-
plication Attacks. In Network and Distributed System Security Sym-
posium (NDSS), 2009.

[13] Zhendong Su and Gary Wassermann. The essence of command injec-
tion attacks in web applications. In POPL ’06: Conference record of
the 33rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 372–382, New York, NY, USA, 2006.
ACM.

[14] X.F. Wang, Z. Li, J. Xu, M.K. Reiter, C. Kil, and J.Y. Choi. Packet
vaccine: Black-box exploit detection and signature generation. In
Proceedings of the 13th ACM conference on Computer and commu-
nications security, pages 37–46. ACM New York, NY, USA, 2006.

[15] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-enhanced policy en-
forcement: A practical approach to defeat a wide range of attacks. In
USENIX Security Symposium, August 2006.

http://www.cc.gatech.edu/~whalfond/testbed.html
http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
http://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

	1 Introduction
	2 Related Work
	3 Approach Overview
	3.1 Taint Inference
	3.2 Output Filters
	3.3 Input Filters

	4 Preliminary Results
	4.1 Taint Inference
	4.2 Output Filters
	4.3 Input Filters


