
1

Memory Error Exploits and Defenses

Process Memory Layout

argv, env

stack

heap

bss

data

text

high mem

low mem

Argv/Env: CLI args and environment

Stack: generally grows downwards

Heap: generally grows upwards

BSS: unitialized global data

Data: initialized global data

Text: read-only program code

2

Memory Layout Example

/* data segment: initialized global data */

int a[] = { 1, 2, 3, 4, 5 };

/* bss segment: uninitialized global data */

int b;

/* text segment: contains program code */

int main(int argc, char **argv) /* ptr to argv */

{

/* stack: local variables */

int *c;

/* heap: dynamic allocation by new or malloc */

c = (int *)malloc(5 * sizeof(int));

}

3

4

What is the Call Stack?

LIFO data structure: push/pop

– Stack grows downwards in memory.

– SP (esp) points to top of stack (lowest address)

What’s on the call stack?

– Function parameters

– Local variables

– Return values

– Return address

Call Stack Layout

b() {

…

}

a() {

b();

}

main() {

a();

}

Unallocated

Stack Frame

for b()

Stack Frame

for a()

Stack Frame

for main()

High Memory

Low Memory

5

6

Accessing the Stack

Pushing an item onto the stack.

1. Decrement SP by 4.

2. Copy 4 bytes of data to stack.

Example: push 0x12

Popping data from the stack.

1. Copy 4 bytes of data from stack.

2. Increment SP by 4.

Example: pop eax

Retrieve data without pop: mov eax, esp

7

What is a Stack Frame?

Block of stack data for one procedure call.

Frame pointer (FP) points to frame:

– Use offsets to find local variables.

– SP continually moves with push/pops.

– FP only moves on function call/return.

– Intel CPUs use ebp register for FP.

8

C Calling Convention

1. Push all params onto stack in reverse order.

Parameter #N

…

Parameter #2

Parameter #1

2. Issues a call instruction.

1. Pushes address of next instruction (the return
address) onto stack.

2. Modifies IP (eip) to point to start of function.

9

Stack before Function Executes

Frame Pointerold stack frame

parameter #N

…

parameter #1

return address Stack Pointer

10

C Calling Convention

1. Function pushes FP (ebp) onto stack.
Save FP for previous function.
push ebp

2. Copies SP to FP.
Allows function to access params as fixed indexes

from base pointer.
mov ebp,esp

3. Reserves stack space for local vars.
subl esp, 0x12

11

Stack at Function Start

old stack frame

parameter #N

…

parameter #1

return address

old FP

Space for local vars

Space for local vars

EBP (Base Pointer)

ESP (Stack Pointer)

12

C Calling Convention

1. After execution, stores return value in eax.
movl eax, 0x1

Resets stack to pre-call state.

Destroys current stack frame; restores caller’s frame.

mov esp, ebp

pop ebp

2. Returns control back to where called from.

ret pops top word from stack and sets eip to that
value.

13

Example: Stack Smashing Attack

void

f(const int *A, int n) {

int buf[100];

int i = 0;

while (i < n) {

buf[i] = A[i++];

}

...

}

i

buf[0]

…

buf[98]

buf[99]

Base Ptr

Return Addr

A

n S
ta

c
k
 G

ro
w

th

In
c
re

a
s
in

g
A

d
d

re
s
s

buf[101]

Injected code starts here

14

Stack smashing defenses

Non-executable data

Direct code injection attacks at some point execute

data

• Most programs never need to do this

Hence, a simple countermeasure is to mark data

memory (stack, heap, ...) as non-executable

• Write-XOR-Execute, DEP

This counters direct code injection

• In principle, this countermeasure may also break certain legacy
applications

15

Reaction: No code injection necessary

Instead of injecting malicious code, why not

assemble malicious code out of existing code

already present in the program

• Indirect code injection attacks will drive the execution of
the program by manipulating the stack

E.g. Just execute system(“/bin/bash”) instead of

creating your own interrupts

• You just need to find where the system function is and call it
with the right parameter

16

Return-into-libc: overview

17

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

18

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

19

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

20

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Return addr

Return addr

Params for f3

Params for f2

Params for f1

SP IP

Return-into-libc: overview

21

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Return addr

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

22

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Return addr

Params for f2

Params for f1

SP

IP

Return-into-libc: overview

23

f1
.
.
return

f2
.
.
return

f3

return
.
.
return

Code MemoryStack

Return addr

Params for f1

SP

IP

Return-to-libc

What do we need to make this work?

• Inject the fake stack
• Easy: this is just data we can put in a buffer

• Make the stack pointer point to the fake stack right before a return
instruction is executed

• Then we make the stack execute existing functions to do a direct
code injection

• But we could do other useful stuff without direct code injection

24

return-to-libc on Steroids

Overwritten saved EIP need not point to the

beginning of a library routine

Any existing instruction in the code image is fine

• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?

• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (ESP)
• Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP
• Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

slide 25

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET

• Krahmer, “x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything

• Turing-complete language

• Build “gadgets” for load-store, arithmetic,
logic, control flow, system calls

• Attack can perform arbitrary computation
using no injected code at all –
return-oriented programming

slide 26

[Shacham et al.]

Return Oriented Programming

EAX = SMTH
EBX = SMTH
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

Return Oriented Programming

EAX = SMTH
EBX = SMTH
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

EIP

Return Oriented Programming

EAX = 8
EBX = SMTH
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

EIP

Return Oriented Programming

EAX = 8
EBX = SMTH
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

EIP

Return Oriented Programming

EAX = 8
EBX = &”/tmp...”
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

EIP

Return Oriented Programming

EAX = 8
EBX = &”/tmp...”
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

EIP

Return Oriented Programming

EAX = 8
EBX = &”/tmp...”
ECX = 0x309

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP
EIP

Return Oriented Programming

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP

EIP

EAX = 8
EBX = &”/tmp...”
ECX = 0x309

Heap based buffer overflow

If a program contains a buffer overflow vulnerability for

a buffer allocated on the heap, there is no return

address nearby

So attacking a heap based vulnerability requires the

attacker to overwrite other code pointers

We look at two examples:

• Overwriting a function pointer

• Overwriting heap metadata

35

Overwriting a function pointer

Example vulnerable program:

36

Overwriting a function pointer

And what happens on overflow:

37

Overwrites aren’t the only problem…

38

39

40

41 xkcd.com

42

Overwriting heap metadata

The heap is a memory area where dynamically

allocated data is stored
• Typically managed by a memory allocation library that offers

functionality to allocate and free chunks of memory (in C:
malloc() and free() calls)

Most memory allocation libraries store

management information in-band

• As a consequence, buffer overruns on the heap can overwrite
this management information

• This enables an “indirect pointer overwrite”-like attack allowing
attackers to overwrite arbitrary memory locations

43

Heap management in dlmalloc

Free chunk

Top Heap
grows
with brk()

Forward pointer

Backward pointer

Other mgmt info

User data

Other mgmt info

Chunk in use

Dlmalloc maintains a
doubly linked list of free
chunks

When chunk c gets
unlinked, c’s backward
pointer is written to
*(forward pointer+12)

Or: green value is written
12 bytes above where red
value points

c

44

Exploiting a buffer overrun

Top Heap
grows
with brk() Green value is written 12

bytes above where red
value points

A buffer overrun in d can
overwrite the red and
green values

•Make Green point to
injected code

•Make Red point 12 bytes
below a function return
address

c

d

Stack

RA

Heap

45

Exploiting a buffer overrun

Top Heap
grows
with brk() Green value is written 12

bytes above where red
value points

Net result is that the
return address points to
the injected code

c

Stack

RA

Heap

1

Heap Overflows
 More generally, provides a primitive to write an

arbitrary 32-bit value at an arbitrary location
 Possible targets

 Function pointers
 Return address on stack

– Canaries don’t help, but second RA copy will detect attack
 Global Offset Table (GOT)
 Function pointers in static memory

 Data pointers
 Names of programs executed or files opened
 Application-specific data, e.g., “is_authenticated” flag in a

login-like program

2

Heap Overflow Defenses
 Heap canaries

 “magic numbers” between data and header
 Separation of metadata from data

 In general, separating control data from program data is a
good idea
 Helps prevent data corruption attacks from altering the control-

flow of programs
 Can be applied on the stack as well

 “Safe stack” holds control-data
– “safe” data (e.g., local integer-valued variables) can also be

located there as they cannot be involved in memory errors
 All other data moved to a second stack

3

Format-string Attacks
 Exploits code of the form

 Read variables from untrusted source
 printf(s)

 Printf usually reads memory, so how can it be used for
memory corruption?

 “%n” primitive allows for a memory write
 Writes the number of characters printed so far (character count)
 Many implementations (Linux, Windows) allow just the least significant

byte of the number of character count
 you don’t have to print large number of characters to write

arbitrary 32-bit values --- just perform 4 separate writes of the
LS byte of character count

 Use field-width specifications to control character count
 Formatguard: pass in actual number of parameters so the

callee can only dereference that many parameters
 Not adopted in practice due to compatibility issues

4

Integer Overflows

 There are multiple forms
 Assignment between variables of different width

 Assign 32-bit value to 16-bit variable
 Assignment between variables of different signs

 Assign an unsigned variable to a signed variable or vice-versa
 Arithmetic overflows

 i = j+k
 i = 4*j
 Note that i may become smaller than j even if j > 0

 Exploitation
 Allocate less memory than needed, leading to a heap overflow

 One of the common forms of file-format attacks
 “Escape” bounds checks

 If (i < sizeof(buf)) memcpy(buf, src, i);

 For more info:
 http://www.phrack.org/archives/60/p60-0x0a.txt

Memory Errors
 Although other attack types have emerged, memory errors

continue to be the dominant threat
 Behind most “critical updates” from Microsoft and other vendors
 Mechanism of choice in “mass-market” attacks, including worms
 Evolved to target client (web browsers, email-handlers, word-

processors, document/image viewers, media players, …) rather than
server applications (e.g., web browsers)

 A memory error occurs when an object accessed using a
pointer expression is different from the one intended

 Spatial error
 Examples

– Out-of-bounds access due to pointer arithmetic errors
– Access using a corrupted pointer
– Uninitialized pointer access

 Temporal error: access to objects that have been freed (and possibly
reallocated)
 Example: dangling pointer errors
 applicable to stack and heap allocated data

 6

Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!
 Hard to debug, especially temporal errors

 Unpredictable delay, unpredictable effect
 Reallocated pointer errors are the worst kind

 “Defensive programming” leads to memory leaks

Use of Memory Errors in Attacks
 Temporal errors

 Not as frequently targeted as spatial errors, but are becoming more
common (“double free errors”)

 Spatial errors
 Pointer corruption is most popular
 Out-of-bounds errors are most commonly used to corrupt pointers

 But some attacks rely on just reads without necessarily corrupting
existing data, e.g., heartbleed SSL vulnerability

 Typically, multiple memory errors (2 to 3) are used in an attack
 Stack-smashing relies on out-of-bounds write, plus the use of a

corrupted pointer as return address
 Heap overflow relies on out-of-bounds write, use of corrupted pointer as

target of write, and then the use of a corrupted pointer as branch target.

8

High-level Overview of Memory Error Defenses
 Block memory errors

 Bounds-checking (mainly focused on spatial error)
 Bounds-checking C and CRED, Valgrind memcheck, ...
 Blocking all memory errors (including temporal)

 Disrupt exploits
 Identify mechanisms used for exploit, block them

 Disrupt mechanism used for corruption
– Protect attractive targets against common ways to corrupt them

(“guarding” solutions)
 Disrupt mechanism used for take-over

– Disrupt ways in which the victim program uses corrupted data

– Randomization-based defenses
 Disrupt payload delivery mechanism

– DEP, CFI

9

 A. Disrupting
Memory Error Exploits

10

1. Disrupting mechanisms used for corruption

 Stackguard and related solutions
 Protect RA and saved BP; with ProPolice, some local variables as well

 Magic cookies and safe linking on heaps
 Attacks on GOT

 GOT contains function pointers used to call library functions
 Compiler generates a stub for each library function in a code section

called PLT (program linkage table)
 Stub code for a function f performs an indirect jump using the address

stored in the GOT corresponding to f.
 Defense: hide GOT

 Not very effective: injected code can search and locate it!

 Common problem for this approach: incomplete
 Not all targets can be protected
 Incomplete even for protected targets: some corruption techniques can
still succeed, e.g., corrupting RA without disturbing canary.

11

2. Disrupting payload delivery mechanisms
 Prevent control transfer to/execution of injected code

 Most OSes enforce W ⊕ X (aka NX or DEP)
 prevents writable memory from being executable, so can’t execute injected code

 Attackers get around this by reusing existing code
 return-to-libc: return to the beginning of existing functions

– Instead of having injected code spawning a shell, simply “return” to the execle function in libc

– If it is a stack-smash, attacker controls the contents of the stack at this point, so they can control the
arguments to execle

 By constructing multiple frames on the stack, it is possible to chain together multiple fragments
of existing code
– ROP (return-oriented programming) takes this to the extreme

•Chains together many small fragments of existing code (“gadgets”)

•Each gadget can be thought of as an “instruction” for a “virtual machine”

•For sufficiently complex binaries, sufficient number and variety of gadgets are available to support
Turing-complete computation

– Most exploits today rely on ROP, due to widespread deployment of W ⊕ X

•Goal of ROP payload is to invoke mprotect system call to disable W ⊕ X.

 Control-flow integrity (CFI) is another (partial) defense that limits attacker’s freedom in
terms of control transfer target
 Can defeat most injected code and ROP attacks, but is not fool-proof

– skilled attackers may be able to craft attacks that operate despite CFI

3. Disrupting take-over mechanism
 Key issue for an attacker:

 using attacker-controlled inputs, induce errors with predictable effects
 Approach: exploit software bugs to overwrite critical data,

and the behavior of existing code that uses this data
 Relative address attacks (RA)

 Example: copying data from input into a program buffer without
proper range checks

 Absolute address attacks (AA)
 Example: store input into an array element whose location is

calculated from input.
– Even if the program performs an upper bound check, this may not

have the intended effect due to integer overflows
 RA+AA attacks: use RA attack to corrupt a pointer p, wait for

program to perform an operation using *p
 Stack-smashing, heap overflows, …

13

Disrupting take-over: Diversity Based Defenses

 Software bugs are difficult to detect or fix
 Question: Can we make them harder to exploit?

 Benign Diversity
 Preserve functional behavior

 On benign inputs, diversified program behaves exactly like the
original program

 Randomize attack behavior
 On inputs that exercise a bug, diversified program behaves

differently from the original

14

Automated Introduction of Diversity
 Use transformations that preserve program semantics
 Challenge: how to capture intended program semantics?

 Relying on manual specifications isn’t practical
 Solution: Instead of focusing on program-specific semantics,

rely on programming language semantics
 Randomize aspects of program implementation that aren’t specified in the

programming language
 Benefit: programmers don’t have to specify any thing

 Examples
 Address Space Randomization (ASR)

– Randomize memory locations of code or data objects
– Invalid and out-of-bounds pointer dereferences access unpredictable objects

 Data Space Randomization (DSR)
– Randomize low-level representation of data objects
– Invalid copy or overwrite operations result in unpredictable data values

 Instruction Set Randomization (ISR)

– Randomize interpretation of low-level code

– W ⊕ X has essentially the same effect, so ISR is not that useful any more

15

How randomization disrupts take-over
 Without randomization, memory errors corrupt

process memory in a predictable way
 Attacker knows what data is corrupted, e.g., return address
on the stack
 Relative address randomization (RAR) takes away this

predictability
 Attacker knows the correct value to be used for corruption,
e.g., the location of injected code (in a buffer that contains
data read from attacker)
 Absolute address randomization (AAR) takes away this

predictability for pointer-valued data
 DSR takes away this predictability for all data

Handled by
ProPolice

Handled by
ProPolice

Handled by
ProPolice

Corrupt non-pointer data
 Compromise security

 critical data, e.g.,
•File names opened for
 write or execute
•Security credentials

• Authenticated user?

Space of Possible Memory Error Exploits

Memory Error Exploits

• Frame pointer
• Local variables,
 parameters
• Pointer used to
 copy input

Corrupt data pointer

• return address
• function pointer
• dynamic linkage tables

Corrupt code pointer
“Control-flow Hijack attacks”

Pointer to
injected data

Pointer to existing data

Pointer to
injected code

Pointer to existing code
Requires DSR or
Relative Address
Randomization

Broken by DSR
& abs. addr.

randomization

Corrupt a
pointer value

Data AttacksData Attacks

Handled by
ISR

Handled by
Stackguard,RAD

First Generation ASR:
Absolute Address Randomization (ASLR)

 Invented by PaX project and Our Lab at SBU
 Randomizes base address of data (stack, heap, static

memory) and code (libraries and executable) regions
 Implemented on many flavors of UNIX & Windows

 UNIX implementations usually provide 20+ bits of randomness, 16
bits for Windows

 Implemented on all mainstream OS distributions
 Linux, OpenBSD, Windows, Android, iOS, ...

 Limitations
 Incomplete implementations (e.g., executables or some libraries left

unrandomized) --- but this is becoming rare these days.
 Brute-force attacks
 Information leakage attacks
 Relative address attacks

 Non-pointer data attacks, partial pointer overwrites

Second Generation ASR:
Relative Address Randomization

 Randomize distances between individual data and
code objects

 [Bhatkar et al] use code transformation to
 permute the relative order of objects in memory

 Static variables
 “Unsafe” local variables

– Safe local variables moved to a “safe” stack (no overwrites
possible)

– Safe stack option is now available on LLVM compiler
 Routines (functions)

 introduce gaps between objects
 Some gaps may be made inaccessible

19

Benefits of RAR

 Defeats the overwrite step, as well the step that uses
the overwritten pointer value
 Defeats format-string and integer overflow attacks
 Stack-smashing attacks fail deterministically (due to safe
stack)

 Higher entropy
 Up to 28 bits on 32-bit address space
 Knowing the location of one object does not tell you much
about the locations of other objects
 information leakage attacks become difficult
 heap overflows become more difficult since you need to make

two independent guesses

20

Execution Time Overheads

0

5

10

15

20

25

Total overhead

Average: 11%

21

Data Space Randomization

22

DSR Technique
 Basic idea: Randomize data representation

 Xor each data object with a distinct random mask
 Effect of data corruption becomes non-deterministic, e.g.,

 Use out-of-bounds access on array a to corrupt variable x with value v
– Actual value written: mask(a)  v
– When x is read, this value is interpreted as mask(x)  (mask(a)  v)

• Which is different from v as long as the masks for x and a differ.

 Benefits
 Large entropy

 32-bits of randomization for integers
 Masks for different variables can be independent

 Can address intra-structure overflows
 Not even addressed by full memory error detection techniques

 Natural generalization of PointGuard
 Protects all data, not just pointers
 Effective against relative address as well as absolute address attacks
 Different objects can use different masks (resists information leak attacks)

23

DSR Transformation Approach
 For each variable v, introduce another variable m_v for

storing its mask
 Randomize values assigned to variables (LHS)

 Example: x = 5 x = 5; x = x ^ m_x;

 Derandomize used variables (RHS)
 Example: (x + y) ((x ^ m_x) + (y ^ m_y))

 Key problem: aliasing
 int *x = &y
 A value may be assigned to y and dereferenced using *x

 Both expressions should yield the same value
– Need to ensure that possibly aliased objects should use the same

randomization mask

 Note
 In x = y, it is not necessary to assign same mask to x and y

24

Pointer Analysis & Mask Assignment
 int x, y;
 int *p1,*p2, *p3;

 int **pp1, **pp2;

 pp1 = &p1; …

 pp1 = &p2; …

 pp2 = &p3; …

 p1 = &x; …

 p2 = &y; …

 p3 = &y; …

x

pp1

y

pp2

p
3*pp1

p1 p2

**pp1
*p1
*p2

 Steensgaard’s pointer analysis
 Flow and context insensitive
 Efficient (linear time complexity)

m2m1

m3 m4

m5

 **pp1 => *(*(pp1 ^ m1) ^ m3) ^ m5

25

Implementation
 Uses source-to-source transformation
 For performance reasons, applies DSR to buffers and

pointers only
 Non-buffer data is still protected against buffer overflows

 Attempts to ensure that adjacent buffers won’t have
the same mask
 Makes it possible to detect all buffer overflows

 Limitations
 Does not yet support field sensitive points-to analysis
 Requires identification of external functions that aren’t
transformed

26

Execution Time Overheads

0

5

10

15

20

25

30

patch tar grep ctags gzip bc bison

Runtime overhead

Average: 15%

27

Limitations of ASR/DSR
 Interoperability between diversified code and code

that is not diversified
 Some randomizations need source code

 e.g., RAR relies on source-code transformations to reorder
static variables, functions, etc.

 Performance
 Increased VM usage (insignificant)
 Increased physical memory usage (insignificant)
 Runtime overhead (negligible for AAR, small for RAR, DSR)

 Making debuggers randomization-aware
 Biggest security challenge:

 Protecting randomization key(s), or in other words, resilience
in the face of information leak attacks

28

Summary of Automated Diversity
 Transformations that respect programming language

semantics are good candidates for automated diversity
 But they are typically good for addressing only low-level implementation

errors. (We have discussed them only in the context of a specific low-
level error, namely, memory corruption.)

 Automated diversity has been particularly successful in
the area of memory error exploit prevention

 First generation of randomization-based defenses focused on absolute
address based attacks
 Absolute-address randomization
 Practical technique with low impact on systems, and hence begun to

be deployed widely
 Second generation defenses provide protection from relative-address

dependent attacks
 Relative address randomization and data-space randomization

29

State of Exploit defenses and New attacks
 Most OSes now implement

 ProPolice like defenses, plus SEH protection (Microsoft)
 ASLR
 DEP/NX (prevent injected code execution)

 Recent attacks
 Exploit incomplete defenses, or use Heapspray for control-flow hijack

 No ASLR on most executables on Linux, some EXE, DLLs on MS
 Some libraries don’t enable stack protection, or it is incomplete
 Heapspray: brute-force attack in the space domain

– Exploits untrusted code in safe languages (Javascript, Java, Flash,…)

– Code allocates almost all of memory, fills with exploit code

– Jump to random location: with high probability, it will contain exploit code
 Return-oriented programming (ROP) to overcome DEP
 Rely increasingly on information leak attacks to overcome uncertainty due

to ASLR, frequent software updates, and so on
 Just-in-time-ROP: use information leak vulnerability to scan code at

runtime to identify ROP gadgets

30

 B. Preventing
Memory Errors

 31

Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!
 Hard to debug, especially temporal errors

 Unpredictable delay, unpredictable effect
 Reallocated pointer errors are the worst kind

 “Defensive programming” leads to memory leaks

 32

Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!
 Hard to debug, especially temporal errors

 Unpredictable delay, unpredictable effect
 Reallocated pointer errors are the worst kind

 “Defensive programming” leads to memory leaks

33

Issues and Constraints
 Backward compatibility with existing C-code

 Casts, unions, address arithmetic
 Conversion between integers and pointers

 Compatibility with previously compiled libraries
 Can’t expect to rebuild the entire system

 OS, numerous libraries and applications

34

Why Not Garbage Collection?
 GCs can make mistakes in C/C++ due to free

conversion between integers and pointers
 Fail to collect inaccessible memory
 Collect memory that should not be collected

 Large memory footprint
 Memory use of garbage-collected applications is often an
order of magnitude larger

 Unpredictable runtime overheads
 Problematic for systems with real-time or stringent
performance constraints

35

Approaches for Preventing Memory Errors
 Introduce inter-object gaps, detect access to them (Red zones)

 Detect subclass of spatial errors that involve accessing buffers just past
their end
 Purify, Light-weight bounds checking [Hasabnis et al], Address

Sanitizer [Serebryany et al]
 Detect crossing of object boundaries due to pointer arithmetic

 Detects spatial errors
 Backwards-compatible bounds checker [Jones and Kelly 97]
 Further compatibility improvements achieved by CRED [Ruwase et al]
 Speed improvements: Baggy [Akritidis et al], Paricheck [Younan et al]

 Runtime metadata maintenance techniques
 Temporal errors: pool-based allocation [Dhurjati et al], Cling [Akritidis et al]
 Spatial and temporal errors: CMemSafe [Xu et al]

 Further compatibility improvements: SoftBounds [Nagarakatte et al]
 Targeted approaches: Code pointer integrity [Kuznetsov et al], protects subset

of pointers needed to guarantee the integrity of all code pointers.

Red Zone: LBC Approach

Object

p

 ((*p == guard_zone_value && slowcheck (p)) ?
 flag_error() : *p

Zero metadata operations in most common case saves
significant runtime overheads

Slowcheck

 .
 .
 .

 .
 .
 .
 .
 .
 .
 .
 .
 .
 p

31 0

x y

0

1

2x -1

 .
 .
 .

0

2y -1

 .
 .
 .

0

2y -1

Map
pages
(4KB
each)

map

● Approach 1: check if guardmap[p] == 1

– Occupies 1/8th of the address space, even for a program that uses a
few bytes of memory –- leads to inefficiencies

● Approach 2: Use a two-level map for check

– Divide 32-bits of p into two parts, x (17 bits) and y (15 bits)
● Check: map[x] == NULL || map[x][y] == 1

– Map uses just 0.5MB for programs
with small memory use

● Use 3-level map for 64-bit address space

● Address sanitizer uses a similar approach,
but without a fast check

38

Backwards Compatible Bounds-Checking
 Enforces object allocation boundaries
 All allocations are entered into an efficient data

structure for intervals (splay tree)
 Checks pointer arithmetic, not dereferences
 If p is derived through address arithmetic on q, then

requires that p and q refer to the same object
 If not, p is set to an invalid value (e.g., -1) that will cause
memory exception on dereference

 CRED: improves compatibility in cases where out-of-
bounds pointer is created but is not dereferenced
before being brought back in bounds
 Uses a special data structure to keep track of OOB pointers

 39

Spatial Check:
(p >= p_info.base &&
 p < p_info.base+p_info.size)?

size=8

CMemSafe: Detecting Spatial Errors Using Metadata

char * p;

p = malloc(8);

p += 14;

p += 2;

*p;

p

p_info
base

 base, size: base address and allocated size of the block

size

0x80004000

0x80004008

0x80004010

0x80004002

Heap

p; / OK */

/* error */

 40

size=16size=8

size=8

INVALIDVALID

Temporal Check:
(*q_info.cap_ptr == VALID)?

CmemSafe: Detecting Temporal Errors

char * p, *q;

p = malloc(8);

q = p;

free(p);

*q;

p

p_info
base

p = malloc(16);

 cap_ptr: pointer to unique capability associated with block

size

cap_ptr

q

q_info
base

size

cap_ptr

VALID

Capability Store
0x80004000

0x80004008

0x80004010

Heap

q; / OK */

/* error */

q; / error */

 Detect erroneous accesses to freed or reallocated memory

A Sampling of Influential Research by
Past CSE 508/509/Seclab Students

 Randomization
 Address obfuscation (ASLR/AAR), USENIX Security 2003.
 Fine-grained code and data layout randomization (RAR), USENIX

Security 2005.
 Data space randomization (DSR), DIMVA 2008.

 Bounds checking
 Efficient and compatible bounds checking (CMemSafe), FSE 2005.
 Efficient pointer arithmetic checking (PAriCheck), ASIACCS 2010.
 Light-weight bounds checking (LBC), CGO 2012.
 Code pointer integrity (CPI), OSDI 2014.

 Other
 SoK: Eternal war in memory, IEEE S&P 2013, S&P Magazine ’14.
 Principled ROP defense (compatible shadow stacks), ACSAC 15.

42

Unit Summary
 Exploit techniques

 Runtime organization of memory
 Stack smashing, injected code, return-to-libc, ROP, heap overflows, integer overflows, ...
 Brute-force attacks, partial overwrites, double pointer attacks,

format string attacks, heap spray, info leaks,...
 Runtime detection of errors (Typically, no FPs)

 Exploit detection and disruption
 canaries, shadow stack, heap cookies,
 DEP/NX/W X, non-readable code (R X)⊕ ⊕
 Randomization: space of possible exploits, types of randomization and effectiveness

 Memory error detection/blocking (some incompatibility with legacy code)
 Spatial vs temporal error detection
 Checking pointer operations vs dereference operations
 Compatibility and some performance concerns

 Static analysis (Compile-time detection)
 Not practical for mitigation or automated blocking

 False positives and false negatives (underlying problems are undecidable)
 Aimed at programmers, who need to investigate reported errors
 To be discussed later in the course

43

Credits
 Slides on Stack layout, ROP and heap overflows: courtesy Nick Nikiforakis

	Slide 1
	Heap Overflow Defenses
	Format-string Attacks
	Integer Overflows
	Memory Errors
	Slide 6
	Slide 7
	Memory Error Defenses
	Slide 9
	Some Defenses and Evasion Techniques
	Slide 11
	Use of Memory Errors in Attacks
	Diversity Based Defense
	Automated Introduction of Diversity
	Exploiting Memory Errors
	Attack Space of Interest
	First Generation ASR: Absolute Address Randomization (ASLR)
	Second Generation ASR: Relative Address Randomization
	Benefits of RAR
	Execution Time Overheads
	Slide 21
	DSR Technique
	DSR Transformation Approach
	Pointer Analysis & Mask Assignment
	Implementation
	Slide 26
	Limitations of ASR/DSR
	Summary of Automated Diversity
	State of Defenses and New Attacks
	Slide 30
	Memory Errors in C
	Slide 32
	Issues and Constraints
	Why Not Garbage Collection?
	Approaches
	LBC: efficiency and compatibility
	Slowcheck
	Backwards Compatible Checking
	Detecting Spatial Errors Using Metadata
	Detecting Temporal Errors
	Slide 41
	Summary of Memory Error Techniques
	Slide 43

