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Memory Error Exploits and Defenses



Process Memory Layout

argv, env

stack

heap

bss

data

text

high mem

low mem

Argv/Env: CLI args and environment

Stack: generally grows downwards

Heap: generally grows upwards

BSS: unitialized global data

Data: initialized global data

Text: read-only program code
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Memory Layout Example

/* data segment: initialized global data */

int a[] = { 1, 2, 3, 4, 5 };

/* bss segment: uninitialized global data */

int b;

/* text segment: contains program code */

int main(int argc, char **argv) /* ptr to argv */

{ 

/* stack: local variables */

int *c;

/* heap: dynamic allocation by new or malloc */

c = (int *)malloc(5 * sizeof(int));

}

3



4

What is the Call Stack?

LIFO data structure: push/pop

– Stack grows downwards in memory.

– SP (esp) points to top of stack (lowest address)

What’s on the call stack?

– Function parameters

– Local variables

– Return values

– Return address



Call Stack Layout

b() {

…

}

a() {

b();

}

main() {

a();

}

Unallocated

Stack Frame 

for b()

Stack Frame 

for a()

Stack Frame 

for main()

High Memory

Low Memory
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Accessing the Stack

Pushing an item onto the stack.

1. Decrement  SP by 4.

2. Copy 4 bytes of data to stack.

Example: push 0x12

Popping data from the stack.

1. Copy 4 bytes of data from stack.

2. Increment SP by 4.

Example: pop eax

Retrieve data without pop: mov eax, esp
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What is a Stack Frame?

Block of stack data for one procedure call.

Frame pointer (FP) points to frame:

– Use offsets to find local variables.

– SP continually moves with push/pops.

– FP only moves on function call/return.

– Intel CPUs use ebp register for FP.
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C Calling Convention

1. Push all params onto stack in reverse order.

Parameter #N

…

Parameter #2

Parameter #1

2. Issues a call instruction.

1. Pushes address of next instruction (the return 
address) onto stack.

2. Modifies IP (eip) to point to start of function.
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Stack before Function Executes

Frame Pointerold stack frame

parameter #N

…

parameter #1

return address Stack Pointer



10

C Calling Convention

1. Function pushes FP (ebp) onto stack.
Save FP for previous function.
push ebp

2. Copies SP to FP.
Allows function to access params as fixed indexes 

from base pointer.
mov ebp,esp

3. Reserves stack space for local vars.
subl esp, 0x12
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Stack at Function Start

old stack frame

parameter #N

…

parameter #1

return address

old FP

Space for local vars

Space for local vars

EBP (Base Pointer)

ESP (Stack Pointer)
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C Calling Convention

1. After execution, stores return value in eax.
movl eax, 0x1

Resets stack to pre-call state.

Destroys current stack frame; restores caller’s frame.

mov esp, ebp

pop ebp

2. Returns control back to where called from.

ret pops top word from stack and sets eip to that 
value.
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Example: Stack Smashing Attack

void

f(const int *A, int n) {

int buf[100];

int i = 0;

while (i < n) {

buf[i] = A[i++];

}

...

}

i

buf[0]

…

buf[98]

buf[99]

Base Ptr

Return Addr
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Injected code starts here
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Stack smashing defenses



Non-executable data

Direct code injection attacks at some point execute 

data

• Most programs never need to do this

Hence, a simple countermeasure is to mark data 

memory (stack, heap, ...) as non-executable

• Write-XOR-Execute, DEP

This counters direct code injection

• In principle, this countermeasure may also break certain legacy 
applications
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Reaction: No code injection necessary

Instead of injecting malicious code, why not 

assemble malicious code out of existing code 

already present in the program

• Indirect code injection attacks will drive the execution of 
the program by manipulating the stack

E.g. Just execute system(“/bin/bash”) instead of 

creating your own interrupts

• You just need to find where the system function is and call it 
with the right parameter
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Return-into-libc: overview
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Return-to-libc

What do we need to make this work?

• Inject the fake stack
• Easy: this is just data we can put in a buffer

• Make the stack pointer point to the fake stack right before a return 
instruction is executed

• Then we make the stack execute existing functions to do a direct 
code injection

• But we could do other useful stuff without direct code injection
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return-to-libc on Steroids

Overwritten saved EIP need not point to the 

beginning of a library routine

Any existing instruction in the code image is fine

• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?

• Execution will be transferred… to where?

• Read the word pointed to by stack pointer (ESP)
• Guess what?  Its value is under attacker’s control!  (why?) 

• Use it as the new value for EIP
• Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack
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Chaining RETs for Fun and Profit

Can chain together sequences ending in RET

• Krahmer, “x86-64 buffer overflow exploits and the borrowed 
code chunks exploitation technique” (2005)

What is this good for?

Answer [Shacham et al.]: everything

• Turing-complete language

• Build “gadgets” for load-store, arithmetic,
logic, control flow, system calls

• Attack can perform arbitrary computation
using no injected code at all –
return-oriented programming 

slide 26
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Return Oriented Programming

EAX = SMTH
EBX = SMTH
ECX = SMTH

...

...

0x80abdea0

0x309

0x80345677

&”/tmp/lala”

0x80abddaa

8

0x80abcdee

...

High

Low

…
0x80345677: pop $ecx;
0x80345678: ret;
...
0x08abcdee: pop $eax;
0x08abcdef : ret;
…
0x80abddaa: pop $ebx;
0x80abddab: ret;
…
0x80abdea0: int 0x80;
...

ESP
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Return Oriented Programming
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Heap based buffer overflow 

If a program contains a buffer overflow vulnerability for 

a buffer allocated on the heap, there is no return 

address nearby 

So attacking a heap based vulnerability requires the 

attacker to overwrite other code pointers

We look at two examples:

• Overwriting a function pointer

• Overwriting heap metadata
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Overwriting a function pointer

Example vulnerable program:
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Overwriting a function pointer

And what happens on overflow:
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Overwrites aren’t the only problem…
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Overwriting heap metadata

The heap is a memory area where dynamically 

allocated data is stored
• Typically managed by a memory allocation library that offers 

functionality to allocate and free chunks of memory (in C: 
malloc() and free() calls)

Most memory allocation libraries store 

management information in-band

• As a consequence, buffer overruns on the heap can overwrite 
this management information

• This enables an “indirect pointer overwrite”-like attack allowing 
attackers to overwrite arbitrary memory locations
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Heap management in dlmalloc

Free chunk

Top Heap
grows
with brk()

Forward pointer

Backward pointer

Other mgmt info

User data

Other mgmt info

Chunk in use

Dlmalloc maintains a 
doubly linked list of free 
chunks

When chunk c gets 
unlinked, c’s backward 
pointer is written to 
*(forward pointer+12)

Or: green value is written 
12 bytes above where red 
value points

c
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Exploiting a buffer overrun

Top Heap
grows
with brk() Green value is written 12 

bytes above where red 
value points

A buffer overrun in d can 
overwrite the red and 
green values

•Make Green point to 
injected code

•Make Red point 12 bytes 
below a function return 
address

c

d

Stack

RA

Heap
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Exploiting a buffer overrun

Top Heap
grows
with brk() Green value is written 12 

bytes above where red 
value points

Net result is that the 
return address points to 
the injected code

c

Stack

RA

Heap
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Heap Overflows
 More generally, provides a primitive to write an 

arbitrary 32-bit value at an arbitrary location
 Possible targets

 Function pointers
 Return address on stack

– Canaries don’t help, but second RA copy will detect attack
 Global Offset Table (GOT)
 Function pointers in static memory

 Data pointers
 Names of programs executed or files opened
 Application-specific data, e.g., “is_authenticated” flag in a 

login-like program
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Heap Overflow Defenses
 Heap canaries

 “magic numbers” between data and header
 Separation of metadata from data

 In general, separating control data from program data is a 
good idea
 Helps prevent data corruption attacks from altering the control-

flow of programs
 Can be applied on the stack as well

 “Safe stack” holds control-data
– “safe” data (e.g., local integer-valued variables) can also be 

located there as they cannot be involved in memory errors
 All other data moved to a second stack
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Format-string Attacks
 Exploits code of the form

 Read variables from untrusted source
 printf(s)

 Printf usually reads memory, so how can it be used for 
memory corruption?

 “%n” primitive allows for a memory write
 Writes the number of characters printed so far (character count)
 Many implementations (Linux, Windows) allow just the least significant 

byte of the number of character count
 you don’t have to print large number of characters to write 

arbitrary 32-bit values --- just perform 4 separate writes of the 
LS byte of character count

 Use field-width specifications to control character count
 Formatguard: pass in actual number of parameters so the 

callee can only dereference that many parameters
 Not adopted in practice due to compatibility issues
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Integer Overflows

 There are multiple forms 
 Assignment between variables of different width

 Assign 32-bit value to 16-bit variable
 Assignment between variables of different signs

 Assign an unsigned variable to a signed variable or vice-versa
 Arithmetic overflows

 i = j+k
 i = 4*j
 Note that i may become smaller than j even if j > 0

 Exploitation 
 Allocate less memory than needed, leading to a heap overflow

 One of the common forms of file-format attacks
 “Escape” bounds checks

 If (i < sizeof(buf)) memcpy(buf, src, i);

 For more info: 
 http://www.phrack.org/archives/60/p60-0x0a.txt



    

Memory Errors
 Although other attack types have emerged, memory errors 

continue to be the dominant threat
 Behind most “critical updates” from Microsoft and other vendors
 Mechanism of choice in “mass-market” attacks, including worms
 Evolved to target client (web browsers, email-handlers, word-

processors, document/image viewers, media players, …) rather than 
server applications (e.g., web browsers)

 A memory error occurs when an object  accessed using a 
pointer expression is different from the one intended

 Spatial error
 Examples

– Out-of-bounds access due to pointer arithmetic errors
– Access using a corrupted pointer
– Uninitialized pointer access

 Temporal error: access to objects that have been freed (and possibly 
reallocated)
 Example: dangling pointer errors
 applicable to stack and heap allocated data
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Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!
 Hard to debug, especially temporal errors

 Unpredictable delay, unpredictable effect
 Reallocated pointer errors are the worst kind

 “Defensive programming” leads to memory leaks



    

Use of Memory Errors in Attacks
 Temporal errors

 Not as frequently targeted as spatial errors, but are becoming more 
common (“double free errors”)

 Spatial errors
 Pointer corruption is most popular
 Out-of-bounds errors are most commonly used to corrupt pointers

 But some attacks rely on just reads without necessarily corrupting 
existing data, e.g., heartbleed SSL vulnerability

 Typically, multiple memory errors (2 to 3) are used in an attack
 Stack-smashing relies on out-of-bounds write, plus the use of a 

corrupted pointer as return address
 Heap overflow relies on out-of-bounds write, use of corrupted pointer as 

target of write, and then the use of a corrupted pointer as branch target.



8    

High-level Overview of Memory Error Defenses
 Block memory errors

 Bounds-checking (mainly focused on spatial error)
 Bounds-checking C and CRED, Valgrind memcheck, ...
 Blocking all memory errors (including temporal)

 Disrupt exploits
 Identify mechanisms used for exploit, block them

 Disrupt mechanism used for corruption
– Protect attractive targets against common ways to corrupt them 

(“guarding” solutions)
 Disrupt mechanism used for take-over

– Disrupt ways in which the victim program uses corrupted data

– Randomization-based defenses
 Disrupt payload delivery mechanism

– DEP, CFI
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 A. Disrupting 
Memory Error Exploits
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1. Disrupting mechanisms used for corruption

 Stackguard and related solutions 
 Protect RA and saved BP; with ProPolice, some local variables as well

 Magic cookies and safe linking on heaps
 Attacks on GOT

 GOT contains function pointers used to call library functions
 Compiler generates a stub for each library function in a code section 

called PLT (program linkage table)
 Stub code for a function f performs an indirect jump using the address 

stored in the GOT corresponding to f.
 Defense: hide GOT

 Not very effective: injected code can search and locate it!

 Common problem for this approach: incomplete
 Not all targets can be protected
 Incomplete even for protected targets: some corruption techniques can 
still succeed, e.g., corrupting RA without disturbing canary. 
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2. Disrupting payload delivery mechanisms
 Prevent control transfer to/execution of injected code

 Most OSes enforce W ⊕ X (aka NX or DEP) 
 prevents writable memory from being executable, so can’t execute injected code

  Attackers get around this by reusing existing code
 return-to-libc: return to the beginning of existing functions

– Instead of having injected code spawning a shell, simply “return” to the execle function in libc

– If it is a stack-smash, attacker controls the contents of the stack at this point, so they can control the 
arguments to execle

 By constructing multiple frames on the stack, it is possible to chain together multiple fragments 
of existing code
– ROP (return-oriented programming) takes this to the extreme

•Chains together many small fragments of existing code (“gadgets”)

•Each gadget can be thought of as an “instruction” for a “virtual machine”

•For sufficiently complex binaries, sufficient number and variety of gadgets are available to support 
Turing-complete computation

– Most exploits today rely on ROP, due to widespread deployment of W ⊕ X

•Goal of ROP payload is to invoke mprotect system call to disable W ⊕ X.

 Control-flow integrity (CFI) is another (partial) defense that limits attacker’s freedom  in 
terms of control transfer target
 Can defeat most injected code and ROP attacks, but is not fool-proof

– skilled attackers may be able to craft attacks that operate despite CFI



    

3. Disrupting take-over mechanism
 Key issue for an attacker:

 using attacker-controlled inputs, induce errors with predictable effects
 Approach: exploit software bugs to overwrite critical data, 

and the behavior of existing code that uses this data
 Relative address attacks (RA) 

 Example: copying data from input into a program buffer without 
proper range checks

 Absolute address attacks (AA)
 Example: store input into an array element whose location is 

calculated from input. 
– Even if the program performs an upper bound check, this may not 

have the intended effect due to integer overflows
 RA+AA attacks: use RA attack to corrupt a pointer p, wait for 

program to perform an operation using *p
 Stack-smashing, heap overflows, …
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Disrupting take-over: Diversity Based Defenses

 Software bugs are difficult to detect or fix
 Question: Can we make them harder to exploit?

 Benign Diversity
 Preserve functional behavior

 On benign inputs, diversified program behaves exactly like the 
original program

 Randomize attack behavior
 On inputs that exercise a bug, diversified program behaves 

differently from the original
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Automated Introduction of Diversity
 Use transformations that preserve program semantics
 Challenge: how to capture intended program semantics?

 Relying on manual specifications isn’t practical
 Solution: Instead of focusing on program-specific semantics, 

rely on programming language semantics
 Randomize aspects of program implementation that aren’t specified in the 

programming language
 Benefit: programmers don’t have to specify any thing 

 Examples
 Address Space Randomization (ASR)

– Randomize memory locations of code or data objects
– Invalid and out-of-bounds pointer dereferences access unpredictable objects 

 Data Space Randomization (DSR)
– Randomize low-level representation of data objects
– Invalid copy or overwrite operations result in unpredictable data values

 Instruction Set Randomization (ISR)

– Randomize interpretation of low-level code

– W ⊕ X has essentially the same effect, so ISR is not that useful any more
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How randomization disrupts take-over
 Without randomization, memory errors corrupt 

process memory in a predictable way
 Attacker knows what data is corrupted, e.g., return address 
on the stack
 Relative address randomization (RAR) takes away this 

predictability
 Attacker knows the correct value to be used for corruption, 
e.g., the location of injected code (in a buffer that contains 
data read from attacker)
 Absolute address randomization (AAR) takes away this 

predictability for pointer-valued data
 DSR takes away this predictability for all data
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Memory Error Exploits
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First Generation ASR: 
Absolute Address Randomization (ASLR)

 Invented by PaX project and Our Lab at SBU
 Randomizes base address of data (stack, heap, static 

memory) and code (libraries and executable) regions
 Implemented on many flavors of UNIX & Windows

 UNIX implementations usually provide 20+ bits of randomness, 16 
bits for Windows

 Implemented on all mainstream OS distributions
 Linux, OpenBSD, Windows, Android, iOS, ...

 Limitations
 Incomplete implementations (e.g., executables or some libraries left 

unrandomized) --- but this is becoming rare these days.
 Brute-force attacks
 Information leakage attacks
 Relative address attacks

 Non-pointer data attacks, partial pointer overwrites



Second Generation ASR: 
Relative Address Randomization

 Randomize distances between individual data and 
code objects

 [Bhatkar et al] use code transformation to
 permute the relative order of objects in memory

 Static variables
 “Unsafe” local variables

– Safe local variables moved to a “safe” stack (no overwrites 
possible)

– Safe stack option is now available on LLVM compiler
 Routines (functions)

 introduce gaps between objects 
 Some gaps may be made inaccessible
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Benefits of RAR

 Defeats the overwrite step, as well the step that uses 
the overwritten pointer value
 Defeats format-string and integer overflow attacks
 Stack-smashing attacks fail deterministically (due to safe 
stack)

 Higher entropy
 Up to 28 bits on 32-bit address space
 Knowing the location of one object does not tell you much 
about the locations of other objects
 information leakage attacks become difficult
 heap overflows become more difficult since you need to make 

two independent guesses
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Execution Time Overheads
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Data Space Randomization
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DSR Technique
 Basic idea: Randomize data representation

 Xor each data object with a distinct random mask
 Effect of data corruption becomes non-deterministic, e.g.,

 Use out-of-bounds access on array a to corrupt variable x with value v
– Actual value written: mask(a)  v
– When x  is read, this value is interpreted as mask(x)  (mask(a)  v)

• Which is different from v as long as the masks for x and a differ.

 Benefits
 Large entropy

 32-bits of randomization for integers
 Masks for different variables can be independent

 Can address intra-structure overflows
 Not even addressed by full memory error detection techniques

 Natural generalization of PointGuard
 Protects all data, not just pointers
 Effective against relative address as well as absolute address attacks
 Different objects can use different masks (resists information leak attacks)
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DSR Transformation Approach
 For each variable v, introduce another variable m_v for 

storing its mask
 Randomize values assigned to variables (LHS)

 Example:   x = 5                     x = 5; x = x ^ m_x;

 Derandomize used variables (RHS)
 Example:  (x + y)                   ((x ^ m_x) + (y ^ m_y))

 Key problem: aliasing
 int *x = &y
 A value may be assigned to y and dereferenced using *x

 Both expressions should yield the same value
– Need to ensure that possibly aliased objects should use the same 

randomization mask

 Note
 In x = y, it is not necessary to assign same mask to x and y
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Pointer Analysis & Mask Assignment
 int x, y;
 int *p1,*p2, *p3;

 int **pp1, **pp2;

 pp1 = &p1; …

 pp1 = &p2; …

 pp2 = &p3; …

 p1 = &x; …

 p2 = &y; …

 p3 = &y; …

x

pp1

y

pp2

p
3*pp1

p1      p2

**pp1 
*p1  
*p2

 Steensgaard’s pointer analysis
 Flow and context insensitive
 Efficient (linear time complexity)

m2m1

m3 m4

m5

 **pp1 =>  *(*(pp1 ^ m1) ^ m3) ^ m5
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Implementation
 Uses source-to-source transformation
 For performance reasons, applies DSR to buffers and 

pointers only
 Non-buffer data is still protected against buffer overflows

 Attempts to ensure that adjacent buffers won’t have 
the same mask
 Makes it possible to detect all buffer overflows

 Limitations
 Does not yet support field sensitive points-to analysis
 Requires identification of external functions that aren’t 
transformed
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Execution Time Overheads
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Limitations of ASR/DSR
 Interoperability between diversified code and code 

that is not diversified
 Some randomizations need source code

 e.g., RAR relies on source-code transformations to reorder 
static variables, functions, etc.

 Performance
 Increased VM usage (insignificant)
 Increased physical memory usage (insignificant)
 Runtime overhead (negligible for AAR, small for RAR, DSR)

 Making debuggers randomization-aware
 Biggest security challenge:

 Protecting randomization key(s), or in other words, resilience 
in the face of information leak attacks
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Summary of Automated Diversity
 Transformations that respect programming language 

semantics are good candidates for automated diversity
 But they are typically good for addressing only low-level implementation 

errors. (We have discussed them only in the context of a specific low-
level error, namely, memory corruption.)

 Automated diversity has been particularly successful in 
the area of memory error exploit prevention

 First generation of randomization-based defenses focused on absolute 
address based attacks
 Absolute-address randomization
 Practical technique with low impact on systems, and hence begun to 

be deployed widely
 Second generation defenses provide protection from relative-address 

dependent attacks
 Relative address randomization and data-space randomization
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State of Exploit defenses and New attacks
 Most OSes now implement 

 ProPolice like defenses, plus SEH protection (Microsoft)
 ASLR
 DEP/NX (prevent injected code execution)

 Recent attacks
 Exploit incomplete defenses, or use Heapspray for control-flow hijack

 No ASLR on most executables on Linux, some EXE, DLLs on MS
 Some libraries don’t enable stack protection, or it is incomplete
 Heapspray: brute-force attack in the space domain

– Exploits untrusted code in safe languages (Javascript, Java, Flash,…)

– Code allocates almost all of memory, fills with exploit code

– Jump to random location: with high probability, it will contain exploit code
 Return-oriented programming (ROP) to overcome DEP
 Rely increasingly on information leak attacks to overcome uncertainty due 

to ASLR, frequent software updates, and so on
 Just-in-time-ROP: use information leak vulnerability to scan code at 

runtime  to identify ROP gadgets
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 B. Preventing 
Memory Errors
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Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!
 Hard to debug, especially temporal errors

 Unpredictable delay, unpredictable effect
 Reallocated pointer errors are the worst kind

 “Defensive programming” leads to memory leaks
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Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!
 Hard to debug, especially temporal errors

 Unpredictable delay, unpredictable effect
 Reallocated pointer errors are the worst kind

 “Defensive programming” leads to memory leaks
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Issues and Constraints
 Backward compatibility with existing C-code

 Casts, unions, address arithmetic
 Conversion between integers and pointers

 Compatibility with previously compiled libraries
 Can’t expect to rebuild the entire system

 OS, numerous libraries and applications
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Why Not Garbage Collection?
 GCs can make mistakes in C/C++ due to free 

conversion between integers and pointers
 Fail to collect inaccessible memory
 Collect memory that should not be collected

 Large memory footprint
 Memory use of garbage-collected applications is often an 
order of magnitude larger

 Unpredictable runtime overheads
 Problematic for systems with real-time or stringent 
performance constraints
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Approaches for Preventing Memory Errors
 Introduce inter-object gaps, detect access to them (Red zones)

 Detect subclass of spatial errors that involve accessing buffers just past 
their end
 Purify, Light-weight bounds checking [Hasabnis et al], Address 

Sanitizer [Serebryany et al] 
 Detect crossing of object boundaries due to pointer arithmetic

 Detects spatial errors
 Backwards-compatible bounds checker [Jones and Kelly 97]
 Further compatibility improvements achieved by CRED [Ruwase et al]
 Speed improvements: Baggy [Akritidis et al], Paricheck [Younan et al]

 Runtime metadata maintenance techniques
 Temporal errors: pool-based allocation [Dhurjati et al], Cling [Akritidis et al]
 Spatial and temporal errors: CMemSafe [Xu et al]

 Further compatibility improvements: SoftBounds [Nagarakatte et al]
 Targeted approaches: Code pointer integrity [Kuznetsov et al], protects subset 

of pointers needed to guarantee the integrity of all code pointers.



Red Zone: LBC Approach

Object

p

 ((*p == guard_zone_value && slowcheck (p)) ?
    flag_error() : *p

Zero metadata operations in most common case saves 
significant runtime overheads
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● Approach 1:  check if guardmap[p] == 1

– Occupies 1/8th of the address space, even for a program that uses a 
few bytes of memory –- leads to inefficiencies

● Approach 2: Use a two-level map for check

– Divide 32-bits of p into two parts, x (17 bits) and y (15 bits) 
● Check: map[x] == NULL || map[x][y] == 1

– Map uses just 0.5MB for programs
with small memory use 

● Use 3-level map for 64-bit address space

● Address sanitizer uses a similar approach,
but without a fast check



38    

Backwards Compatible Bounds-Checking
 Enforces object allocation boundaries
 All allocations are entered into an efficient data 

structure for intervals (splay tree)
 Checks pointer arithmetic, not dereferences
 If p is derived through address arithmetic on q, then 

requires that p and q refer to the same object
 If not, p is set to an invalid value (e.g., -1) that will cause 
memory exception on dereference

 CRED: improves compatibility in cases where out-of-
bounds pointer is created but is not dereferenced 
before being brought back in bounds
 Uses a special data structure to keep track of OOB pointers
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Spatial Check:
(p >= p_info.base &&
 p < p_info.base+p_info.size)?

size=8

CMemSafe: Detecting Spatial Errors Using Metadata

char * p;

p = malloc(8);

p += 14;

p += 2;  

*p;

p

p_info
base

 base, size: base address and allocated size of the block

size

0x80004000

0x80004008

0x80004010

0x80004002

Heap

*p;  /* OK */

/* error */
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size=16size=8

size=8

INVALIDVALID

Temporal Check:
(*q_info.cap_ptr == VALID)?

CmemSafe: Detecting Temporal Errors

char * p, *q;

p = malloc(8);

q = p;

free(p);

*q;  

p

p_info
base

p = malloc(16);

 cap_ptr: pointer to unique capability associated with block

size

cap_ptr

q

q_info
base

size

cap_ptr

VALID

Capability Store
0x80004000

0x80004008

0x80004010

Heap

*q;  /* OK */

/* error */

*q;  /* error */

 Detect erroneous accesses to freed or reallocated memory



A Sampling of Influential Research by 
Past CSE 508/509/Seclab Students

 Randomization
 Address obfuscation (ASLR/AAR), USENIX Security 2003.
 Fine-grained code and data layout randomization (RAR), USENIX 

Security 2005.
 Data space randomization (DSR), DIMVA 2008.

 Bounds checking
 Efficient and compatible bounds checking (CMemSafe), FSE 2005.
 Efficient pointer arithmetic checking (PAriCheck), ASIACCS 2010.
 Light-weight bounds checking (LBC), CGO 2012.
 Code pointer integrity (CPI), OSDI 2014.

 Other
 SoK: Eternal war in memory, IEEE S&P 2013, S&P Magazine ’14.
 Principled ROP defense (compatible shadow stacks), ACSAC 15.
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Unit Summary 
 Exploit techniques

 Runtime organization of memory
 Stack smashing, injected code, return-to-libc, ROP, heap overflows, integer overflows, ...
 Brute-force attacks, partial overwrites, double pointer attacks, 

format string attacks, heap spray, info leaks,...
 Runtime detection of errors (Typically, no FPs)

 Exploit detection and disruption
 canaries, shadow stack, heap cookies, 
 DEP/NX/W  X, non-readable code (R  X)⊕ ⊕
 Randomization: space of possible exploits, types of randomization and effectiveness

 Memory error detection/blocking (some incompatibility with legacy code)
 Spatial vs temporal error detection
 Checking pointer operations vs dereference operations
 Compatibility and some performance concerns

 Static analysis (Compile-time detection)
 Not practical for mitigation or automated blocking

 False positives and false negatives (underlying problems are undecidable)
 Aimed at programmers, who need to investigate reported errors
 To be discussed later in the course
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Credits
 Slides on Stack layout, ROP and heap overflows: courtesy Nick Nikiforakis
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