More Operations on Relations

Composition: For $R: A \rightarrow B$ and $S: B \rightarrow C$,

$$a (R \circ S) c ::= \exists b \in B \ a R b \land b S c$$

Inverse: The inverse of a relation R, denoted R^{-1}, is given by $b R^{-1} a$ iff $a R b$.

Inverse of functions can be defined in the same way. But, the inverse of a function f may not always be a function. f^{-1} is a function iff f is injective.
More Operations on Relations

Composition: For $R: A \rightarrow B$ and $S: B \rightarrow C$,
$$a (R \circ S) c ::= \exists b \in B \ a R b \land b S c$$

Inverse: The inverse of a relation R, denoted R^{-1}, is given by
$$b R^{-1} a \iff a R b$$

- Inverse of functions can be defined in the same way.
- But, the inverse of a function f may not always be a function
More Operations on Relations

Composition: For \(R: A \rightarrow B \) and \(S: B \rightarrow C \),
\[
a (R \circ S) c ::= \exists b \in B \ a R b \land b S c
\]

Inverse: The inverse of a relation \(R \), denoted \(R^{-1} \), is given by
\[
b R^{-1} a \iff a R b
\]

- Inverse of functions can be defined in the same way.
- But, the inverse of a function \(f \) may not always be a function
 - \(f^{-1} \) is a function iff \(f \) is injective
A relation R from a set to itself is often more interesting than a relation from one set to another.

- R can be composed with itself
- can be represented using a directed graph or digraph.
A Digraph $G = (V, E)$ where
- V is the set of vertices or nodes, and
- E is a set of directed edges of the form (u, v) where $u, v \in V$.

G is nothing but a relation from V to V. In fact, we have already called the "arrows" in visual representation of relations as graphs!
A Digraph $G = (V, E)$ where
- V is the set of vertices or nodes, and
- E is a set of directed edges of the form (u, v) where $u, v \in V$.
 - u is called the tail and v the head of the edge.
 - An edge with the same head and tail is called a self-loop.

Sometimes we call these $V(G)$ and $E(G)$.
A Digraph $G = (V, E)$ where

- V is the set of vertices or nodes, and
- E is a set of directed edges of the form (u, v) where $u, v \in V$.
 - u is called the tail and v the head of the edge.
 - An edge with the same head and tail is called a self-loop.

Sometimes we call these $V(G)$ and $E(G)$.

G is nothing but a relation from V to V

In fact, we have already called the “arrows” in visual representation of relations as graphs!
Degree: number of arrows coming into ("in" degree) or the number of arrows going out ("out" degree)

Property of Degrees in a Graph

\[\sum_{v \in V(G)} \text{indeg}(v) = \sum_{v \in V} \text{outdeg}(v) \]
Walks and Paths

A walk in a graph G is a sequence of vertices v_1, v_2, \ldots, v_n such that

- Every $v_i \in V(G)$, and
- $(v_j, v_{j+1}) \in E(G)$
- We say that the walk starts at v_1 and ends at v_n
- The length of the walk is $n - 1$
Walks and Paths

- A walk in a graph G is a sequence of vertices v_1, v_2, \ldots, v_n such that
 - Every $v_i \in V(G)$, and
 - $(v_j, v_{j+1}) \in E(G)$
 - We say that the walk starts at v_1 and ends at v_n
 - The length of the walk is $n - 1$

- A closed walk is a walk with $v_1 = v_n$.

- A path is a walk where all the vertices are distinct.

- A cycle is a closed walk where v_1, \ldots, v_{n-1} form a path.
Some Properties of Walks

Theorem

- The shortest walk between two vertices \(u \) and \(v \) is a path.
- The shortest closed walk through a vertex \(v \) is a cycle.
Some Properties of Walks

Theorem

- The shortest walk between two vertices u and v is a path.
- The shortest closed walk through a vertex v is a cycle.

$\text{dist}(u, v)$: is the shortest path between u and v.
Some Properties of Walks

Theorem

- The shortest walk between two vertices \(u \) and \(v \) is a path.
- The shortest closed walk through a vertex \(v \) is a cycle.

\(\text{dist}(u, v) \): is the shortest path between \(u \) and \(v \).

The Triangle Inequality

\[
\text{dist}(u, v) \leq \text{dist}(u, w) + \text{dist}(w, v)
\]
Euler Tour: A closed walk that visits every edge in the graph exactly once.

Hamiltonian Tour: A cycle that visits every vertex exactly once.
Euler Tour Example
Euler Tour: Necessary and Sufficient Condition

\[\forall v \in V \quad indeg(v) = outdeg(v) \]
Hamiltonian Tour: Example

Also known as *Traveling Salesman Problem*
Think of E as defining a relation from V to V

- What do walks of length 2 denote?
- What about walks of length n?
Properties of a Relation $R : V \rightarrow V$

Reflexive: $\forall a \ aRa$
- Graph has self-loops at every vertex

Irreflexive: $\forall a \ a \not\in R a$
- No self-loops
Properties of a Relation $R : V \rightarrow V$

Symmetric: $\forall a, b \ aRb \rightarrow bRa$
- Edges come in pairs: we can merge them into one and remove arrows, leading to undirected graphs

Anti-symmetric: $\forall a, b \ aRb \rightarrow (a = b \ \lor \ b \not\sim a)$
Properties of a Relation $R : V \rightarrow V$

Transitive: $\forall a, b, c \ aRb \land bRc \rightarrow aRc$

- Any vertex b reachable from a is reachable in a single step.
Properties of a Relation $R : V \rightarrow V$

Reflexive: $\forall a \ aRa$

Irreflexive: $\forall a \ a \not\in R a$

Symmetric: $\forall a, b \ aRb \rightarrow bRa$

Anti-symmetric: $\forall a, b \ aRb \rightarrow (a = b \lor b \not\in R a)$

Transitive: $\forall a, b, c \ aRb \land bRc \rightarrow aRc$
Closure Operations

- Start with a relation, introduce additional edges implied by properties discussed before:
 - Reflexive closure
 - Symmetric closure
 - Transitive closure
Reflexive Closure

- Add self-loops at every vertex
- Examples
Symmetric Closure

- Add edge from b to a whenever there is an edge from a to b
- Examples
Transitive Closure

- Add edge from a to c iff there is an edge from a to b and another edge from b to c.
- Examples
Properties of a Relations

Partial Orders: Anti-symmetric and transitive. Forms Directed Acyclic Graphs (DAGs)

Linear order: Partial order where every pair of elements is comparable
 i.e., either aRb or bRa holds.
DAGs, Dependencies, Topological Sort and Scheduling ...
DAGs, Dependencies, Topological Sort and Scheduling ...
Properties of a Relations: Equivalence Relations

- Reflexive, Symmetric and Transitive
- Partition a domain into *Equivalence Classes*

\[EC(a) = \{ b \mid aRb \} \]

- Examples
 - \(aRb \iff a, b \in \mathbb{N}, a \mod n = b \mod n \)
 - Connected components of a graph