
Virtual Machines



Processor Security: Key Principles

• Processors operate at multiple privilege levels

– At least two levels needed: privileged and unprivileged

– Often, four or more levels supported.

• Ring 0 is highest privilege

• Ring 3 is lowest privilege

• OS kernel executes in privileged mode

• User level code executes in unprivileged mode

– Applies to all processes, including those owned by root



Processor Security: Key Principles

• Privileged instructions can execute successfully only if the 
processor is operating in privileged mode.

– Important processor state can be changed only through the 
execution of privileged instructions

• Page tables

• I/O devices

• As a result, only the kernel code can change critical 
processor state.

– Enables the OS to control and manage system resources and 
share them safely across user-level processes.

– Resources are often “virtualized:” for most resources, it is as if a 
user level process has an exclusive, private copy of the 
resource.



Processor Security: Key Principles

• No control transfers across privilege levels

– Can’t secure privileged code if unprivileged code can call it

– Difficult to get things right even in the opposite direction

– So, privileged crossings are usually effected via interrupts

• hardware interrupts: often used to respond to device requests

• software interrupts: system calls (user code calling kernel code)

• Interrupts are like request messages. 

– The sender does not have any ability to control whether the 
receiver examines or processes requests, nor can they influence 
the environment in which they are processed

• the registers, stack, heap etc. are separate for the kernel

• kernel code can access user process memory, but it takes extreme 
care in doing so.



Virtualization in OSes
• Creation of logical instances of physical resources. 

– The substitutes and their actual counterparts

• have same functions and external interfaces

• differ in size, performance, cost etc.

• often used to create a dedicated instance of a resource from a shared 
physical resource

– Resources to virtualize

• CPU

•Memory

• I/O devices (mouse, display, network, ...)

– Operating systems already virtualize most resources for user 
processes

• since the kernel creates this virtualization, it still needs to operate on 
physical resources 



System Virtualization

• System virtualization creates several virtual systems 
within a single physical one

– System = complete computer system, including the 
processor and all the peripherals contained within

• Key point: The virtual processor supports privileged instructions, 
so OS kernels can run on top.

• VMM (or hypervisor)

– Virtual machine monitor is the software layer providing the 
virtualization.

• VM

– Virtual machine is the virtual systems running on top of 
VMM



Brief History
• 1960s, first introduced, for main frames
– Motivation: hardware cost etc.

• 1970s, an active research area

• 1980s, underestimated
– Multitask modern operating systems took its place

– Decreasing in hardware cost

• late 1990s, resurgence: software techniques for x86 
virtualization
– Many applications: mixed-OS develop environment, 

security, fault tolerance etc.

• mid 2000s, hardware support from both Intel and AMD



Types of Virtualization
• Process virtualization (virtualize one process)

– The VM supports an ABI: user instructions plus system calls

– Dynamic translators, JVM, …

• OS or Namespace virtualization (multiple logical VMs that share 
share the same OS kernel)

– Isolates VMs by partitioning all objects (not just files) into 
namespaces

– Linux containers and vServer, Solaris zones, FreeBSD jails, Docker

• System (or full) virtualization (whole system: OS+apps)

– The VM supports a complete ISA: user+system instructions

– Classic VMs, whole system emulators (and many others we discuss in 
next slides)



Architectures

• Type I: The VMM runs on bare hardware 
(“bare-metal hypervisor”)



Architectures
• Type II: The VMM runs as an ordinary application inside 

host OS (hosted hypervisor)



Key Issues in CPU Virtualization
• Protection levels
– Ring 0 (most privileged)

Ring 3 (user mode)

• Requirement for efficient/
effective virtualization
– Privileged instructions 

• Trap if executed in user mode

– Sensitive instructions
• affect important “system state”

– If privileged==sensitive, can
support efficient “trap and emulate” approach
• Virtualized execution = native execution+exception handling code that 

emulates privileged instructions

• For x86, not all sensitive instructions are privileged
– Some instructions simply exhibit different behaviors in user and 

privileged mode



Virtualization Approaches
• Full virtualization using binary translation

– Problem instructions translated into a sequence of instructions that 
achieve the intended function

– Example: VMware, QEMU



Virtualization Approaches

• Paravirtualization: OS modified to run on VMM

– Example: Xen



Paravirtualization

• No longer 100% interface compatible, but better 
performance

– Guest OSes must be modified to use VMM’s interface

– Note that ABI is unchanged

• Applications need not to be modified

• Guest OSes are aware of virtualization

– privileged instructions are replaced by hypervisor calls

– therefore, no need for trapping or binary translation



Xen and the Art of Virtualization



Virtualization Approaches

• Hardware-assisted virtualization



Hardware-assisted Virtualization

• Processor

– AMD virtualization (AMD-V)

– Intel virtualization (VT-x)



AMD-V: CPU virtualization

• Separates CPU execution into two modes

– hypervisor executes in host mode

– all VMs execute in guest mode

• Both hypervisor and VMs can execute in any of the four 
rings

• Hypervisor can

– explicitly switch from host mode to guest mode

– specify which events (e.g. interrupts) cause exist from guest 
mode



Memory Virtualization

• Access to MMU needs to be virtualized

– Otherwise guest OS may directly access physical memory 
and/or otherwise subvert VMM

• Physical Memory is divided among multiple VMs

– Two levels of translation

• Guest OS: guest virtual addr  guest physical addr

• VMM: guest physical addr  machine addr



Memory Virtualization
• Shadow page table needed to avoid 2-step translation

– When guest attempts to update, VMM intercepts and emulate the 
effects on the corresponding shadow page table



I/O Virtualization

• The VMM

– intercepts a guest’s I/O action

– converts it from a virtual device action to a real device 
action



Security Applications
• Honeypot systems and Malware analysis
– VM technology provides strong isolation that is necessary 

to run malware without undue risks
• Strong resource isolation: CPU, memory, storage

• Snapshot/restore features to speed up testing and recovery

• High-assurance VMs
– On a single workstation, can run high assurance VMs that 

support some security functions, but may not provide 
general-purpose functions
• single-purpose VM scheme facilitates stricter security policies

• In contrast, security policies that are compatible with the range 
of desktop applications being used today will likely be too 
permissive. 



Security Applications

• Protection from compromised OSes

– Modern OSes are too complex to secure

– Malware-infested OS may subvert security software (virus 
and malware scanners)

– Instead, rely on VMM

• run malware and rootkit detection techniques in VMM

• enforce security properties from within the VMM



Security Challenges

• Virtualization leads to co-tenancy

– VMs belonging to distinct principals use the same hardware

• Strong isolation is necessary or else attacks become too easy
– Containers don’t offer enough security if some principals can be 

downright malicious

• Even with strong isolation, provides increased opportunities for 
side-channel attacks

• Denial of service is difficult to prevent
– But often, it is not a problem in practice as bad behavior is expensive, 

and/or is detected and the culprit punished



Docker Security

• Isolation of containers

– namespaces: each container cannot see entities (files, 
processes, pids, network interfaces, ...) in other containers

– cgroup: enables resource accounting and limiting --- 
including CPU, memory, disk I/O, etc.

• one bad container cannot use up all resources

• Container infrastructure and services (docker daemon)

– containers can share files/directories with the host OS, but 
this can be dangerous, e.g., allow root user in a container 
to change critical host OS files

– administrative services (e.g., creation of containers) can be 
abused, so interface to docker daemon should be restricted



Docker Security

• Avoid root privilege

– Use user namespaces to map docker root to non-zero uid

• Limit further using Linux capabilities

– programs running with containers typically don’t need root 
privilege

– we can use Linux capabilities to take away almost all of the 
power of the root

• Limit further using seccomp-bpf

• And the most important of them all:

– Make sure that the images and code you are running inside 
a container are trustworthy!


	Virtual Machines
	Concepts
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Brief History
	Types of Virtualization
	Architectures
	Slide 10
	Key Issues in CPU Virtualization
	Virtualization Approaches
	Slide 13
	Paravirtualization
	Xen and the Art of Virtualization
	Slide 16
	Hardware-assisted Virtualization
	AMD-V: CPU virtualization
	Memory Virtualization
	Slide 20
	I/O Virtualization
	Security Applications
	Slide 24
	Slide 25
	Slide 26
	Slide 27

